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Abstract (226 words) 

In the current vaccine paradigm, it is usually assumed that vaccines only protect against the target 

infection, that effective vaccines reduce mortality corresponding to the target infection’s share of 

mortality, and that vaccine effects are similar for boys and girls. However, epidemiological vaccine 

research has generated observations, which contradict these assumptions and suggest that 

vaccines have important non-specific effects (NSEs).  

We list eleven contradictory observations, including the observations that several live vaccines 

reduce mortality far more than can be explained by protection against the target infections, and 

that several non-live vaccines are associated with increased female mortality.  

We suggest six principles, which may explain these observations: 1) live vaccines enhance 

resistance towards unrelated infections; 2) non-live vaccines enhance susceptibility towards 

unrelated infections for females; 3) the most recent vaccination has the strongest NSEs; 4) 

combinations of live and non-live vaccines given together have variable NSEs; 5) vaccinating with 

live vaccines in the presence of existing immunity enhances beneficial NSEs; and 6) vaccines may 

interact with other interventions affecting the immune system.  

These principles may characterise a new paradigm: they may help resolve the contradictory 

observations, they raise new questions which could not have been seen from the existing 

paradigm, and they correctly predict new observations, which cannot be explained within the 

current paradigm. Pursuing these principles could lead to an optimised understanding and use of 

vaccines. 
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Introduction 

Vaccines have enabled successful control of infections like smallpox, measles, polio, pertussis, and 

neonatal tetanus1. When vaccines were introduced against smallpox and tuberculosis, some 

clinicians suggested that the vaccines protected against other diseases2,3. However, this idea 

waned and left little imprint.  

Instead, a vaccine paradigm has developed, according to which a vaccine is “a biological 

preparation that improves immunity to a particular disease”4. This paradigm guides how vaccines 

are evaluated and how vaccination policy decisions are made. For instance, vaccines are typically 

evaluated only for their protective effects against the target disease; their effect on general 

susceptibility to infections and on overall mortality is not measured. Furthermore, little attention 

is paid to sequence and combination of vaccines5, and vaccination policies are the same for boys 

and girls (Box 1). 

A growing number of observations suggest that the current paradigm is not compatible will all 

data. In the terminology of Thomas Kuhn6, paradigm contradictions are accumulating. When that 

happens, we need new principles, which can resolve the contradictions.  

In the following, we list eleven contradictions. Based on these contradictions, we propose that 

vaccines have also important non-specific effects (NSEs), and we discuss new principles, which can 

possibly help resolve the contradictions and point to new questions and ultimately a new vaccine 

paradigm.  

Contradictions of the current vaccine paradigm 

The contradictions (Box 1) deal with the effects of vaccines on overall health. They were initially 

detected by our group in Guinea-Bissau, but we have examined the replicability in other settings 

(Supplementary table 1). Few groups have studied the effect of vaccines on overall health; to 

ensure completeness, we searched Pubmed for studies of NSEs of vaccines.  

The first contradiction was related to live standard MV. When routine measles vaccine (MV) was 

introduced in low-income countries in the 1970s-80s7, the >50% reductions in mortality were 

much larger than anticipated; at that time, ~10% of deaths were due to measles infection8-11.  
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Subsequently, several randomised controlled trials (RCTs) showed that an additional early dose of 

MV was associated with major reductions in mortality12,13 (Table 1). These results contradicted 

that the only major effect of MV was to protect against measles infection (Contradiction I). 

Recently, it was suggested that the beneficial NSEs are due to MV preventing measles infection 

from inducing long-term loss of immune memory14. However, this hypothesis is contradicted by 

individual level data, which show that measles infection is associated with lower mortality after 

the acute phase15. Furthermore, MV is associated with mortality reductions in situations with little 

measles infection and thus no long-term memory loss to prevent13. In spite of no circulating 

measles infection, studies of measles-mumps-rubella (MMR) vaccine from high-income settings 

have also shown reduction of non-target infections, particularly respiratory infections16-19. A Dutch 

study found similar benefits for all vaccines, and suggested that NSEs represent “healthy vaccinee 

bias”18. However, MMR had a significantly better effect for respiratory infections than other 

vaccines20. 

Given the beneficial effects of standard MV, expectations were high when a live high-titre-

measles-vaccine (HTMV) was introduced at 4-5 months of age in Africa in the 1980s. This vaccine 

clearly protected against measles infection21. However, long-term follow-up within RCTs in 

Guinea-Bissau, Senegal and The Gambia showed that girls, who received HTMV at 4-5 months, had 

two-fold higher mortality than girls in the control group, who received standard MV at 9-10 

months of age22. In 1992, when replicated in Haiti23, WHO withdrew HTMV24. This contradicted 

that protective vaccines have beneficial effects and that vaccine effects are similar for boys and 

girls (Contradiction II).  

Other live vaccines, however, also seemed to have beneficial NSEs. When BCG was introduced in 

Europe in the 1920s3 and in Guinea-Bissau in the 1980s25, BCG was associated with major 

reductions in infant mortality even though TB mainly kills older children. Recently, the BCG-

Denmark strain was tested in RCTs among low-weight children in Guinea-Bissau, who normally do 

not receive BCG at birth. BCG-Denmark-at-birth was associated with 38% (17-54%) lower neonatal 

mortality26 (Table 1). These observations contradict that BCG only protects against TB 

(Contradiction III). However, the evidence is not uniformly consistent; two recent Indian trials 
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found no effect of the BCG-Russian strain on neonatal mortality27 (Table 1), and a Danish trial 

found no effect of BCG-Denmark on infectious disease admissions28.  

 Live oral polio vaccine (OPV) was also shown to have beneficial effects on overall survival, which 

cannot be explained by prevention of polio. In recent decades, there has been little wild polio 

infection. Nonetheless, the many national campaigns conducted to eradicate polio in West Africa 

have been associated with major reductions in child mortality29-32. Furthermore, in an RCT, OPV-

at-birth was associated with 32% (0-55%) lower infant mortality before the children received 

campaign-OPV33 (Table 1). In Denmark, routine OPV was associated with fewer admissions for 

respiratory infections34. RCTs comparing OPV versus inactivated polio vaccine (IPV) in Bangladesh 

and Finland found OPV to be associated with lower risk of diarrhoea35 and otitis media36. These 

observations contradict that OPV only protects against polio infection (Contradiction IV) and 

question the plan to replace OPV with IPV.  

Yet another live vaccine, smallpox vaccine was associated with reductions in mortality. The 

decision to stop smallpox vaccination globally in 1980 was based on the assumption that smallpox 

vaccine only protected against smallpox infection. However, subsequent studies in Guinea-Bissau37 

and Denmark38 of cohorts that experienced the phase-out of smallpox vaccine, showed lower 

long-term mortality after smallpox-vaccination (Contradiction V).  

Recently, we have explored the determinants of beneficial NSEs of  live vaccines. That led to the 

discovery of two further contradictions.  

First, MV in the presence of maternal immunity improves the benefit of vaccination (Contradiction 

VI). It is well known, that MV  given to infants with maternal measles antibody, may reduce the 

measles-specific antibody response; the age of MV was determined to shun maternal antibody7 39 

40. However, the beneficial impact of MV on survival turned out to be stronger when MV is given 

before age 12 months41. Furthermore, mortality between 4.5 months and 5 years was 78% (36-

93%) lower if the child received early MV at 4.5 months of age in the presence rather than the 

absence of maternal measles antibody42.  

Second, though the first dose of live vaccines usually protects against death from the target 

disease, we observed that revaccination with live vaccines are associated with marked mortality 
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reductions (Contradiction VII). For instance, campaigns with MV and OPV are conducted to reach 

unvaccinated children and a few non-responders, and are not assumed to substantially reduce all-

cause mortality43. However, studies from Guinea-Bissau30,43-45, Ghana46, Burkina Faso31, 

Bangladesh44, Haiti44, and Algeria47 suggest that revaccination or campaigns with live vaccines 

(MV, BCG, OPV, and smallpox vaccine) reduce mortality substantially44. In Denmark, a second dose 

of MMR was associated with lower risk of admissions for severe non-targeted infections48.  

In contrast, the non-live diphtheria-tetanus-pertussis (DTP) vaccine was associated with increased 

overall mortality for females (Contradiction VIII).49-51 There are now 10 studies with prospective 

follow-up comparing DTP-vaccinated vs. DTP-unvaccinated children. In a combined analysis, DTP-

vaccinated children had 2.07(1.60-2.67) times higher mortality than DTP-unvaccinated 

children49,50,52. There are 17 studies of the female-male-mortality ratio among DTP-vaccinated 

children; in a combined analysis, females have 1.47(1.18-1.84) higher mortality than males49,50,53 

(Table 2).  

As for DTP, receipt of IPV54,  hepatitis B vaccine (HBV)55,  pentavalent (DTP+HBV+H. influenzae b) 

vaccine56,57 and H1N1 influenza vaccine30 have been associated with higher female than male 

mortality (Contradiction IX, Table 2). Recently, a non-live malaria vaccine provided 18-36% 

protection against clinical malaria58, but was associated with two-fold increased female 

mortality59,60.   Most studies finding excess female mortality after non-live vaccine were conducted 

in West Africa. There was no excess female mortality in the pre-vaccination era in West Africa61; 

vaccine coverage is usually similar for boys and girls61-63, and excess female mortality is not seen in 

age groups dominated by live vaccines. Hence, excess female mortality is “unnatural”, and 

contradicts the assumption that vaccines benefit both sexes similarly.  

In the current paradigm, sequence and combination of vaccines matter little; e.g. it makes little 

difference to pertussis or measles immunity whether DTP is given before MV, MV before DTP, or 

DTP and MV together.  However, in all studies, mortality is increased if DTP is administered after 

MV compared with MV administered after DTP32,61,64,65. Likewise, DTP given with MV is associated 

with higher mortality than having MV-only64.  Furthermore, children who received BCG+DTP, had 

lower mortality than children who got BCG-then-DTP as recommended64,66-68. Also, co-

administration of DTP and OPV is associated with lower mortality than DTP-only49.  In Denmark, 
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receiving DTaP-IPV-Hib with MMR vs. MMR-alone was associated with increased risk of admission 

for respiratory infections69; in the US, receiving live vaccines together with non-live vaccines was 

associated with higher risk of admission for non-targeted infections than having a live vaccine 

only19.  Thus, the sequence and combination of vaccines may matter greatly for child survival 

(Contradiction X).   

The last contradiction relates to the interaction between vaccines and other health interventions. 

In the 1980s, studies investigated whether high-dose VAS could reduce child mortality. In a large 

RCT in northern Ghana, VAS versus placebo was associated with 19% (2-32%) reduction in child 

mortality70. VAS became global policy and was piggy-backed on the vaccination program, but it 

was never examined whether VAS and vaccines interacted. In a reanalysis of the Ghanaian trial, 

VAS only benefitted children who had no vaccination card. Among children with a card, VAS vs 

placebo was associated with sex-differential effects, being less beneficial for females71. Several 

other studies support that the effect of VAS depends on vaccinations status in a sex-differential 

manner72-78. Hence, the assumption that vaccines only protect against the target disease was once 

again contradicted (Contradiction XI).  

Resolving the contradictions: New principles  

In situations with accumulating contradictions, the way forward is to formulate principles that can 

resolve the contradictions. This is new territory, and the approach therefore has to be iterative. 

The principles need to be tested on new data. Particularly their ability to provide accurate 

predictions should be assessed6,79.  

We have pursued a strategy of formulating deductions and testing them in all available data (Box 

2, supplementary table 1). Sometimes the studies had limited power, but the important criterion 

has been consistency, i.e. patterns rather than p-values. If a principle did not predict outcomes, it 

was reformulated and tested again. If a principle lead to accurate predictions, it was preserved in 

the pursuit of a better paradigm.  

The first principle is that live vaccines enhance resistance towards unrelated infections (Box 1). 

This principle explains the unexpected strong beneficial effects of MV, OPV, BCG and smallpox 

vaccines (Contradictions I+III-V). These benefits could partly be due to increased availability of 
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diagnostics and treatment for vaccinated vs. unvaccinated children, or due to social selection bias. 

However, the effect of smallpox vaccine was tested in natural experiments during the phase out of 

smallpox vaccine, limiting the bias, and MV, OPV and BCG were tested in RCTs. Principle 1 does 

not mean that live vaccines always have a beneficial effect; other interventions may modify the 

effect. For example, the beneficial effects of early MV in RCTs was not observed if the child 

previously received VAS13,  subsequently received DTP64 or participated in OPV campagins80. 

Apparently these interventions modified the effect of early MV, either by removing the benefits of 

early MV or by benefitting the control group relatively more. This may explain why RCTs found no 

benefit of early MV in situations with numerous OPV campaigns81. Recent trials of BCG-Russia 

found no effect on overall mortality; noteworthy, BCG strains are different82, and may also have 

different NSEs83. 

One important implication of live vaccines having beneficial NSEs is that stopping a vaccine after 

eradication could have negative effects, as may have happened for the smallpox vaccine37,38 and 

may soon happen for OPV84 and MV85.  

Immunology has supported this principle by showing that live vaccines can induce innate immune 

training, producing stronger pro-inflammatory responses to unrelated antigens86. In a recent 

proof-of-principle experiment, BCG vaccination of human volunteers modified the immune 

response to subsequent challenge with yellow fever vaccine87 and malaria88; this was brought 

about by epigenetic modifications of innate immune cells. Heterologous immunity may also play a 

role89.   

The second principle emerging is that non-live vaccines enhance susceptibility towards unrelated 

infections for females. This would explain the negative effects for females of the non-live vaccines 

examined so far: DTP49-53,61, IPV54, HBV55, Pentavalent vaccine56, H1N1 influenza30, and RTS,S60 

(Contradictions VIII-IX)(Table 2). The principle also enabled us to predict the negative effects of 

RTS,S in females59(Box 2). Though this principle is obviously controversial, no study without 

survival bias has contradicted  this pattern52 (Supplementary table 1). The observations have been 

dismissed because they are from observational studies with high risk of bias and not from RCTs. 

However, due to healthy vaccinee bias, the deleterious estimates of DTP’s effect are likely to be 

conservative52.  
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Immunology has supported this principle; non-live influenza vaccine and non-replicating modified 

Vaccinia Ankara were associated with reduced responses to unrelated pathogens, indicating some 

degree of tolerance90 91. In a recent experiment, DTP induced immunotolerance to unrelated 

antigens 3 months post-vaccination which was partially restored by concurrent or subsequent BCG 

vaccination92. In the first RCT designed to study the heterologous immunological effects of DTP in 

both sexes, DTP-vaccinated females, but not males, exhibited downregulation of predominantly 

type 1 interferon genes and suppressed T-cell reactivity93. Such immunological effects could help 

explain why non-live vaccines could lead to increased susceptibility to unrelated infections.  

The third principle is that the most recent vaccination has the strongest NSEs. This principle 

explains why many studies have shown that non-live vaccines administered after live vaccines are 

associated with increased female mortality32,61,64(Contradictions VIII-X) and live vaccines after non-

live are associated with lower mortality (Contradictions I+III-V). It also explains why the live HTMV 

was associated with increased female mortality in several RCTs (Contradiction II)22. HTMV was 

given at 4-5 months whereas standard MV in the control group was given at 9-10 months of age. 

Few children had received three doses of DTP before 4-5 months of age, so most HTMV children 

received DTP after HTMV, whereas fewer control children received DTP after MV. The difference 

in sequence explained the difference in female mortality; increased female mortality was only 

seen if DTP was given after HTMV94.  

The fourth principle acknowledges that combinations of live and non-live vaccines given together 

have variable NSEs. It was found that MV (live last) is better than DTP+MV (combined)64; BCG+DTP 

(combined) is better than BCG-then-DTP (non-live last))64; and OPV (live last) is better than 

DTP+OPV (combined)95. The first comparison, MV vs. DTP+MV, typically compared children 

following vs. not following recommendations, and thus the comparison could be biased in favour 

of MV. However, the two latter comparisons find lowest mortality in those who do not follow 

recommendations, so bias cannot explain the findings. The totality of data fits well with the 

pattern that combined live and non-live vaccines are worse than live vaccine only, but the 

combination is better than non-live vaccine only. 

The fifth principle, that vaccinating with live vaccines in the presence of existing immunity 

enhances beneficial NSEs, may explain several contradictions. MV in the presence of maternal 
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antibody was associated with much better survival (Contradiction VI) and reviewing the literature, 

the beneficial NSEs of MV, BCG, and OPV were consistently stronger when the vaccines were 

administered early in life, when there would be more maternal antibody 13,26,33,41.  The potential 

role of maternal priming was strengthened by the Danish BCG-Denmark trial28. Among BCG-

vaccinated mothers, randomisation of their child to BCG vaccination was associated with lower 

risk of admission for infectious diseases28, GP visits96, parental reported infections96 and atopic 

dermatitis97. Subsequent exploration of the hypothesis in Guinea-Bissau confirmed that mortality 

was lower for children having a BCG scar vs. children without a BCG scar if the mother also had a 

BCG-scar98.  

A recent immunological study from Uganda showed that maternal BCG scar was associated with 

upregulation of non-specific responses after the child had been BCG vaccinated99. Though more 

studies are warranted, the available information suggests that priming from maternal immunity 

followed by child vaccination with the same pathogen strengthen resistance towards unrelated 

infections. 

Revaccination with live vaccines is another way of vaccinating in the presence of pre-existing 

immunity, and is also associated with strong survival benefits (Contradiction VII). Thus, this 

principle may explain the enormous effects that repeated campaigns with OPV and MV have had 

on mortality in the last 20 years29-32,43,45. 

The sixth and last principle is that vaccines may interact with other interventions affecting the 

immune system. VAS is an immunmodulator77,100-102. When the VAS study was conducted in Ghana 

in 1989-1991, most children received DTP with MV or DTP after MV32,71. The negative effect of VAS 

for girls with a vaccination card was predominantly seen in children who got DTP; thus, VAS may 

have amplified the negative effect of DTP in girls71. Hence, principles 2, 3, 4 and 6 all contribute to 

resolving Contradiction XI. The negative interaction between VAS and DTP was also found in 

recent studies of neonatal VAS; once the children got DTP, neonatal VAS became associated with 

increased female mortality77,103. 

Discussion and conclusions 

The claims in this paper are bold and their potential implications for child health are huge; for 

example, if BCG was given earlier, if a higher coverage of MV was obtained, if DTP-containing 
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vaccines were not given with or after MV, and if the BCG strain with the best NSEs was used 

consistently, child mortality level could be considerably lower104.  

The HTMV observations were based on RCTs and the mortality implications were major, so there 

should be no doubt that NSEs exist and can be very important. Unfortunately, there have been 

few attempts to pursue NSEs. It has been claimed that only RCTs can ascertain whether there are 

important NSEs105. However, an RCT withholding (or delaying) a vaccine already recommended 

would not be approved by an ethics committee. Hence, insisting on RCTs can uphold further 

testing. Fortunately, there are other ways to establish causality15,106; triangulation of evidence 

from RCTs, natural experiments and other observational studies, using different designs with 

different underlying confounding structures, can facilitate causal inference15.   

The six principles are only a beginning. There are still inconsistent observations to be pursued (Box 

3). This may open new avenues of prevention and treatment. Immunology has supported 

principles 1 and 2; mechanistic explanations for the other principles are being 

examined86,90,93,100,107. As more new questions are being asked, new principles will likely be found 

and new mechanistic explanations will be needed. The results will have direct implications for 

vaccine developers. In 2015, vaccine producers and researchers discussed the potential off-label 

use of existing vaccines, and implications for new vaccines being developed 108. Two new live 

vaccines under development, an intra-nasal pertussis vaccine109 and a new oral S. Typhi vaccine110, 

have been tested for their NSEs; both appeared to have beneficial NSEs109,110. The finding that 

vaccines affect the innate immune system have also opened a new avenue in vaccinology: to 

develop Trained Immunity-based Vaccines, defined as vaccine formulations that induce training in 

innate immune cells 111. 

A new paradigm should resolve contradictions in the current paradigm. Furthermore, it should 

lead to better predictions and to new questions, which would not otherwise have been asked. The 

six principles have already led to predictions that could be confirmed. For example, principle 1 

raised the question whether the numerous OPV campaigns reduced the general mortality rate 

(which they did) 27-30 and principle 2 raised the question whether RTS,S malaria vaccine was 

associated with higher female mortality (which it was)60 (Box 2). 
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Based on evidence, we have put forward another six testable predictions (Box 2). E.g., we predict 

that the planned replacement of live OPV with non-live IPV and stopping OPV campaigns will lead 

to increased child mortality. If any of these predictions are confirmed, it would collide with the 

assumptions of the current paradigm, and support the proposed principles.  

It has been estimated that taking NSEs into account in the vaccination program could reduce 

global mortality by 1.1 mill deaths per year112. This could also reduce health care costs in richer 

nations. Effective changes would help to redefine the debate on vaccine hesitancy and likely 

increase confidence and improve vaccine coverage. 

With the numerous contradictions in vaccinology it seems high time to change the paradigm and 

construct a better guide to the future. We posit that the six principles stated here could be the 

starting point for further studies with the promising potential of using existing vaccines more 

effectively. 
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Table 1. Randomised controlled trials (RCTs) of live vaccines with information on mortality reductions due to specific disease 

protection and mortality reductions due to non-specific effects of vaccines 

Vaccine Country, design, follow-up period Reduction in mortality from 

the targeted infection 

Reduction in mortality from 

non-targeted infections 

BCG vaccine 

BCG-Denmark26 Guinea-Bissau, Combined analysis of three RCTs of 

BCG-Denmark+OPV vs OPV at birth, 0-4 weeks  

0% 38% (95% CI: 17-54%) 

BCG-Russia27 India, Combined analysis of two RCTs of BCG-Russia 

with and without OPV vs no BCG or OPV, 0-4 weeks 

0% 2% (95% CI: -11-15% 

BCG-Denmark113 Guinea-Bissau, A second dose of BCG at 19 months 

given after a booster dose of DTP vs no second BCG 

(secondary endpoint), 19 months to 5 years 

0% 64% (95% CI: 1-87%) 

Oral Polio Vaccine (OPV) 

OPV-at-birth33 Guinea-Bissau, OPV+BCG vs BCG at birth, 0-11 

months 

0% 32% (95% CI: 0-57%) 

Measles vaccine (MV) 

Measles vaccine94 Sudan, Senegal, The Gambia, Guinea-Bissau, 

Medium or high-titre MV vs control vaccine, 4-8 

months 

0% 60% (95% CI: -8-85%) 

Measles vaccine12  Guinea-Bissau, MV at 6+9 months vs IPV at 6+MV 

at 9 months, 6-8 months 

0% 70% (95% CI: 13-92%) 

Measles vaccine13 Guinea-Bissau, MV at 4.5+9 months vs no vaccine 

at 4.5+MV at 9 month, 4.5 months-3 years 

4% 22% (95% CI: -5-41%) 

Measles vaccine81  Burkina Faso, Guinea-Bissau, MV at 4+9 months vs 

no vaccine at 4+MV at 9 month, 4 months-3 years 

0% -5% (95% CI: -32-33%) 

Abbreviations: BCG, bacille Calmette Guérin; RCT, randomised controlled trials; OPV, oral polio vaccine; MV, measles vaccine; IPV, 

inactivated polio vaccine. 
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Table 2. Relative risks (RR) of overall and female mortality associated with non-live vaccines  

Vaccine Studies Females and males 

combined: 

RR of mortality for 

vaccinated vs. 

unvaccinated  

 

Females only: 

RR of mortality for 

vaccinated vs. 

unvaccinated 

 

RR of mortality for 

females vs. males among 

vaccinated children  

 

Diphtheria-tetanus-

pertussis vaccine 

17 observational 

studies  

2.07 (1.60-2.67)49,50,52 2.54 (1.68-3.86)53 1.47 (1.18-1.84)49,50,53 

RTS,S malaria vaccine  Two RCTs 1.24 (0.97-1.58)58,59  RCT-1: 1.81 (1.04-3.14)60 

RCT-2: 2.00 (1.18-3.39)60 

1.33 (1.02-1.74)60 

 

Inactivated polio 

vaccine 

Three RCTs NA NA 1.52 (1.02-2.28)54 

Hepatitis B vaccine Natural experiment  1.81 (1.19-2.75)55 2.27 (1.31-3.94)55 2.20 (1.07-4.54)55 

Pentavalent vaccine Observational study  NA NA 1.73 (1.11-2.70)56 

H1N1 influenza vaccine Natural experiment: 

Campaign  

1.86 (1.02-3.42)30  2.32 (1.19-4.52)30 2.68 (0.44-16.4)30 

NA: No data available on unvaccinated. Abbreviations: RCT, randomised controlled trials. RRs were calculated using the “meta” command 

in Stata.  
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Box 1. Overview of the current assumptions about vaccines, the contradictions of these assumptions, and the emerging principles 

which may help resolve the contradictions 

Current assumptions about vaccines Eleven contradictions of the current 

paradigm  

Six emerging principles 

 

Vaccines induce protective immunity against 

the target disease. 

Vaccines have no effect on the risk of other 

infections.  

Vaccines have similar effects in males and 

females 

Once a vaccine infection has been 

eradicated, the vaccine can be removed 

without health consequences 

The live vaccines standard MV, BCG vaccine, OPV 

and smallpox vaccine have beneficial effects on 

overall survival, which cannot be explained by 

prevention of measles infection (contradiction I, III, 

IV, V) 

Principle 1: Live vaccines enhance 

resistance towards unrelated 

infections 

The non-live vaccines DTP vaccine, pentavalent 

vaccine, hepatitis B vaccine, IPV, H1N1 vaccine, and 

RTS,S malaria vaccine are associated with increased 

overall mortality for females (contradiction VIII-IX) 

Principle 2. Non-live vaccines enhance 

susceptibility towards unrelated 

infections for females 

 

The sequence and combination of vaccines 

matter little if no interference with specific 

protection 

The live high-titre measles vaccine was associated 

with increased female mortality despite protecting 

against measles infection (contradiction II); it turned 

out to be due to non-live vaccines given afterwards 

Principle 3. The most recent 

vaccination has the strongest NSEs 

 

The sequence and combination of vaccines may 

change the overall mortality effect (contradiction X) 

Principle 4. Combinations of live and 

non-live vaccines given together have 

variable NSEs 

Maternal antibody provide temporary 

protection to the child, but reduce the 

antibody response to vaccination 

Measles vaccination in the presence of maternal 

immunity does not reduce the survival benefit 

(contradiction VI) 

Principle 5: Vaccinating with live 

vaccines in the presence of existing 

immunity enhances beneficial NSEs  
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Little additional survival benefits expected 

from revaccination with live vaccines  

Revaccination with live vaccines are associated with 

marked mortality reductions (contradiction VII) 

Vaccines do not affect the impact of other 

immunomodulatory health interventions 

The effect of high-dose vitamin A supplementation 

depends on vaccination status (contradiction XI) 

Principle 6. Vaccines may interact with 

other interventions affecting the 

immune system 

Abbreviations: MV, measles vaccine; BCG, bacille Calmette Guérin; OPV, oral polio vaccine; DTP, diphtheria-tetanus-pertussis vaccine; 

IPV, inactivated polio vaccine. 
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Box 2. Deductions derived from the emerging principles of non-specific effects (NSEs) of vaccines which have been or can be tested 

DEDUCTIONS WHERE SOME EVIDENCE IS AVAILABLE  

Initial observation Deduction made Result of testing 

Live MV had beneficial NSEs in low-

income countries 

BCG, OPV and smallpox vaccine could also 

have beneficial NSEs 

Supported by both observational studies and RCTs of BCG 

and OPV26,33,35-38 

Live MV had beneficial NSEs in low-

income countries 

MMR could be associated with reductions in 

hospital admissions in high-income countries 

MMR has been reported to be associated with reduction in 

respiratory infections in Denmark16,114, US19, Italy17, and The 

Netherlands18,20 

Live vaccines have beneficial NSEs Eradication of the target infection and 

stopping the live vaccine could have negative 

effects  

In several studies from Guinea-Bissau and Denmark, 

smallpox vaccinated individuals had lower morbidity and 

mortality than unvaccinated individuals37,38 

Live vaccines have beneficial NSEs Campaigns with live vaccines to eradicate a 

disease might have strong beneficial NSEs even 

though the target infection is nearly 

eliminated  

Strong beneficial effects have been shown for OPV and MV 

campaigns29-32,43,45 whereas other campaigns with VAS or 

H1N1 influenza do not have such beneficial effects30  

Non-live DTP has negative NSEs for 

females 

Other non-live vaccines might also have 

negative effects for females 

So far seen for IPV54, HBV55, Pentavalent56 and H1N1 

influenza vaccine30 

RTS,S provided moderate 

protection against clinical malaria 

but overall mortality tended to be 

higher in the RTS,S group58 

We predicted that RTS,S might be associated 

with higher female mortality59 

RTS,S turned out to be associated with 2-fold higher 

mortality for females in both age groups in which the 

vaccine had been tested60 

DEDUCTIONS THAT CAN BE TESTED 

Current state-of-the-art Deduction made Ways to test 

When OPV is stopped in 2024 and 

replaced by IPV, it will have no 

measurable impact on overall 

mortality 

Replacing OPV with IPV will increase overall 

mortality (Principles 1 and 2) 

RCT comparing OPV vaccination schedule with IPV 

vaccination schedule on overall mortality and morbidity 

When OPV campaigns are stopped 

it will have no measurable impact 

on overall mortality 

Stopping OPV campaigns will increase under-

five mortality or at least reduce the rate of 

decline in mortality (Principle 1) 

RCT testing the effect of conducting an OPV campaign on 

overall mortality and morbidity 
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Providing RTS,S in a trial of 720,000 

children in Africa will reduce their 

overall mortality by reducing 

malaria mortality 

RTS,S-vaccinated females will have higher 

mortality than RTS,S unvaccinated females and 

higher mortality than RTS,S-vaccinated males 

(Principle 2) 

Collect information on overall mortality data in ongoing 

RTS,S trial by means of individual levels follow-up rather 

than by means of community informants and 

pharmacovigilance.  

SAGE is recommending the 

introduction of a 2nd year of life 

platform for additional (mainly 

non-live) vaccinations to reduce 

overall mortality115  

Introduction of more non-live vaccines in 2nd 

year of life will increase female versus male 

mortality (Principles 2 and 3) 

The introduction of new vaccines should be done in a 

randomised fashion, allowing unbiased assessment of the 

overall mortality and morbidity effect.  

In addition, observational studies of female-male overall 

mortality and morbidity ratios according to most recent 

vaccine 

Giving a second dose of BCG with 

the third priming dose of DTP-

containing vaccine at 14 weeks 

would have little or no effect on 

all-cause mortality 

A second dose of BCG at 14 weeks would 

substantially reduce mortality between 14 

weeks and 9 months of age (when measles 

vaccine is given) (Principle 4) 

RCT testing the effect of providing a second BCG vaccine 

together with the third dose of DTP-containing vaccine at 

14 weeks of age on overall mortality and morbidity 

Whether the mother has a BCG-

scar or not is unlikely to affect the 

mortality of the child 

BCG vaccinated children will have substantially 

lower mortality if their mother have a BCG-

scar than if she does not (Principle 5).  

RCT testing the effect of providing a BCG vaccine to women 

in fertile age on overall mortality and morbidity in their 

child after BCG vaccination. 

Abbreviations: NSE, non-specific effects of vaccines; BCG, bacille Calmette Guérin; RCT, randomised controlled trials; OPV, oral polio 

vaccine; MV, measles vaccine; MMR, measles-mumps-rubella vaccine; VAS, vitamin A supplementation; DTP, diphtheria-tetanus-pertussis 

vaccine; IPV, inactivated polio vaccine; HBV, hepatitis B vaccine; Pentavalent, DTP + Hepatitis B + H. influenzae b; SAGE, Strategic Advisory 

Group of Experts on Immunization (under the World Health Organization). 
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Box 3. Inconsistencies in the new principles which should be pursued 

Inconsistency in principle Potential explanation to pursue 

Different BCG vaccines have had variable effect on both TB specific 

outcomes and non-specific outcomes83,116,117 

There is a need to assess which BCG strains are most 

efficacious for both specific and non-specific outcomes83,116  

 

Though we have emphasised that the most recent vaccine has the 

strongest NSEs, some vaccines appear to have long-lasting NSEs; e.g. 

children having a BCG-scar or adults having smallpox scars appear to 

have long-term survival benefits37,38,118 

Further mechanistic research is needed into how vaccines 

may induce long-term imprinting effects. In relation to BCG 

this may be due to effects of BCG on bone marrow 

progenitor cells 

The sex-differential NSEs found in low-income countries do not seem 

to apply when the NSEs of vaccines on morbidity have been studied in 

high-income settings; e.g. the stronger beneficial NSEs of MV for girls 

found in low-income countries was not found for MMR in Denmark16 

Boys have a higher incidence of admissions in Denmark, and 

they may have more to gain from MMR16 

In contradiction of principle 2, it has been hypothesised that non-live 

rabies vaccine has beneficial NSEs119,120. The main basis for this 

hypothesis is that the control group in one of the RTS,S trials received 

rabies vaccine and did better than the RTS,S group 

This hypothesis is being pursued 
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