
Vacuum Cleaning CTL Formulae�

Mitra Purandare and Fabio Somenzi

University of Colorado at Boulder
{Mitra.Purandare,Fabio}@Colorado.EDU

Abstract. Vacuity detection in model checking looks for properties that
hold in a model, and can be strengthened without causing them to fail.
Such properties often signal problems in the model, its environment, or
the properties themselves. The seminal paper of Beer et al. [1] proposed
an efficient algorithm applicable to a restricted set of properties. Subse-
quently, Kupferman and Vardi [15] extended vacuity detection to more
expressive specification mechanisms. They advocated a more minute ex-
amination of temporal logic formulae than the one adopted in [1]. How-
ever, they did not address the issues of practicality and usefulness of this
more scrupulous inspection. In this paper we discuss efficient algorithms
for the detection of vacuous passes of temporal logic formulae, showing
that a thorough vacuity check for CTL formulae can be carried out with
very small overhead, and even, occasionally, in less time than plain model
checking. We also demonstrate the usefulness of such a careful analysis
with the help of case studies.

1 Introduction

The basic function of a model checker [9, 16] is to establish whether a certain
property holds (or passes) in a given system; otherwise, to produce an error
trace. By systematically exploring the state space of the system to be verified, a
model checker relieves the user of the burden of generating test cases. However,
the thoroughness of verification depends on the properties examined, and hence,
ultimately, on the user.

In an effort to increase the efficacy of model checking as a debugging and
verification approach, recent work has therefore considered how to assess the
quality and comprehensiveness of a given set of properties. Two approaches
have emerged: One consists of measuring the coverage of a set of properties [13,
14, 7, 6], defined in such a way that incomplete coverage exposes features of the
model not adequately verified. As is commonly done in Automatic Test Pattern
Generation [12], in this case one relates coverage to the fraction of alterations
to the model that would be detected by the given set of properties.

The second approach to assess the quality of properties, which is the focus of
this paper, is the detection of vacuous passes in temporal logic formulae [1, 15].
Following the definition of [1], a formula ϕ passes vacuously in a model K if it
� This work was supported in part by SRC contract 2001-TJ-920 and NSF grant
CCR-99-71195.

D. Brinksma and K. G. Larsen (Eds.): CAV 2002, LNCS 2404, pp. 485–499, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

486 Mitra Purandare and Fabio Somenzi

passes in K, and there is a subformula ϕ′ of ϕ that can be changed arbitrarily
without affecting the outcome of model checking.

The vacuous pass of a formula often signals problems in any combination of
the model, its environment, and the formula itself. Both in the approach based
on measuring coverage, and in the one that checks for vacuous passes, the quality
of a set of properties is related to “how snugly the properties fit the model.” In
coverage measurements one checks for modifications of the model that do not
turn any passing properties into failing ones. In vacuity detection, by contrast,
one looks for changes in the passing properties themselves that restrict the sets
of states that satisfy them, without causing them to fail.

The authors of [1] identify a subset of ACTL called w-ACTL for which vacu-
ity detection can be done efficiently. That is, vacuity detection for a w-ACTL
formula ϕ amounts to model checking a witness formula that is obtained by
replacing a subformula of ϕ with either true or false, and is therefore no more
complex than ϕ. The definition of w-ACTL makes it possible to designate at
most one operand of a binary operator as interesting. Vacuity detection is then
restricted to replacement of the (unique) smallest interesting subformula of ϕ.

In [15] vacuity detection is extended to full CTL∗. Furthermore, the restric-
tion to interesting subformulae is lifted. The length of the witness formula for ϕ,
however, is quadratic in the length of ϕ. Thus, an increase in the expressiveness
of the logic and in the thoroughness of analysis is paid with an increase in the
worst-case complexity of the algorithm.

The approach of [1] owes its efficiency to two factors. On the one hand,
exactly one subformula is replaced for each formula. On the other hand, in the
parse tree of ϕ, all the temporal operators are on the path connecting the root to
the smallest interesting subformula, which is replaced by false. As a consequence,
the witness formula for ϕ is very often trivial. This second factor does not show
up in the worst-case complexity analysis, but is quite important in practice.

While the simplicity of the witness formulae for w-ACTL is an obvious ad-
vantage from the standpoint of speed, it is also the inherent limitation of the
approach of [1], because drastic changes in the formula have only slight chances
of detecting non-major flaws. Though in the initial stages of debugging, vacu-
ity detection for w-ACTL has proved very useful, a more careful analysis may
substantially improve the effectiveness of a model checker as a debugging tool.

In this paper we show that a thorough vacuity check as the one advocated
in [15] can be implemented efficiently for Computational Tree Logic (CTL) for-
mulae [9], so that the overhead relative to plain model checking is in practice
very limited in spite of the worse complexity bound. Indeed, our algorithm may
occasionally outperform plain model checking.

Instead of checking ϕ and the witness formulae generated by various replace-
ments in a sequential fashion, we check ϕ and all its replacements in a single
bottom-up pass over the parse tree of ϕ. At each node we exploit the relation-
ships between the sets of states satisfying the various formulae. Depending on
the number of negations along the path connecting a node to the root of the
parse tree, the satisfying set of a witness subformula is either a lower bound

Vacuum Cleaning CTL Formulae 487

or an upper bound on the satisfying set of the corresponding subformula of ϕ.
This allows us to speed up fixpoint computations by accelerating convergence,
or simplifying the computation of preimages.

As demonstrated in [18, 3], starting a fixpoint computation from a good
approximation may drastically reduce the time to convergence, especially with
symbolic algorithms that may be greatly affected by the sizes of the Binary
Decision Diagrams (BDDs [5]). In our approach to vacuity detection, the bounds
on the fixpoints are not obtained by modifying the transition relation of the
model. Hence, the effects are less dramatic, but sufficient to often allow several
formulae to be model checked in about the same time as just one of them.

Other devices that help our algorithm limit the overhead are the detection
of cases in which different replacements lead to equivalent formulae, or at least
to identical computations; and the sharing of don’t care and early termination
conditions between ϕ and its witness formulae. The details of the algorithm are
discussed in Sections 4 and 5.

A practical algorithm for thorough vacuity detection is only of limited im-
port unless the analysis it performs is also useful: Presenting the user of a model
checker with much information of scarce relevance is likely to decrease her pro-
ductivity. Our experiments, however, indicate that a more minute examination
of formulae than that based on replacement of just one subformula leads to the
the discovery of more bugs and to the detection of weaknesses in formulae that
would otherwise go unnoticed. The “signal to noise” ratio is also quite good,
with most vacuous passes leading to improved verification. This is illustrated
by the case studies described in Section 2, and the experiments summarized in
Section 6.

2 The Case for Thorough Vacuity Detection

Fpmpy is a floating-point multiplier included among the examples distributed
with VIS [20]. It implements a simplified version of the IEEE 754 standard for
floating point arithmetic. Several CTL formulae test properties primarily related
to the handling of special cases like infinities, NaNs, and denormals (which are
not implemented by the model). The multiplier takes three clock cycles to com-
plete an operation. Hence, it is natural for properties checked on its model to
have the form

AG(p→ AXAX AX q) ,

where p and q are propositional formulae. These formulae are in w-ACTL, and
their witness formulae according to [1] have the form

AG(p→ AXAX AX false) .

These witness formulae fail trivially because the model has fair paths—hence
the formulae reduce to AG¬p—and p, albeit different from formula to formula,
holds in the first cycle of a computation. Accordingly, vacuity detection for w-
ACTL reports no problems. By contrast, when replacing each leaf of the parse

488 Mitra Purandare and Fabio Somenzi

tree with either true or false depending on the number of negations along the
path from the leaf to the root, many replacements result in vacuous passes. This
is especially true of the following formula

AG(START ∧ valid(x) ∧ valid(y)→ valid(z)) , (1)

where START holds in the first clock cycle of a computation, and valid() tells
whether the inputs (x and y) or the output (z) are not denormals. Out of 24
replacements, 20 produce vacuous passes. Examination of the passing witness
formulae revealed that:

1. The environment of the model lacks an assignment to a primary input to
the multiplier (start).

2. The MSB of the exponent could be incorrect due to overflow during its
computation.

3. The multiplier maintains the invariant AG valid(z). Hence, (1) can be
strengthened by replacing the antecedent of the implication with true.

Two features of the more extensive analysis based on replacing all leaves are in-
strumental in highlighting the bugs and weaknesses of fpmpy: the replacement of
non-interesting formulae (to prove the antecedent redundant), and the replace-
ment of individual atomic propositions (to expose the problem with the MSB of
the exponent).

The MinMax parameterized circuit [19, 10] computes the average of the min-
imum and maximum of a stream of n-bit numbers. The following property

AG((min = 2n − 1 ∧ max = 0)→
AX((min = 2n − 1 ∧ max = 0) ∨ (min = last∧ last = max))) (2)

states that from a reset state, in which min holds the largest possible n-bit
integer, and max is 0, it is only possible to transit to another reset state, or to a
state in which both min and max have the same value as the last input (last).
This time, thorough vacuity detection uncovers no errors in the model, but it
points out that the system satisfies the invariant

AG((min[n− 1] = 1 ∧ max[n− 1] = 0)→ (min = 2n − 1 ∧ max = 0)) , (3)

where n− 1 is the index of the most significant bit. The set of properties can be
enhanced by adding (3) or by strengthening (2) to

AG((min[n− 1] = 1 ∧ max[n− 1] = 0)→
AX((min[n− 1] = 1 ∧ max[n− 1] = 0) ∨ (min = last ∧ last = max))) .

Our last example illustrates a possible drawback of exhaustively replacing
all the leaves of the parse tree with either true or false. In a model of n dining
philosophers [11], each philosopher may be in one of four states: thinking, left,
right, and both, depending on which chopsticks she is holding. Mutual exclusion

Vacuum Cleaning CTL Formulae 489

requires that a philosopher may not hold the chopstick to her right if her right
neighbor holds the one to his left. This may be written as

AG¬((p[i] = right ∨ p[i] = both)∧
(p[(i+ 1) mod n] = left ∨ p[(i+ 1) mod n] = both)) . (4)

Suppose the state p[i] of the i-th philosopher is encoded by two binary variables,
l[i] and r[i], each one indicating possession of one chopstick. Then thorough
vacuity detection will report vacuous passes, indicating that (4) can be rewritten
as

AG¬(r[i] ∧ l[(i+ 1) mod n]) . (5)

Since the two formulations are equivalent, the quality of verification is not af-
fected by this change, and, depending on the description style, converting (4)
into (5) may require extensive modifications of the model. Therefore, report of
vacuous passes in this case may be regarded as noise. However, this appears a
reasonable price to pay for the advantages afforded by a careful examination the
properties.

3 Preliminaries

The logic CTL [8] is defined over an alphabet A of atomic propositions: Any
atomic proposition is a CTL property, and if ϕ and ψ are CTL properties, then
so are ϕ∧ψ, ϕ∨ψ, ¬ϕ, and EϕUψ, EGϕ, and EXϕ. The semantics of CTL are
defined over a Kripke structure K = 〈S, T, S0, A, L〉, where S is the set of states,
T ⊆ S×S is the transition relation, S0 ⊆ S is the set of initial states, A is the set
of atomic propositions, and L : S → 2A is the labeling function. The semantics
of CTL are defined in Figure 1. If fairness constraints are specified, the path
quantifiers are restricted to fair paths, that is, paths that intersect every fairness
constraint infinitely often. A formula is said to hold in K if it is satisfied by
every initial state of K. An ECTL formula is a CTL formula in which negation
is only applied to the atomic propositions. An ACTL formula is the negation
of an ECTL formula. A property that is neither ECTL nor ACTL is a mixed
property.

K, s0 |= ϕ iff ϕ ∈ L(s0) for ϕ ∈ A
K, s0 |= ¬ϕ iff K, s0 �|= ϕ
K, s0 |= ϕ ∨ ψ iff K, s0 |= ϕ or K, s0 |= ψ
K, s0 |= ϕ ∧ ψ iff K, s0 |= ϕ and K, s0 |= ψ
K, s0 |= EXϕ iff there exists a path s0, s1, . . . in K such that K, s1 |= ϕ
K, s0 |= EGϕ iff there exists a path s0, s1, . . . in K such that for i ≥ 0,

K, si |= ϕ
K, s0 |= EϕUψ iff there exists a path s0, s1, . . . in K such that there exists

i ≥ 0 for which K, si |= ψ, and for 0 ≤ j < i, K, sj |= ϕ.

Fig. 1. Semantics of CTL

490 Mitra Purandare and Fabio Somenzi

Boolean operators other than ∧, ∨, and ¬, and the operators EF, AX, AG,
AF, and AU can be defined as abbreviations, e.g., EFϕ = E(ϕ∨¬ϕ)Uϕ, AXϕ =
¬EX¬ϕ, AGϕ = ¬EF¬ϕ, AFϕ = ¬EG¬ϕ, and AϕUψ = ¬(E¬ψ U¬(ϕ ∨
ψ)) ∧ ¬EG¬ψ . Clearly, the abbreviations should be expanded before checking
whether a formula is an ECTL or ACTL formula.

The model checking problem for CTL with fairness constraints can be trans-
lated into the computation of fixpoints of appropriate functionals [17]:

EϕUψ = µZ .ψ ∨ (ϕ ∧ EXZ),
EGϕ = νZ . ϕ ∧ EXZ,

EC Gϕ = νZ . ϕ ∧ EX
∧

c∈C

(EZ U(Z ∧ c)) ,

where C is a set of sets of states that must be traversed infinitely often by a fair
path, and where with customary abuse of notation, we identify a formula and
the set of states where it is satisfied. Also, we often do not distinguish between a
set and its characteristic function. Thus, p ∧ ¬{s0} stands for the characteristic
function of the set consisting of the states in the set whose characteristic function
is p, except for s0. When we want to mark the difference between a formula and
its satisfying set, we let [[ϕ]] denote the satisfying set of ϕ.

Note that EU, EG, and EX are monotonic both in their arguments and in the
transition relation.

In vacuity detection we replace an occurrence of subformula ϕ′ in ϕ with
another formula ψ; this is denoted by ϕ[ϕ′ ← ψ] and is called the witness of ϕ′.
We write ϕ[ϕ′ ← ⊥] for ϕ[ϕ′ ← false] if ϕ′ appears in ϕ under an even number
of negations. Otherwise, ϕ[ϕ′ ← ⊥] stands for ϕ[ϕ′ ← true].

A formula ϕ passes vacuously in K if K |= ϕ, and there exists an occurrence
of a subformula ϕ′ of ϕ such thatK |= ϕ[ϕ′ ← ⊥]. If this holds, thenK |= ϕ[ϕ′ ←
ψ] for any ψ. This follows from the monotonicity of the operators involved in
model checking [15].

4 Combining Model Checking and Vacuity Detection

In this section we describe an efficient algorithm that combines the model check-
ing of a CTL formula ϕ with thorough detection of vacuous passes. We assume
that ϕ is given as a parse tree (as opposed to a parse graph). That is, each
occurrence of a given subformula is considered separately.

We assume that ϕ only contains existential quantifiers. The only operators
that label the internal nodes of the parse tree are therefore ¬, ∧, EX, EU, and
EG. This choice prevents us from putting formulae in negation normal form.
Instead, each node of the parse tree is annotated with its negation parity, that
is the number of nodes labeled ¬ on the path connecting the root of the tree to
the parent of the node itself.1

1 Our implementation also allows nodes of the parse tree labeled by ∨, → and ⊕. An
implication node counts as a negation for its antecedent child, but not for its conse-

Vacuum Cleaning CTL Formulae 491

Let Π = (N,E, λ) be the parse tree of a CTL formula ϕ with atomic propo-
sitions from A �= ∅, where N = {i : 1 ≤ i ≤ n} is the set of nodes; E ⊆ N ×N
is the set of edges; and λ : N → A ∪ {¬,∧,EX,EU,EG} labels each node of the
parse tree with either an atomic proposition or an operator. The root of the
parse tree is node n.

The outdegree of a node i obeys the obvious restrictions: if λ(i) ∈ A it is 0;
if λ(i) ∈ {¬,EX,EG} it is 1; otherwise, it is 2. Let ν : N → {0, 1} map each node
to its negation parity: ν(n) = 0, and if (i, j) ∈ E, then ν(i) = ν(j) if and only
if λ(i) �= ¬. If ν(i) = 0, i is an even-parity node; otherwise, it is an odd-parity
node. For 1 ≤ i ≤ n let Πi denote the subtree of Π rooted at node i, and ϕi

denote the CTL formula represented by Πi.
To check whether subformula ϕj of ϕ affects the truth value of ϕ in K, we

replace ϕj with ⊥. If ν(i) = 0, [[ϕi[ϕj ← ⊥]]] ⊆ [[ϕi]], whereas if ν(i) = 1,
[[ϕi]] ⊆ [[ϕi[ϕj ← ⊥]]]. This observation is the basis for our algorithm.

Given a replacement function ρ : N → {∅,⊥}, let
Ψ(Π, ρ) = {ϕ} ∪ {ϕ[ϕi ← ⊥] : ρ(i) = ⊥} .

A vacuity detection experiment for ϕ in K is defined by a triple (K,Π, ρ): It
consists of answering, for each ψ ∈ Ψ(Π, ρ) the model checking question K |= ψ.
If K |= ϕ, each additional affirmative answer is a vacuous pass.

Let δ : N → 2N map node i to the set of nodes that are reachable from i and
such that j ∈ δ(i) implies ρ(j) = ⊥. That is, δ(i) is the set of descendants of i
that have been marked for replacement. Our algorithm computes for each i ∈ N
a function σi : δ(i) ∪ {0} → (δ(i) ∪ {0})× 2Q such that σi(j) = (k, S) satisfies
the following conditions.

1. k ≤ j;
2. σi(0) = (0, [[ϕi]]);
3. if k = j �= 0, then S = [[ϕi[ϕj ← ⊥]]];
4. if k < j, then S = ∅ and [[ϕi[ϕj ← ⊥]]] = [[ϕi[ϕk ← ⊥]]].
The computation is performed by post-order traversal of the parse tree. At each
node i, first we compute a “draft” of σi, that we call σ′

i, and then derive σi from
it by a reduction process. The details of the computation of σ′

i depend on λ(i)
as follows, except for σ′

i(i), which is always (i,⊥) if ρ(i) = ⊥, and undefined
otherwise.

1. If λ(i) ∈ A, σ′
i(0) = (0, [[ϕi]]).

2. If λ(i) ∈ {¬,EX}, let c be the child of i, and, for j ∈ δ(i) ∪ {0} \ {i}, let
σc(j) = (k, P). Then, if k = j, σ′

i(j) = (j, λ(i)P); otherwise σ′
i(j) = (k, ∅).

3. If λ(i) = ∧, let l and r the two children of i and, for j ∈ δ(l) ∪ {0}, let
σl(j) = (k, P). Then, if k = j, σ′

i(j) = (j, P ∧ [[ϕr]]); otherwise σ′
i(j) = (k, ∅).

Note that i �∈ δ(l), δ(l) ⊆ δ(i), and δ(l) ∩ δ(r) = ∅. The case for j ∈ δ(r) is
similar.

quent child. The exclusive-or requires special treatment, because it is not monotonic:
We do not allow replacements of the descendants of a node labeled ⊕. Since these
are implementation details, we shall not discuss them further.

492 Mitra Purandare and Fabio Somenzi

4. If λ(i) = EG the computation proceeds as in the case of EX. However, the
order in which the values of σ′

i are determined is relevant: σ′
i(0) is computed

last. If ν(i) = 1,

U =
∧
{P : σ′

i(j) = (j, P), j ∈ δ(i) \ {0}}

is used as an upper bound in computing [[ϕi]]. Otherwise,

L =
∨
{P : σ′

i(j) = (j, P), j ∈ δ(i) \ {0}}

is used as lower bound. (The use of lower bounds in greatest fixpoint com-
putations is discussed in Section 5.)

5. Finally, if λ(i) = EU, the computation proceeds as in the case of EX. However,
the order in which the values of σ′

i are determined is relevant: if ν(i) = 1,
σ′

i(0) is computed first, and [[ϕi]] is used as lower bound in the other fixpoint
computations; otherwise σ′

i(0) is computed last, and

L =
∨
{P : σ′

i(j) = (j, P), j ∈ δ(i) \ {0}}

is used as a lower bound in computing [[ϕi]].

The reason for computing σ′
i(0) last in case of greatest fixpoint, regardless of

ν(i) is that the BDD for [[ϕ[ϕj ← ⊥]]] are likely to be smaller than that for [[ϕ]]
because the formula is simpler.

The reduction process that derives σi from σ′
i sets σi(j) = (k, ∅) if σ′

i(j) =
(j, P), there is k < j such that σ′

i(k) = (k, P), and k is the least number that
satisfies this condition. Furthermore, if σ′

i(j) = (k, ∅), and σi(k) = (k′, ∅), then
σi(j) = (k′, ∅).

The following result states that the solution to a vacuity detection experiment
is contained in σn.

Theorem 1. If σn(j) = (j, P) then [[ϕ[ϕj ← ⊥]]] = P ; otherwise, if σn(j) =
(k, ∅), then σn(k) = (k, P), P �= ∅, and [[ϕ[ϕj ← ⊥]]] = P .

4.1 Early Termination and Don’t Cares

It is sometimes possible to avoid computing either [[ϕ]] or [[ϕ[ϕ′ ← ⊥]]]. Suppose
a set of care states is given at the current node of the parse tree. At the root
of the parse tree, this set of states is all the initial states. If we ignore vacuity
detection, the computation can be terminated early as soon as it is known that
all the care states satisfy the formula, or as soon as it is known that at least
one of the care states does not satisfy it. Hence, if the root of the parse tree is a
least fixpoint, then computation can be terminated as soon as it is known that
the formula passes; if it is a greatest fixpoint, early termination occurs as soon
as it is known that the formula fails.

Another source of care states is the satisfying set of the sibling of the current
node when the parent is labeled ∧. The computation of the second child of such

Vacuum Cleaning CTL Formulae 493

a node r can be stopped as soon as all the states satisfying the sibling are known
to satisfy r as well, or when it is known that no state satisfying r satisfies its
sibling.

These observations can be extended to vacuity detection. For instance, if the
negation parity of the node is even, and [[ϕ[ϕ′ ← ⊥]]] contains all the care states,
then the computation of [[ϕ]] can be skipped. Likewise, if the negation parity is
odd and [[ϕ[ϕ′ ← ⊥]]] contains no care state, neither does [[ϕ]].

4.2 Complexity

In practice, sharing partial results between the evaluation of the given formula
and the evaluation of its witness formula is beneficial. However, in the worst
case, we still have a quadratic bound (cf.[15]). To make things more precise, we
consider the number of node evaluations as our metric. If a formula and all the
witness formulae obtained by replacing a subformula with ⊥ are model checked
independently, then the number of node evaluations is quadratic in the length
of the formula.

When sharing takes place, if we assume that replacements are limited to the
leaves, the number of evaluations of each node in the CTL parse tree is bounded
by the number of leaves below the node plus 1 (for the original formula).

For a balanced binary tree the total number of node evaluations is O(n log n),
but for generic 2-restricted trees (each node has at most two children), the num-
ber of evaluations is O(n2). To see this, consider a binary tree such that at least
one child of each node is a leaf.

5 Updating Greatest Fixpoints Using Lower Bounds

In this section we show how knowledge of a lower bound to a greatest fixpoint
can be used to speed up its computation. It is well-known how use a lower bound
for the computation of least fixpoints as follows. Let l = E q U p and u ≤ l. Then,

l = E q U(p ∨ u) . (6)

We can similarly use an upper bound to compute a greatest fixpoint. Now sup-
pose g = E q R p and u ≤ g. Then,

g = u ∨ E(q ∨ EXu)R(¬u ∧ p) . (7)

In words, (7) says that a state in g is either a state in u, or a state on an infinite
path entirely contained in ¬u ∧ p, or a state with a finite path in ¬u ∧ p that
leads to a state still in ¬u ∧ p that satisfies q or has a successor in u.

The iterates of the fixpoint in (7) are all contained in ¬u∧p; hence, they can
be regarded as frontiers. While using (6) may speed up convergence, (7) may
decrease the cost of the image computations, but does not affect the number of
iterations.

494 Mitra Purandare and Fabio Somenzi

As in the case of least fixpoints, frontiers can be optimized using u as don’t
care. We can apply this approach also to the computation of greatest fixpoints
under fairness constraints.

EC G p = u ∨ E(¬u ∧ p)U(¬u ∧ p ∧ EXu) ∨ EC G(¬u ∧ p) . (8)

Equation (8) says that if the states in u are on fair paths contained in p, then
a state on a fair path contained in p is either a state in u, or a state on a fair
path entirely contained in ¬u ∧ p, or a state on a finite path reaching a state in
¬u ∧ p that has a successor in u. In the absence of fairness constraints, one can
show that (7) and (8) are equivalent.

This result can be combined with [2, Theorem 4]: In guided search, u must
be a lower bound on the final fixpoint, not necessarily on the one that is being
computed.

Example 1. Consider the structures of Fig. 2, adapted from [2]. Part (3) shows
the original structure, while Parts (1) and (2) show structures obtained by the
application of hints. Suppose we want to compute EG p. Let EXi Z the operator
that computes the predecessors of the states in Z in the structure of Part (i) of
Fig. 2. (The other temporal logic operators are similarly annotated.) From the
graph of Part (1) we compute

η1 = νZ . p ∧ EX1 Z = {s4} .

From the graph of Part (2) we compute:

η2 = {s4} ∨ E(EX2{s4})R2(p ∧ ¬{s4}) = {s0, s3, s4} .

The fixpoint computation requires three preimages:

EX2{s4},EX2{s0, s1, s3}, and EX2{s0, s3} .

By contrast, the non-incremental approach computes

η2 = νZ .{s4} ∨ ({s0, s1, s3, s4} ∧ EX2 Z) ,

s0 s2

s3

p

pp

s4

s0 s2

s3

p

pp

s4

s0 s2

s3

p

pp

s4

s1ppp s1s1

(1) (2) (3)

Fig. 2. Combining Theorem 4 of [2] with incremental greatest fixpoint compu-
tation

Vacuum Cleaning CTL Formulae 495

which requires the following preimages:

EX2{s0, s1, s3, s4} and EX2{s0, s3, s4} .

Finally, from the graph of Part (3) of Fig. 2, we compute:

η3 = {s0, s3, s4} ∨ E(EX3{s0, s3, s4})R3(p ∧ ¬{s0, s3, s4}) = {s0, s3, s4} ,

The fixpoint computation converges after one iteration with Z = ∅, having com-
puted EX3{s0, s3, s4} and EX3{s1}. By contrast, the non-incremental approach
computes

η3 = νZ .{s0, s3, s4} ∨ ({s0, s1, s3, s4} ∧ EX3 Z) ,

which in turn requires the computation of EX3{s0, s1, s3, s4}. ��
In general, we see that the incremental approach leads to more EXs (because
EXu must be computed). On the other hand, each EX is applied to a smaller
set.

6 Experiments

In this section we present preliminary results obtained with an implementation
of the proposed algorithms in VIS 1.4 [4]. The CPU times were measured on an
IBM IntelliStation running Linux with a 1.7 GHz Pentium 4 CPU and 1 GB of
RAM. We checked a total of 588 formulae on 88 models.

Fig. 3 compares the run times for model checking without vacuity detection
(Plain), checking all witnesses serially (Naive), and our algorithm (Vacuum).
For reference, the time spent for reachability analysis is also shown (Reach).
Only the experiments in which plain model checking took more than one second
are shown in this plot. The replacements affected all the leaves of all formulae.
(If no witnesses for the leaves pass, then no other witnesses will pass.) Though
usually the witnesses are easier to model check than the given formula, this is
not always the case. (See, for instance, vending.) However, in most cases, the
time for a thorough vacuity detection is close to that for plain model checking.
Our algorithm clearly dominates the naive approach.

Of the 588 formulae, 470 (80%) passed. A total of 2880 witnesses was gen-
erated, and 547 passed; the percentage of vacuous passes was therefore 19%.
These vacuous passes were found in 35 different models (40%) and in a total of
100 formulae (17%). These results are detailed in Table 1. For each of the 88
designs, the table gives the number of properties that were checked, and how
many passed; it also gives how many witnesses were generated and how many
resulted in vacuous passes.

Of the 588 formulae, 411 (70%) are w-ACTL. For these we also ran the
algorithm of [1]. We found that 34 formulae (6%) in 8 models (9%) caused
vacuous passes.

496 Mitra Purandare and Fabio Somenzi

Fpmpy
rcnum16
ether112

FPMultLTL1-1
FPMultLTL1-2

prodcellLTL2
ely1-3

ether212
vending

IFetchControl1
bufferAlloc

daio-receiver
prodcell

bakery-ot
PPC60X-bus

bcuvis32
ether312

8-arbit
atom-bakery

twoFifo1
Feistel

spm
two

nosel
abstr-fabr-4cycle

parsesys
fru32

ticTacToe
good-bakery

idu32
luckySeven

PI-BUS
ether412

matrix-bug
matrix

soapLTL4-t
soapLTL4-w

twoAll
reactor2

two-processor
soapLTL3-t

soapLTL3-w
FIFOs

eisenberg
bpb

nullModem
nullModemLTL1

rcnum25
ether213

twoQ
palu

100 101 102 103

D
es

ig
n

CPU time(s)

Vacuum
Plain

Naive
Reach

Fig. 3. CPU times

Vacuum Cleaning CTL Formulae 497

Table 1. Statistics for vacuity detection experiments

Design Passed/ Vacuous Passes/ Design Passed/ Vacuous Passes/
Total Witnesses Total Witnesses

abp 3/3 5/19 nullModem 1/1 0/2
arbiter 4/4 0/12 nullModemLTL1 1/1 1/1

arbiter bug 4/4 0/12 PI BUS 19/25 6/43
eisenberg 9/9 0/18 PPC60X bus 24/30 3/38

good bakery 9/10 0/18 palu 1/2 0/1
bakery ot 1/1 0/1 pf 0/2 0/0

atom bakery 1/1 0/4 peterson 3/3 2/6
synch bakery 4/6 0/8 philo 1/2 40/80

bpb 2/3 0/143 nosel 2/2 1/260
bufferAlloc 1/1 5/22 philo4 8/8 0/16

two processor 5/13 0/11 drop4 4/8 0/8
coherence 8/10 9/32 ping pong new 3/5 1/6
counter 1/1 0/1 prodcell 9/10 0/19
crd 3/3 1/6 prodcellLTL2 1/1 1/1
ctlp3 1/1 0/2 rcnum16 1/1 0/15

daio receiver 3/4 0/13 rcnum25 1/1 0/24
dcnew 3/7 1/6 reactor2 2/3 0/5
ely1-3 0/1 0/0 reqAck 2/2 3/13

ether112 6/6 2/20 reqAckRed 2/2 3/13
ether212 6/6 2/20 reset 0/1 0/0
ether312 6/6 2/20 rgraph 0/1 0/0
ether412 6/6 2/20 twoFifo1 3/4 6/19
FIFOs 1/1 0/1 twoQ 5/7 7/25
Fpmpy 5/8 24/99 short 2/3 1/4

FPMultLTL1-1 1/1 0/1 bcuvis32 10/10 43/66
FPMultLTL1-2 1/1 1/1 fru32 11/11 128/167
abstr fabr 4cycle 8/8 0/62 idu32 21/21 69/126

Feistel 1/1 0/2 controlvis 17/17 28/103
two 1/2 0/2 pcuv 17/17 42/80

twoAll 5/5 0/35 spm 1/2 0/3
luckySeven 1/3 0/25 soapLTL3-t 0/1 0/0
gigamax 9/9 0/12 soapLTL3-w 0/1 0/0
gray 3/4 2/10 soapLTL4-t 1/1 0/1
ibuf 1/1 0/21 soapLTL4-w 1/1 1/1

IFetchControl1 15/22 17/89 solitaireVL 0/1 0/0
island 3/3 0/6 spinner4 3/6 0/18
jam 2/3 0/4 syncarb 33/33 0/300
lock 9/9 3/75 tcp 1/2 0/2

packstart 1/4 0/2 ticTacToe 29/42 0/107
parsepack 4/4 0/15 tlc 4/5 0/8
parsesys 4/4 0/8 4-arbit 3/3 0/6
matrix 30/32 0/45 8-arbit 2/3 0/4

matrix bug 14/32 0/25 vending 12/15 53/132
minMax 4/5 32/200 sbc 3/3 0/9

498 Mitra Purandare and Fabio Somenzi

7 Extensions to the Basic Algorithm

In this section we discuss possible extensions to our algorithm for vacuity detec-
tion. One of the main advantages of a through analysis of the formulae is the
ability to identify weak properties. It is possible to extend this idea to include
more cases than those created by replacements with ⊥. Consider the following
example. Once we know that ψ = AG(p → AF q), passes in a certain model, we
already know that ϕ = AG(p → EF q) passes as well, because ψ → ϕ. Also, the
satisfying sets computed for ϕ are bounds for those of ψ. In our example, we
have [[¬EF q]] ⊆ [[EG¬q]]. In general, if ψ → ϕ, and ϕ is checked before ψ, we
have two cases:

1. ϕ fails: then ψ also fails.
2. ϕ passes: we can use the satisfying sets computed for ϕ as bounds for those

of ψ.

We can produce strengthened formulae by extending the replacement function
to specify a change of existential quantifier, or temporal operator.

Failing formulae are excluded by definition from vacuity checking. However,
if AF p fails in a model, it is useful to know whether EF p fails as well. (It signals
a bigger discrepancy between expectations and actual behavior of the model.)
The mechanism that strengthen passing formulae for vacuity detection can be
employed also to weaken them and help debug them if they fail.

We have presented and implemented our algorithm for CTL model checking.
Extension to LTL and CTL* is possible. We briefly discuss the case of LTL.
For each replacement formula, a different Büchi automaton is generated. The
automaton is for the negation of the witness formula, and hence its language is
larger than the language of the automaton for original formula. The result of
the language emptiness check is therefore an upper bound on the result for the
original formula.

References

[1] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of vacuity in
ACTL formulas. In O. Grumberg, editor, Ninth Conference on Computer Aided
Verification (CAV’97), pages 279–290. Springer-Verlag, Berlin, 1997. LNCS 1254.
485, 486, 487, 495

[2] R. Bloem, K. Ravi, and F. Somenzi. Efficient decision procedures for model
checking of linear time logic properties. In N. Halbwachs and D. Peled, editors,
Eleventh Conference on Computer Aided Verification (CAV’99), pages 222–235.
Springer-Verlag, Berlin, 1999. LNCS 1633. 494

[3] R. Bloem, K. Ravi, and F. Somenzi. Symbolic guided search for CTL model
checking. In Proceedings of the Design Automation Conference, pages 29–34, Los
Angeles, CA, June 2000. 487

[4] R. K. Brayton et al. VIS: A system for verification and synthesis. In T. Hen-
zinger and R. Alur, editors, Eighth Conference on Computer Aided Verification
(CAV’96), pages 428–432. Springer-Verlag, Rutgers University, 1996. LNCS 1102.
495

Vacuum Cleaning CTL Formulae 499

[5] R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677–691, August 1986. 487

[6] H. Chockler, O. Kupferman, R. P. Kurshan, and M. Y. Vardi. A practical approach
to coverage in model checking. In G. Berry, H. Comon, and A. Finkel, editors,
Thirteenth Conference on Computer Aided Verification (CAV’01), pages 66–78.
Springer-Verlag, Berlin, July 2001. LNCS 2102. 485

[7] H. Chockler, O. Kupferman, and M. Y. Vardi. Coverage metrics for temporal
logic model checking. In Tools and algorithms for the construction and analysis
of systems (TACAS), pages 528–542. Springer, 2001. LNCS 2031. 485

[8] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skele-
tons using branching time temporal logic. In Proceedings Workshop on Logics of
Programs, pages 52–71, Berlin, 1981. Springer-Verlag. LNCS 131. 489

[9] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press,
Cambridge, MA, 1999. 485, 486

[10] O. Coudert, C. Berthet, and J. C. Madre. Verification of sequential machines using
Boolean functional vectors. In L. Claesen, editor, Proceedings IFIP International
Workshop on Applied Formal Methods for Correct VLSI Design, pages 111–128,
Leuven, Belgium, November 1989. 488

[11] E. W. Dijkstra. Cooperating sequential processes. In Genuys, editor, Programming
Languages, pages 43–112. Academic Press, 1968. 488

[12] H. Fujiwara. Logic Testing and Design for Testability. MIT Press, Cambridge,
MA, 1985. 485

[13] Y. Hoskote, T. Kam, P.-H. Ho, and X. Zhao. Coverage estimation for symbolic
model checking. In Proceedings of the Design Automation Conference, pages 300–
305, New Orleans, LA, June 1999. 485

[14] S. Katz, O. Grumberg, and D. Geist. “Have I written enough properties?” —
A method of comparison between specification and implementation. In Correct
Hardware Design and Verification Methods (CHARME’99), pages 280–297, Berlin,
September 1999. Springer-Verlag. LNCS 1703. 485

[15] O. Kupferman and M. Y. Vardi. Vacuity detection in temporal model checking. In
Correct Hardware Design and Verification Methods (CHARME’99), pages 82–96,
Berlin, September 1999. Springer-Verlag. LNCS 1703. 485, 486, 490, 493

[16] R. P. Kurshan. Computer-Aided Verification of Coordinating Processes. Princeton
University Press, Princeton, NJ, 1994. 485

[17] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Boston,
MA, 1994. 490

[18] K. Ravi and F. Somenzi. Hints to accelerate symbolic traversal. In Correct
Hardware Design and Verification Methods (CHARME’99), pages 250–264, Berlin,
September 1999. Springer-Verlag. LNCS 1703. 487

[19] D. Verkest, L. Claesen, and H. De Man. Special benchmark session on formal
system design. In L. Claesen, editor, Proceedings IFIP International Workshop on
Applied Formal Methods for Correct VLSI Design, pages 75–76, Leuven, Belgium,
November 1989. 488

[20] URL: http://vlsi.colorado.edu/∼vis. 487

	Vacuum Cleaning CTL Formulae
	Introduction
	The Case for Thorough Vacuity Detection
	Preliminaries
	Combining Model Checking and Vacuity Detection
	Early Termination and Don't Cares
	Complexity

	Updating Greatest Fixpoints Using Lower Bounds
	Experiments
	Extensions to the Basic Algorithm

