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More than 50% of the world’s population is infected with Helicobacter pylori (H. pylori).

Chronic infection with this Gram-negative pathogen is associated with the development

of peptic ulcers and is linked to an increased risk of gastric cancer. H. pylori secretes

many proteinaceous factors that are important for initial colonization and subsequent

persistence in the host stomach. One of the major protein toxins secreted by H. pylori

is the Vacuolating cytotoxin A (VacA). After secretion from the bacteria via a type V

autotransport secretion system, the 88 kDa VacA toxin (comprised of the p33 and p55

subunits) binds to host cells and is internalized, causing severe “vacuolation” characterized

by the accumulation of large vesicles that possess hallmarks of both late endosomes and

early lysosomes. The development of “vacuoles” has been attributed to the formation
of VacA anion-selective channels in membranes. Apart from its vacuolating effects, it

has recently become clear that VacA also directly affects mitochondrial function. Earlier

studies suggested that the p33 subunit, but not the p55 subunit of VacA, could enter

mitochondria to modulate organelle function. This raised the possibility that a mechanism

separate from pore formation may be responsible for the effects of VacA on mitochondria,

as crystallography studies and structural modeling predict that both subunits are required

for a physiologically stable pore. It has also been suggested that the mitochondrial

effects observed are due to indirect effects on pro-apoptotic proteins and direct effects

on mitochondrial morphology-related processes. Other studies have shown that both

the p55 and p33 subunits can indeed be efficiently imported into mammalian-derived

mitochondria raising the possibility that they could re-assemble to form a pore. Our review

summarizes and consolidates the recent advances in VacA toxin research, with focus on

the outstanding controversies in the field and the key remaining questions that need to be

addressed.

Keywords: Helicobacter pylori , VacA

INTRODUCTION
Helicobacter pylori (H. pylori) is a Gram-negative bacterium that
colonizes the human stomach. Approximately half of the human

population worldwide is infected with H. pylori. Infection is

spread through human contact primarily via the gastric-oral
route and is often acquired in early childhood (Marshall, 1991;

Blaser et al., 2004; Amieva and El-Omar, 2008). If untreated,
H. pylori infection often persists for life, highlighting the remark-

able adaptation of this pathogen to the human stomach. Chronic

superficial gastritis is a hallmark of persistent H. pylori infec-
tion and is usually asymptomatic in most infected individu-

als. However, approximately 10–15% of the infected population

develop severe gastric disorders including peptic ulcers, gastric
lymphoma, mucosa-associated lymphoid tissue (MALT) lym-

phoma and gastric adenocarcinoma (Marshall and Warren, 1984;

Marshall, 1991; Blaser et al., 2004; Houghton and Wang, 2005).
Gastric adenocarcinoma is the second leading cause of cancer-

related deaths worldwide, following only lung cancer (Ferlay

et al., 2010). Intriguingly, isolated studies have suggested that

H. pylori might also be a causative agent of non-gastric dis-

eases such as vascular disease, chronic liver disease and idiopathic

thrombocytopenic purpura (Pellicano et al., 2009).
One of the most extensively studied toxins produced by

H. pylori is the Vacuolating cytotoxin A (VacA). Infection with

H. pylori strains containing the toxigenic allelic s1 form of VacA is
associated with an increased risk of peptic ulceration and gastric

cancer (Atherton et al., 1995; Gerhard et al., 1999; Miehlke et al.,

2000, 2001; Louw et al., 2001). VacA was named with reference to
its ability to cause “vacuole”-like membrane vesicles in the cyto-

plasm of gastric cells (de Bernard et al., 1997), but their roles in

H. pylori pathogenesis remain unclear. In addition to the induc-
tion of vacuolation, VacA exerts a variety of other effects on target

cells, including disruption of mitochondrial functions, stimu-

lation of apoptosis and blockade of T-cell proliferation (Cover
and Blanke, 2005). VacA is also important for colonization of

H. pylori in vivo (Salama et al., 2001). Given the fascinating multi-

functionality of VacA and its association with an augmented
gastric cancer risk, understanding the biochemical properties of
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this versatile toxin and how it contributes to H. pylori patho-
genesis are areas of active and intensive research. In this review

we summarize key recent findings, controversies and unanswered

questions relating to VacA biology.

VacA—A MULTI-FUNCTIONAL TOXIN

Research in the past few decades has revealed that VacA has a

variety of effects on host cells and has been termed a “multi-
functional toxin.” Vacuolation is perhaps the most distinct effect

of VacA. This pronounced accumulation of internal membranous

vesicles (Figure 1) occurs following VacA internalization by the
host cell. VacA is hypothesized to create anion-selective chan-

nels in the membranes of these vesicles that possess hallmarks of

both late endosomes and early lysosomes (Papini et al., 1994). A
current model for vacuolation suggests that these anion-selective

channels facilitate the transport of chloride ions, resulting in

an increase in intra-lumenal chloride concentrations (Cover and
Blanke, 2005). Ultimately, membrane-permeable weak bases dif-

fuse into these endocytic compartments resulting in osmotic

swelling and vacuolation (Cover and Blanke, 2005). A hydropho-
bic region on the N-terminal domain of VacA (amino acids 6–27)

has been shown to be required for “vacuolation” (Vinion-Dubiel

et al., 1999). Interestingly, removing this hydrophobic region
of VacA not only inhibits vacuolation but also prevents VacA

from stably integrating into the inner-mitochondrial membrane
(Vinion-Dubiel et al., 1999; Foo et al., 2010). The physiologi-

cal significance of “vacuolation” during H. pylori infection is not

clear, although it is plausible that “vacuolation” could disrupt
protein trafficking pathways to and from the plasma membrane,

hence exerting far-reaching effects on host cell functions.

In addition to its role in the induction of vacuolation, VacA
has been shown to localize to mitochondria where its effects may

be responsible for triggering the apoptotic cascade (Kimura et al.,

1999; Galmiche et al., 2000; Foo et al., 2010). Typically, during
apoptosis cytochrome c is released from the mitochondrial inter-

membrane space into the cytoplasm via an unknown mechanism;

downstream executioner caspases are then activated, which ulti-
mately result in cell death. In line with the proposed pore-forming

capabilities of VacA, it has been hypothesized that VacA can form

membrane-embedded pores at the inner-mitochondrial mem-
brane resulting in the dissipation of the mitochondrial electro-

chemical membrane potential (�ψ) (Willhite and Blanke, 2004).

Although the VacA-mediated reduction in �ψ has been suggested
to accompany the release of cytochrome c (Kimura et al., 1999;

Galmiche et al., 2000), the exact apoptotic role of VacA remains

unclear, as a drop in the �ψ alone is not expected to cause apop-
tosis (Yamasaki et al., 2006). Despite this observation, previous

studies have shown that inhibition of VacA membrane channel

FIGURE 1 | VacA, a multi-functional toxin—VacA may produce

“vacuoles,” which have traits of late endosomes and early

lysosomes; be taken up by the cell and localize to the mitochondria,

which may result in apoptosis; bind to a protein on the cell

membrane and induce inflammation and; obstruct T-cell

activation and proliferation.
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formation inhibits the release of cytochrome c, suggesting that
channel formation is critical to the apoptotic potential of VacA

(Willhite et al., 2003; Willhite and Blanke, 2004).

POLYMORPHISM, BIOGENESIS, AND STRUCTURE OF VacA

All identified H. pylori strains possess the VacA gene. However,

there is significant sequence diversity in vacA genes across the
many H. pylori isolate strains (Atherton et al., 1995; Van Doorn

et al., 1999; Rhead et al., 2007). Polymorphism in the vacA

gene sequence has been identified in three variable regions: the
signal sequence region (s-region), mid-region (m-region) and

the recently identified intermediate-region (i-region) (Figure 2A)

(Atherton et al., 1995; Rhead et al., 2007).
The two types of allelic variations in the s-region and m-region

are classified as s1 or s2 and m1 or m2, respectively (Atherton

et al., 1995). The s2 type encodes a VacA protein with an addi-
tional N-terminal hydrophilic amino acid segment, which the s1

type lacks. The presence of this extra segment prevents the s2 type

toxin from inducing vacuolation (McClain et al., 2001). The m1

and m2 genotypes differ with respect to an encoded stretch of

148 amino acids, which ultimately affects the specificity to vari-
ous cellular receptors based on the observed differences in VacA

activity (Ji et al., 2000). It has been shown that H. pylori with

s1/m1 and s1/m2 VacA cause more severe chronic-inflammation
when compared to the other genotypes. The highest level of vir-

ulence is associated with the s1/m1 allele combination, which

is also associated with the highest increased risk of gastric can-
cer (Atherton et al., 1995; Gerhard et al., 1999; Miehlke et al.,

2000, 2001; Louw et al., 2001). Recent studies investigating the i-

region have revealed that the i1 allele strongly correlates with the
production of CagA (a virulence factor encoded by the cytotoxin-

associated gene A) and the presence of the s1 type allele in various

H. pylori strains isolated from several countries (Chung et al.,
2010). This association could suggest that the intermediate region

plays a role in the more severe outcomes of chronic H. pylori

infection (Chung et al., 2010).
The VacA gene encodes a 140 kDa pro-toxin. The pro-toxin

consists of a signal sequence, a passenger domain and an auto-

transporter domain; the latter of which functions as a type V
secretion system. The passenger domain, containing the p33

FIGURE 2 | VacA allelic diversity and structure—(A) significant allelic

diversity exists in three regions of the VacA gene: the signal region

(s1 and s2), the intermediate region (i1, i2, and i3) and the mid-region

(m1 and m2); (B) the Signal Sequence allows for the passage of the

pro-toxin across the inner-bacterial membrane. The passenger toxin

domain consists of the N-terminal VacA fragment (p33) and the

C-terminal VacA fragment (p55). The auto-transporter domain allows

the toxin to translocate across the outer-bacterial membrane by forming

a β-barrel. The p33 and p55 fragments may be cleaved from the β-barrel

domain at some point during transit to, or in, the extracellular

milieu to form the mature virulent subunits. Arrows indicate cleavage

sites.

Frontiers in Cellular and Infection Microbiology www.frontiersin.org July 2012 | Volume 2 | Article 92 | 3

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Palframan et al. The role of VacA during Helicobacter pylori infection

and p55 subunits, are later processed and cleaved from the
auto-transporter domain at some point during transit to, or

in, the extracellular milieu to form the mature virulent 88 kDa

VacA toxin (Telford et al., 1994; Lupetti et al., 1996; Isomoto
et al., 2010). The pro-toxin and cleavage sites are illustrated in

Figure 2B. The N-terminal fragment with a molecular weight of

approximately 33 kDa is termed “p33” (also known as p34 and
p35) (Cover and Blanke, 2005). The C-terminal fragment with an

approximate molecular weight of 55 kDa is termed “p55” (also

known as p58) (Cover and Blanke, 2005; Isomoto et al., 2010).
The cellular role of each VacA subunit is still not fully under-

stood. The pore-forming activity of VacA was considered to be

p33 dependent, whilst cell binding was initially suggested to be
dependent on the p55 domain (Reyrat et al., 1999; McClain et al.,

2003). It has since been demonstrated that p33 is also involved in

cell binding, and recently it was shown that p55 is in fact essen-
tial for vacuolation and membrane depolarization, suggesting

p55 is involved in the formation of anionic membrane chan-

nels (Torres et al., 2005; Ivie et al., 2008; Gonzalez-Rivera et al.,
2010). Furthermore, the crystal structure of p55 has been solved,

it consists of a series of parallel β-strands with a carboxy-terminal

globular domain (Gangwer et al., 2007). Modeling the predicted
structure of p33 with the solved crystal structure of p55, gives

rise to a model of the molecular architecture of the assembled

pore, which stipulates that a stable anionic membrane channel
can only be formed when both subunits are present (Gangwer

et al., 2007).

VacA ENTRY INTO HOST CELLS

The binding of VacA to a target cell is a critical event in its tox-

icity. As VacA affects multiple cell types including epithelial cells

and T-cells, it is likely that a range of host cell receptors or even
other surface factors are involved in cell binding (Yahiro et al.,

1999, 2003; Sewald et al., 2008). Unsurprisingly, the receptors

utilized by VacA when binding to T-lymphocytes differ to those
when binding to gastric epithelial cells. Recently it was revealed

that the β2 integrin subunit of lymphocyte function-associated

antigen-1 (LFA-1), CD18, is in fact a specific VacA receptor in
T-cells (Sewald et al., 2008). In contrast, the receptors impli-

cated in the binding of VacA to gastric epithelial cells include

the epidermal growth factor (EGF) receptor, heparin sulphate,
glycosphingolipids, receptor protein tyrosine phosphatase alpha

(RPTPα), receptor protein tyrosine phosphatase beta (RPTPβ)

and sphingomyelin among others (Seto et al., 1998; Yahiro et al.,
1999, 2003; Utt et al., 2001; Roche et al., 2007; Gupta et al., 2008).

RPTPβ was discovered as a possible receptor for VacA when

the presence of intracellular vacuoles was linked to the enhanced
binding of the toxin to a 250 kDa glycoprotein found on the sur-

face of AZ-521 cells (a malignant gastric tumor cell line). The
glycoprotein was later identified as RPTPβ (Yahiro et al., 1999).

Several years later, VacA was shown to cause vacuolation in G401

cells (a kidney tumor cell line) (Yahiro et al., 2003). Vacuolation
occurred in these cells despite the lack of RPTPβ on the cell sur-

face. To further investigate this, VacA was co-immunoprecipitated

after incubation with G401 cells. A glycoprotein of 140 kDa
(p140) was identified as a receptor for VacA and was found to

be RPTPα (Yahiro et al., 1999, 2003).

Although RPTPα remains a possible VacA cellular receptor, a
recent study has cast doubt on the classification of RPTPβ as an

essential epithelial receptor for VacA, as it was discovered that vac-

uolation occurred in HeLa cells lacking RPTPβ (Skibinski et al.,
2006).

Interestingly, specific binding to individual cell types has been

attributed to the m1 and m2 alleles of the VacA gene. VacA
of the s1/m1 type successfully bound to target HeLa cells and

induced vacuolation, whereas the s1/m2 VacA affected rabbit-

kidney (RK13) cells and primary epithelial cells but not HeLa cells
(Pagliaccia et al., 1998; Ji et al., 2000). RPTPα and RPTPβ are both

recognized by s1/m2 VacA (De Guzman et al., 2005). Because the

m-region alleles are located on the p55 domain, these findings
support the hypothesis that p55 is involved in cell binding.

TARGETING OF VacA TO MITOCHONDRIA AND THE
APOPTOTIC PATHWAYS

Mitochondria are the site of aerobic respiration and are essential

to all human cells. They have many functions, including the pro-

duction of adenosine triphosphate (ATP), fatty acid synthesis and
iron sulphur cluster biogenesis. Mitochondria are also crucial to

the intrinsic apoptotic pathway through which a cell is instructed

to suicide. A series of cellular events culminates in the release of
cytochrome c from mitochondria into the cytosol; this in turn

activates a series of pro-caspases resulting in cell death (Scheffler,

2001).
The targeting pathway involved in the trafficking of VacA to

mitochondria is not fully understood. VacA must first reach the

cytosol after having traversed the plasma membrane. After this
has occurred, VacA is trafficked to the mitochondria and then

translocated across the outer mitochondrial membrane (Willhite

and Blanke, 2004; Calore et al., 2010). In order for proteins to
cross the outer mitochondrial membrane, they must pass through

the Translocase of the Outer Mitochondrial membrane (TOM)

(Chacinska et al., 2009). This protein-conducting channel has
a diameter that is insufficient for translocation of folded pro-

teins meaning that VacA must be unfolded before or during

translocation to thread through the channel and enter mito-
chondria (Schwartz and Matouschek, 1999; Gabriel and Pfanner,

2007). That aside, recent studies have outlined the importance

of the N-terminal domain of VacA in mitochondrial traffick-
ing. It was shown that VacA from wild-type H. pylori culture

supernatant accumulated in both endosomal and mitochondrial

subcellular fractions of mouse embryonic fibroblast (MEF) cells
(Calore et al., 2010). In contrast, MEF cells incubated with mutant

H. pylori culture supernatant, which contained a single-amino

acid substitution in the N-terminal region of VacA, prevented
the toxin from reaching the mitochondria, and instead remained

within the endosomal subcellular fractions. Interestingly, this
N-terminal region is also essential for VacA membrane channel

formation (Calore et al., 2010), suggesting that channel formation

may be important for VacA release from the endosomal compart-
ments to the cytosol from where it can target to mitochondria.

This hypothesis is summarized in Figure 3. Although there are

many uncertainties surrounding how VacA is delivered to the
cytosol and subsequently targeted to mitochondria, it is clear

that VacA can indeed ultimately translocate into the organelle.
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FIGURE 3 | VacA delivery to mitochondria—once internalized by the

host cell, VacA may then be released from “vacuoles” for

targeting to the mitochondria via 1: VacA anionic channels within

“vacuole” membranes and/or; 2: Compromised “vacuole”

membranes resulting from osmotic swelling and eventual

destruction.

The manner in which this is achieved is still unknown (Galmiche

et al., 2000; Willhite and Blanke, 2004; Yamasaki et al., 2006; Foo
et al., 2010).

CURRENT MODELS ON VacA-MEDIATED APOPTOSIS

The mechanism responsible for VacA-induced apoptosis is

another area of considerable controversy. It has been suggested
that the p33 subunit of VacA is targeted to mitochondria

and capable of initiating apoptosis alone, independent of p55

(Galmiche et al., 2000; Domanska et al., 2010). Enhanced green
fluorescent protein (eGFP) was expressed as a fusion to the N- or

C-terminus of p33 or p55. These chimeric proteins were expressed

intracellularly within HEp-2 cells and could be tracked for local-
ization using immunofluorescence microscopy. All tagged forms

of p33 were localized to mitochondria, whereas GFP-tagged p55

(N- or C-terminally tagged) was not (Galmiche et al., 2000). It
is possible the GFP moiety disrupted protein trafficking of the

p55 subunit as GFP has been reported to affect the localization of

some proteins, particularly those localized to the inter-membrane
space (Gabriel et al., 2007). An alternative to the use of large

epitope tags would be to raise antibodies against VacA, p33 and
p55 that could be used for immunofluorescence experiments with

untagged proteins. This would circumvent any changes to pro-

tein trafficking pathways caused by the large epitope tags and
under such conditions p55 may also be found to localize to

mitochondria.

It is important to note that in all previous cell culture
studies where the endogenously expressed VacA was used for

apoptotic assays, cell death was not measured for at least 24 h

from the time of exposure, leaving open the possibility of other

secondary effects. This has been compounded further by the
use of the Cytomegalovirus (CMV) promoter for expression,

which strongly enhances transcription of the gene of interest

(Ramanathan et al., 2005). Under these expression conditions
there would be an unnaturally high level of VacA in cells, many

thousand times more than what would be expected during infec-

tion. In addition, the high expression of inter-membrane space
accumulating proteins does indeed kill cells through indirect

effects (Kozjak-Pavlovic et al., 2010). This raises the possibility

that the p33 and p88 (fused p33 and p55) toxin GFP fusions used
in studies such as the Galmiche study in 2000, may not be directly

responsible for apoptosis per se (Galmiche et al., 2000).

More recently, it was again suggested that only the p33 sub-
unit of VacA is targeted to the mitochondria and is essential

for toxicity (Domanska et al., 2010). It was hypothesized that

a signal sequence of 32 uncharged amino acid residues found
on the N-terminus of the p33 subunit, targets it to the mito-

chondria (Domanska et al., 2010). This interesting observation,

however, remains to be reconciled with the previous findings
that p33 tagged with GFP at its N-terminus, was still targeted to

the mitochondria (Galmiche et al., 2000), as fusing GFP to the

N-terminus of p33 would ordinarily mask an N-terminal signal.
Furthermore, it was also reported that the p33 subunit forms a

pore without p55, but only in the presence of biochemical cross-

linkers (Domanska et al., 2010). In contrast, other publications
suggest that both p33 and p55 are required for pore formation

and vacuolation (Torres et al., 2005; Calore et al., 2010; Foo et al.,

2010), and that both subunits could localize to the mitochondrial
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inter-membrane space. The latter is on the back of evidence that
both p33 and p55 can be efficiently imported into mitochon-

dria using an in vitro import system (Foo et al., 2010). Residues

6–27 in p33 and internal targeting signals in the regions close
to the N-terminus and C-terminus of p55 were shown to be

important for stable integration of the subunits into the inner-

mitochondrial membrane (Foo et al., 2010). Moreover, import
of p55 alone did not result in integral association of p55 with

the mitochondrial membranes (Foo et al., 2010). It is thus plau-

sible for both subunits to interact with the inner-mitochondrial
membrane and insert, forming the characteristic “star-shaped”

pore described in previous studies (El-Bez et al., 2005; Gangwer

et al., 2007; Foo et al., 2010). It has been proposed that this
“star-shaped” pore consists of six VacA monomers (hexamer) and

functions as an anion-selective channel (El-Bez et al., 2005), facili-

tating the dissipation of the �ψ; a feature linked to the induction
of apoptosis (Willhite and Blanke, 2004). Disruption of the �ψ

occurs prior to mitochondrial outer-membrane permeabilization

(MOMP) (Willhite and Blanke, 2004), the latter of which could
serve to function as a mechanism for cytochrome c release from

mitochondria.

Indeed, the ability of VacA to form membrane channels has
been shown to be essential to VacA-induced apoptosis. Mutant

forms of VacA that lack the capacity to form membranous chan-

nels fail to induce apoptosis in CcGFP-HeLa cells (a cell line
expressing a cytochrome c and GFP fusion protein). This outcome

was reproduced when the same cell line intoxicated with s1/m1

VacA was incubated with a channel inhibitor (NPPB) (Willhite
et al., 2003; Willhite and Blanke, 2004). The finding was con-

firmed several years later when two isogenic mutant H. pylori

strains, containing single point mutations in the N-terminal
region of VacA which abolish the toxin’s ability to form mem-

branous pores, failed to induce apoptosis in MEF cells (Calore

et al., 2010). From these data it appears that pore formation is in
fact essential for VacA-induced apoptosis via the mitochondrial-

dependent pathway.
Recently the story has taken a further twist as it has been

suggested that VacA acts externally to mitochondria to induce

apoptosis through indirect mechanisms. VacA (more specifi-
cally p55) was shown to up-regulate the expression of Bax (a

multi-domain pro-apoptotic protein) and VDAC1 (an endoge-

nous outer-mitochondrial membrane channel) resulting in the
VacA-induced MOMP and subsequent release of cytochrome c

(Lan et al., 2010). Furthermore, down-regulation of the anti-

apoptotic protein Bcl-2 was also observed, strengthening the case
for VacA-induced apoptosis via a mechanism that is not initiated

at mitochondria even though mitochondria are involved in later

phases (Lan et al., 2010). In a study conducted in the same year,
Bax and Bak (a membrane-bound multi-domain pro-apoptotic

protein) were found to be essential for Helicobacter-induced

apoptosis. Double knockout MEF cells deficient for both Bax and
Bak were resistant to apoptosis when exposed to H. pylori culture

supernatant, whereas wild-type MEF cells underwent apoptosis

as expected (Calore et al., 2010).
A recent study has revealed that VacA can engage the mito-

chondrial fission machinery, causing mitochondrial morphology

changes that are implicated in VacA-induced cell death (Jain

et al., 2011). It was shown that VacA recruits and activates
dynamin-related protein 1 (Drp1), a regulator of mitochondrial

fission within cells. In AZ-521, AGS and polarized MDCK cells

infected with H. pylori, mitochondrial networks transition from
filamentous networks of interconnected strands to shorter punc-

tiform organelles within 8 h of infection. In cells infected with

a H. pylori VacA knockout strain, no mitochondrial fragmen-
tation was visible. Critically, it was shown that the inhibition

of Drp1-induced mitochondrial fission prevented the activa-

tion of Bax, MOMP, and consequently cell death (Jain et al.,
2011).

Whilst the intricate balance between apoptosis, fission, fusion,

and autophagy is a topic of intense study, VacA has recently been
found to trigger autophagy in AGS cells (a gastric adenocarci-

noma cell line) (Terebiznik et al., 2009). Autophagy induction by

VacA appears to require the toxin pore-forming activity, as cul-
ture supernatant of H. pylori strains incapable of pore formation

did not induce autophagy (Terebiznik et al., 2009). It would be

of interest to examine in further detail the causal relationship
between pore formation, autophagy induction, and apoptosis

induction by VacA.

It is clear that there are still many unanswered questions
surrounding the mechanism by which VacA is able to induce

apoptosis in gastric epithelial cells, and there is also much debate

regarding which of the two subunits (p33 and/or p55) is respon-
sible. Improving the assays used for measuring VacA effects on

host cells is required. This may be in the form of introducing a set

of vectors that allow for a more tightly regulated and controllable
expression of VacA and the expression of untagged versions of the

toxin subunits.

VacA AND CagA: THE YIN AND YANG OF H. pylori-INDUCED
CYTOTOXICITY

Another key H. pylori virulence factor is the gene product of
the CagA. Interestingly, recent findings suggest that the effects

elicited by CagA on the host cell can counteract those triggered
by VacA, and vice versa, pointing to yet another level of com-

plexity in the mode of action of VacA. CagA is delivered into

the host cell by H. pylori via a type IV secretion system (Segal
et al., 1999; Asahi et al., 2000; Backert et al., 2000; Odenbreit

et al., 2000; Stein et al., 2000). Once inside the host cell, CagA

is phosphorylated by the host tyrosine kinase Src (Selbach et al.,
2002). Phosphorylated CagA dysregulates actin cytoskeletal rear-

rangement in the host cell, triggering the so-called hummingbird

phenotype, which is typified by an elongated morphology of the
host cell that resembles the long thin beak of a hummingbird

(Segal et al., 1999).

Functional antagonism between VacA and CagA became
apparent when the effects of these two proteins on the activity

of the host transcription factor nuclear factor of T-activated cells

(NFAT) were examined (Yokoyama et al., 2005). Purified VacA
(at 2.5 µg/ml) counteracts the stimulatory effect of CagA on the

transcriptional activity of NFAT in cultured gastric epithelial cells

(Yokoyama et al., 2005). Nuclear translocation of NFAT was also
abolished by the VacA treatment (Yokoyama et al., 2005). Later,

Argent and co-workers studied the H. pylori strains 60190 and

84–183 and found that VacA-mediated vacuolation attenuated
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CagA-induced hummingbird phenotype, and vice versa (Argent
et al., 2008). Tegtmeyer and co-workers confirmed these effects

using the H. pylori strains P310 and P277, and took a step fur-

ther to demonstrate that VacA not only inhibited hummingbird
phenotype but also increased internalization of epidermal growth

factor receptor (EGFR) and inhibited the activities of EGFR and

the mitogen-activated protein kinase Erk1/2 (Tegtmeyer et al.,
2009). Interestingly, Bafilomycin A1, an inhibitor of V-ATPase

and VacA-mediated vacuolation, did not restore hummingbird

phenotype in P310-infected cells, suggesting that the inhibitory
effect of VacA is unlikely to be due to vacuolation per se

(Tegtmeyer et al., 2009). These findings suggest that VacA coun-

teracts CagA-mediated hummingbird phenotype by interfering
with EGFR- and Erk1/2-mediated signaling pathways. In further

support of a functional antagonism between VacA and CagA, a

GFP fusion of the 38 kDa C-terminal domain of CagA was shown
to inhibit the apoptotic and vacuolating effects of VacA, pos-

sibly via inhibition of the activity of Src kinase family (Oldani

et al., 2009). This C-terminal domain construct of CagA also
blocks co-localization of VacA with LAMP1, possibly inhibiting

the trafficking of VacA to late endosomes (Oldani et al., 2009).

Despite the lack of a genetic linkage between the cagA and
vacA genes, most H. pylori strains that harbor the cagA gene carry

the more toxigenic s1 form of vacA allele whereas cagA-negative

strains usually possess the non-toxic s2 form of vacA (Atherton
et al., 1995). The reason for this linkage had been enigmatic.

These recent findings have now offered plausible explanations

for a functional linkage between CagA and VacA at the level of
host cell signal transduction. Such antagonism between CagA

and VacA could enable H. pylori to take command of host cell

responses without causing gross cellular damage. However, the

fact that some H. pylori isolates are fully capable of both CagA-
mediated cellular responses and VacA-induced vacuolation sug-

gests that the net effect of VacA and CagA might vary between

strains and could possibly be influenced by the amount of VacA
produced or by as yet unidentified factors. Further understanding

of the molecular basis of VacA- and CagA-mediated signaling in

the host cell is likely to provide crucial insights into the physio-
logical significance of the crosstalk between these two important

and intriguing H. pylori cytotoxins.

CONCLUDING REMARKS

VacA has been implicated as a key H. pylori virulence factor and

has been shown to exert many cellular effects. Although this
multi-functional toxin has been researched extensively, consid-

erable controversy surrounds the fundamental aspects of VacA

action and biology. The subunit and cellular receptor respon-
sible for VacA binding and subsequent internalization remain

elusive and there is conjecture as to whether a certain recep-

tor identified (RPTPβ) is essential. In addition, little is known
about the trafficking of VacA to mitochondria, where VacA is

said to induce apoptosis via an unknown mechanism; the most

highly disputed area of VacA research. Although many believe
both p33 and p55 are required to form an anion-selective channel

within the inner-mitochondrial membrane, others postulate that

p33 alone is sufficient and capable of forming stable membrane
channels independent of p55. Adding further uncertainty, recent

evidence has revealed that p55 may indirectly induce apopto-

sis by indirectly up-regulating pro-apoptotic factors. Delineating
the subunit/s responsible will provide crucial insights into the

mechanisms at work and could serve as a basis for future

studies.
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