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In this paper, we present a quantum-field-theoretical description of the interaction between stationary and
localized external sources linearly coupled to bosonic fields (specifically, we study models with a scalar and
the Maxwell field). We consider external sources that simulate not only point charges but also higher-multipole
distributions along D-dimensional branes. Our results complement the ones previously obtained in reference [1].
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1. INTRODUCTION

In a recent paper [1], we have investigated the role of cou-
plings between quantum fields and external stationary cur-
rents (time-independent sources) concentrated along parallel
branes with arbitrary co-dimensions. To do that, we have cal-
culated the vacuum energies for a variety of models of quan-
tum fields that interact with external stationary currents con-
centrated along parallel D-branes. As particular cases, for
bosonic fields, we have considered external currents which
could describe charge distributions and stationary dipole dis-
tributions along the branes.

Is is worthy mentioning that systems of quantum fields in-
teracting with external potentials concentrated along branes
have been treated in the literature; see, for instance, [2–4]
and references cited therein. But, the coupling of quantum
fields to external currents concentrated along branes is not a
well-explored subject.

In order to fulfill a question left aside in reference [1], in
this paper we make a deeper discussion on the description
of multipole density distributions along branes with arbitrary
dimensions by the use of external currents concentrated at
specific regions of space. The results for charges and dipole
distributions, which can be taken as generalizations of the
ones exposed in reference [1], are presented, for complete-
ness, in this paper and also in order to make clearer some
discussions and correct a flaw in reference [1]. The results
obtained here for currents describing four-pole distributions
and N-pole distributions are novel.

Along the paper, we shall consider models in d + D + 1
dimensions described by a quantum field coupled to an ex-
ternal current concentrated along a D-brane and another one
concentrated at a given point of space. The latter current rep-
resents a point-like test-charge which is used to investigate
the force field produced by the former one.

We shall also use the same notation as in reference [1],
where the coordinate (D+d +1)-vector is given by

x = (x0,x1, ...,xd ,xd+1, ...,xd+D) , (1.1)

and its perpendicular and parallel parts to the D-brane are,
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respectively,

x⊥ = (x1, ...,xd) ,

x‖ = (xd+1, ...,xd+D) . (1.2)

We shall also use similar notations for the momenta k, as well
as for any other vector considered in this paper.

This work is outlined as follows: in section (2), we con-
sider models for the scalar field, with and without mass, cou-
pled to currents describing distributions of charges, dipoles,
quadrupoles and N-poles. Section (3) is devoted to extending
the previous results for the electromagnetic case. In section
(4), we draw some final remarks and conclusions.

2. SCALAR FIELD

All over this section, we consider models for the massive
scalar field, φ, in d + D + 1 dimensions, always interacting
with an external current J different for each model. The la-
grangians of all models investigated have the same structure

Lscalar =
1
2
(∂µφ)(∂µ

φ)− 1
2

m2
φ

2 + Jφ , (2.1)

with the corresponding generating functional of the Green’s
functions

Z = exp

(
− i

2

Z Z
dd+D+1x dd+D+1y J(x)∆F(x,y)J(y)

)
,

(2.2)
where ∆F(x,y) is the Green’s function

∆F(x,y) = lim
ε→0

Z dd+D+1k
(2π)d+D+1

exp
[
ik(x− y)

]
k2−m2 + iε

. (2.3)

It is worthy mentioning that the current J in the functional
(2.2) is not an auxiliary parameter introduced in order to per-
form perturbative calculations, as usualy considered in the
literature. The current J has here a physical meaning and
shall not be set equal to zero.

In the limit T →∞, the generating functional of any quan-
tum system, whose lagrangian density does not depend ex-
plicitly on the time coordinate (what is the case we are con-
sidering), can be written in the form [5–7]

Z = exp(−iET ) , (2.4)
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where E is the lowest energy of the system and T =
R

∞

−∞
dx0.

Comparing Eq’s (2.2) and (2.4), we have

E = lim
T→0

1
2T

Z Z
dd+D+1x dd+D+1y J(x)∆F(x,y)J(y) .

(2.5)
From now on, let us take the current J to be composed by

a fuction concentrated along a D-dimensional brane along
with another function concentrated at a given point of space.

The first model we study is a generalization of the one
exposed in [1] and it is considered in this work for complete-
ness and in order to make clearer the method employed in
this whole paper in a simple example. The current corre-
sponding to the first model is taken to be given by

JI(x) = σδ
d(x⊥−A)+σ0δ

d+D(x−a) , (2.6)

where A = (A1,A2, ...,Ad) and a = (a1,a2, ...,ad+D). The
first term at the right-hand side of (2.6) is a distribution con-
centrated along a D-dimensional brane denoted by the vector
A, the last term at the right-hand side is a distribution con-
centrated at the point a.

Substituting (2.3) and (2.6) into (2.5), discarding terms
due to the brane self-interaction and the test-charge self-
interaction, performing, in the following order, the integrals
dx0dk0dy0dDx‖dDy‖dDk‖ddx⊥ddy⊥ and making a trivial
change of variables, we arrive at

EI =−σσ0

Z ddk⊥
(2π)d

exp[−ik⊥ · (a⊥−A)]
k2
⊥+m2

, (2.7)

where we have used that T =
R

dx0.
The analytic extension for the integral in (2.7) is calculated

in reference [1], where we consider, separately, the situations
with and without mass. For m = 0 and d 6= 2, we have

EI(m = 0,d 6= 2)

= − σσ0

(2π)d/2 2(d/2)−2
Γ

(
(d/2)−1

)
|a⊥−A|2−d ,

(2.8)

where Γ is the gamma function.
For a massive field, we have

EI(m,d) =− σσ0

(2π)d/2 md−2

(
m|a⊥−A|

)1−(d/2)
K(d/2)−1(m|a⊥−A|), (2.9)

where Kµ(x) designates the K-Bessel function [8]. It is worth
mentioning that expression (2.9) is valid for any d > 0, even
for d = 2.

Assuming that d 6= 2 and taking the limit m → 0 in Eq.
(2.9), we obtain the result (2.8), what can be done with
the aid of the expression Kν(z)

z→0−→ Γ(ν)2ν−1/zν , ν 6= 0 .
The energy for the situation where m = 0 and d = 2 is ob-
tained with the help of (2.9) and the expression K0(z)

z→0−→
− ln(z/2)− γ [8], with γ designating the Euler constant, as
follows

EI(m = 0,d = 2) = −σσ0

2π
lim
m→0

[
K0(m|a⊥−A|)

]

∼= −σσ0

2π
lim
m→0

[
− ln

(
m|a⊥−A|

2

)
− γ

]
∼= −σσ0

2π
lim
m→0

[
− ln

(
m|a⊥−A|

2

)
− γ

+ ln(ma0)− ln(ma0)

]
∼=

σσ0

2π
ln

(
|a⊥−A|

a0

)
+

σσ0

2π

[
γ− ln(2)+ lim

m→0
ln(ma0)

]
→ σσ0

2π
ln

(
|a⊥−A|

a0

)
, (2.10)

where, in the fourth line, we have added and subtracted the
term ln(ma0) inside the brackets, introducing an arbitrary
length-dimensional finite constant a0. In the last line of the
above expression, we have discarded all terms which do not
depend on the distance |a⊥ −A|, even the divergent ones,
once they do not contribute to the force between the test
charge and the brane.

The presence of the arbitrary constant a0 in the energy
(2.10) does not produce any physical result, once the force
between the test charge and the brane do not depend on
the distance |a⊥−A|. In fact, one could add the constant
term (σσ0)/(2π) ln(a0) to the energy (2.10), what leads to
EI(m = 0,d = 2) = (σσ0)/(2π) ln(|a⊥−A|). The constant
a0 was introduced for convenience, in order to make the ar-
gument of the logarithm dimensionless.

Let us take the restriction D + d = 3, which corresponds
to adopting a space-time with 3+1 dimensions. In this case,
we have, for d = 1, d = 2 and d = 3, respectively, a uniform
distribution of charges along a plane, a straight line and a
point. The energy corresponding to the masless case and d =
2 is given by (2.10). For the masless case, with d = 1 and
d = 3, the results for the energy (2.8) read, respectively,

EI(m = 0,d = 1) =
σσ0

2
|a⊥−A|

EI(m = 0,d = 3) =
σσ0

4π
|a−A|−1 , (2.11)

where, in the last line, we have suppressed the sub-index ⊥
for the vector a, once its parallel part does not exist whenever
D = 0, what happens once D+d = 3 and d = 3.

The results (2.10) and (2.11) agree with the ones obtained
for the electromagnetic field in classical electrodynamics up
to an overall sign, always present in comparing the scalar
and electromagnetic fields. The second Eq. (2.11) is the
coulombian interaction between two point charges σ0 and σ

placed at positions a and A, respectively, obtained in refer-
ences [1, 5, 7].

The second current we study is given by

JII(x) = σV µ
(

∂µδ
d(x⊥−A)

)
+σ0δ

d+D(x−a) , (2.12)

where V µ is a four-vector taken to be constant and uniform in
the reference frame we are performing the calculations, and
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also, with vanishing time and perpendicular components in
this frame, that is, V 0 = 0 and V‖ = 0. The partial derivative
in the above equation is with respect to the x coordinates.

Substituting (2.12) in (2.5), discarding terms due to self
interactions, as before, performing a change of integration
variables and an integration by parts we have

EII = −σσ0

T

Z Z
dd+D+1x dd+D+1y δ

d(x⊥−A)

× δ
d+D(y−a)(V ·∇⊥)∆F(x,y) , (2.13)

where we have defined the operator ∇⊥ =
(∂/∂x1,∂/∂x2, ...,∂/∂xd).

Using the Fourier representatin (2.3) in (2.13), operating
with (V ·∇⊥), performing, in the following order, the inte-
grals dx0dk0dy0dDx‖dDy‖dDk‖ddx⊥ddy⊥ and using the fact
that T =

R
dx0 we have

EII = −σσ0

Z ddk⊥
(2π)d

V⊥ · ik⊥
k2
⊥+m2

exp
[
ik⊥ · (a⊥−A)

]
= −σσ0

(
V⊥ ·∇a⊥

)Z ddk⊥
(2π)d

1
k2
⊥+m2

exp
[
ik⊥ · (a⊥−A)

]
, (2.14)

where we have defined the differential operator ∇a⊥ =
(∂/∂a1, ...,∂/∂ad).

The integral which appears in (2.14) is the same one
present in (2.7) up to the sign of the exponential argument.
This different sign is irrelevant for the result 1 . As already
said, this integral is calculated in reference [1] for m = 0 and
m 6= 0, separately.

By using (2.7) and (2.8), the energy (2.14) for the masless
case reads

EII(m = 0,d) = −σσ0
(
V⊥ ·∇a⊥

) 1
(2π)d/2 2(d/2)−2

Γ

(
(d/2)−1

)
|a⊥−A|2−d

= − σ0

(2π)d/2 2(d/2)−1
Γ
(
d/2
)

|a⊥−A|1−d (−σV) · a⊥−A
|a⊥−A|

. (2.15)

As we shall see, result (2.15) is the interaction energy be-
tween a point charge σ0 at the position a and a dipole distri-
bution along a D-brane placed at A with dipole density−σV.

Comparison of Eq’s (2.7) and (2.9) allows us to write
down the energy (2.14), for the massive field, in the form

EII(m,d) = − σσ0

(2π)d/2 md−2(V⊥ ·∇a⊥
)

[(
m|a⊥−A|

)1−(d/2)
K(d/2)−1

(
m|a⊥−A|

)]
=

σ0

(2π)d/2 md/2|a⊥−A|−d/2

1 With a change of variables this sign can be inverted

Kd/2

(
m|a⊥−A|

)(
(−σV) · (a⊥−A)

)
,(2.16)

where, in the last line, we used the fact that

d
dx

(
x1−(d/2)K(d/2)−1(x)

)
=−x1−(d/2)Kd/2(x) . (2.17)

Taking the limit of vanishing mass in the result (2.16), we
obtain the energy (2.15), even for the case d = 2.

Now, we restrict to the case D + d = 3, which means that
we are in a 3 + 1 space-time. In this case, taking d = 1,
d = 2 and d = 3 means that the brane is reduced to a plane, a
line and a point, respectively, and the corresponding energies
read

EII(m,d = 1) =
σσ0

2
|a⊥−A|−1

exp(m|a⊥−A|)V · (a⊥−A) ,

EII(m,d = 2) =
σσ0

2π
m|a⊥−A|−1

K1(m|a⊥−A|)V · (a⊥−A) ,

EII(m,d = 3) =
σσ0

4π
m|a−A|−2 exp(−m|a−A|)(

1+
1

m|a−A|

)
V · (a−A) , (2.18)

where, in the last line, we have discarded the sub-index ⊥,
once D = 0.

For a vanishing mass, the last equation (2.18) reads

EII(m = 0,d = 3) =−σ0σ

4π

(−σV) · (a−A)
|a−A|−2 . (2.19)

which is the interaction energy between a test scalar charge
σ placed at the point a and a scalar dipole −σV lying in the
position A. It is important to notice that, in comparing with
the electromagnetic field, we have an overall minus sign.

From the above computations, we can interpret the first
term in the current (2.12) as a uniform distribution of station-
ary dipoles with dipole momentum density given by −σV
along a D-dimensional brane placed at A.

In the paper [1], we have considered a scalar current com-
posed by an arbitrary number N of terms similar to the first
one present in (2.12). Each term was taken to be concen-
trated along a different brane and all of them were taken to
be parallel to one another. We have also taken a different
four-vector V µ

(i) (i = 1..N) for each term. In order to analyze
the meaning of the considered current, we have considered
two point-like branes and a 3+1 space-time. Once the inter-
action energy we have obtained contains only terms propor-
tional to the products Vi ·V j, (i = 1,2), as shown in equation
(43) of reference [1], that is

E =
−1

4πa3

[(
σ1V(1) ·σ2V(2)

)
−3
(

σ1V(1) · â
)(

σ2V(2) · â
)]

,

(2.20)
we have interpreted each term in the current as a dipole with
the wrong sign. In this paper, we correct this point and the
true interpretation is the one exposed after Eq. (2.19).
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The third and last model we consider for the scalar field is
determined by the current

JIII(x) = σV µν

(
∂µ∂νδ

d(x⊥−A)
)

+σ0δ
d+D(x−a) , (2.21)

where V µν is a symmetric tensor with rank-2 taken to be con-
stant and uniform in the refrence frame we are performing
the calculations. From (2.21), it can be noticed that we can
take V 0µ =V iµ = 0, i = d +1, ...,D with no loss of generality.

Substituting the current (2.21) in equation (2.5), perform-
ing two integrations by parts, integrating in the variables
dx0dk0dy0dDx‖dDy‖dDk‖ddx⊥ddy⊥ and using the defini-
tions of T and the operator ∇a⊥, both employed in equation
(2.14), we have

EIII(m,d) =

=−σσ0

d

∑
i, j=1

Z ddk⊥
(2π)d

(ik⊥)i V i j (ik⊥) j

k2
⊥+m2

exp
[
ik⊥ · (a⊥−A)

]
=−σσ0

d

∑
i, j=1

V i j
∇

i
a⊥∇

j
a⊥

Z ddk⊥
(2π)d

1
k2
⊥+m2

exp
[
ik⊥ · (a⊥−A)

]
. (2.22)

As before, we first consider the masless case and, next,
the massive field. For this model, this two-step analysis is
important in order to identify a freedom in the choice of V µν.

Once we do not take the test charge in the brane, that is,
a⊥ 6= A, and using Fourier representation for the Dirac delta
function, we can write

∇
2
a⊥

Z ddk⊥
(2π)d

1
k2
⊥

exp
[
ik⊥ · (a⊥−A)

]
=

−
Z ddk⊥

(2π)d exp
[
ik⊥ · (a⊥−A)

]
= δ

d(a⊥−A) = 0 . (2.23)

For the masless case, the energy (2.22) reads

EIII(m = 0,d) =

−σσ0

d

∑
i, j=1

V i j
∇

i
a⊥∇

j
a⊥

Z ddk⊥
(2π)d

1
k2
⊥

exp
[
ik⊥ · (a⊥−A)

]
+σσ0

1
d

(trV )
[

∇
2
a⊥

Z ddk⊥
(2π)d

1
k2
⊥

exp
[
ik⊥ · (a⊥−A)

]]
,

(2.24)

where we have introduced a vanishing term (the second one
in the right hand side), as stated in expression (2.23). In the
above equation, trV stands for the trace of tensor V .

Defining the traceless tensor

Di j = V i j − trV
d

δ
i j , (2.25)

the energy (2.24) can be rewritten in the form

EIII(m = 0,d) =

−σσ0

d

∑
i, j=1

Di j
∇

i
a⊥∇

j
a⊥

Z ddk⊥
(2π)d

1
k2
⊥

exp
[
ik⊥ · (a⊥−A)

]
.

(2.26)

If we compare Eq’s (2.7) and (2.8), we can obtain the in-
tegral which appears in the above equation and write the en-
ergy (2.26) in the form

EIII(m = 0,d) =− σσ0

(2π)d/2 2(d/2)−2
Γ
(
(d/2)−1

)
d

∑
i, j=1

Di j
∇

i
a⊥∇

j
a⊥|a⊥−A|2−d

=− σ0

πd/2 Γ
(
(d/2)+1

) 1
|a⊥−A|d

d

∑
i, j=1

(a⊥−A)i

|a⊥−A|
(σDi j)

(a⊥−A) j

|a⊥−A|
. (2.27)

The result (2.27) is the interaction energy between a point
charge and a four-pole distribution along a D-brane with
four-pole momentum desnsity given by σDi j. This point can
be made clearer if we consider a 3 + 1 space-time, which
corresponds to take D + d = 3. With this restriction d can
assume the values 1, 2 and 3, leading to the energies

EIII(m = 0,d = 1) = −σ0

2
1

|a⊥−A|
(a⊥−A)i

|a⊥−A|
(σDi j)

(a⊥−A) j

|a⊥−A|
,

EIII(m = 0,d = 2) = −σ0

π

1
|a⊥−A|2

(a⊥−A)i

|a⊥−A|
(σDi j)

(a⊥−A) j

|a⊥−A|
,

EIII(m = 0,d = 3) = −3σ0

4π

1
|a−A|3

(a−A)i

|a−A|
(σDi j)

(a−A) j

|a−A|
. (2.28)

The last equation (2.28) is the interaction energy between
a point charge placed at a and a point-like four-pole placed
at A with four pole momentum given by σDi j.

It is interesting to notice that the trace of the tensor V in

(2.21) is irrelevant for the energy (2.27). This situation is
different when we consider the field with mass, as it shall be
shown.

When m 6= 0, we can compare Eq’s (2.7) and (2.9) in order
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to obtain the integral of Eq. (2.22), which takes the form

EIII(m,d) =− σσ0

(2π)d/2 md−2
d

∑
i, j=1

V i j
∇

i
a⊥∇

j
a⊥[

(m|a⊥−A|)1−(d/2)K(d/2)−1(m|a⊥−A|)
]

=
σ0

(2π)d/2 md/2|a⊥−A|−d/2

d

∑
i, j=1

(σV i j)

[
δ

i jKd/2(m|a⊥−A|)

−m|a⊥−A| (a⊥−A)i

|a⊥−A|
(a⊥−A) j

|a⊥−A|
K(d/2)+1(m|a⊥−A|)

]
.

(2.29)

Expression (2.29) exhibits a dependence on the trace
tr(V ), which cannot be removed as before, in the masless
case. So, the four-pole tensor V cannot be defined as being
traceless for the massive field.

In order to compare the four-pole energies for the field
with and without mass and write a single expression for both
cases, let us proceed similarly to what we have done in the
masless case and add a vanishing term to the energy (2.29)
given by

∆EIII(m,d) =

= σσ0
trV
d

(
∇

2
a⊥−m2

)Z ddk⊥
(2π)d

1
k2
⊥+m2

exp
[
ik⊥ · (a⊥−A)

]
=− σσ0

(2π)d/2 md/2|a⊥−A|−d/2

d

∑
i, j=1

trV
d

δ
i j

[
δ

i jKd/2(m|a⊥−A|)

−m|a⊥−A| (a⊥−A)i

|a⊥−A|
(a⊥−A) j

|a⊥−A|
K(d/2)+1(m|a⊥−A|)

]
− σσ0

(2π)d/2 md trV
d

(m|a⊥−A|)1−(d/2)K(d/2)−1(m|a⊥−A|).

(2.30)

Using the Fourier representation for the Dirac delta func-
tion and the fact that a⊥ 6= A, one can show that the right-
hand side of the first line of Eq. (2.30) is equal to zero, so
∆EIII(m,d) = 0. Combining equations (2.29) and (2.30), we
get a new expression for the four-pole energy

EIII(m,d)→ EIII(m,d)+∆EIII(m,d)

=
σσ0

(2π)d/2 md/2|a⊥−A|−d/2

d

∑
i, j=1

[
V i j − trV

d
δ

i j

][
δ

i jKd/2(m|a⊥−A|)

−m|a⊥−A| (a⊥−A)i

|a⊥−A|
(a⊥−A) j

|a⊥−A|
K(d/2)+1(m|a⊥−A|)

]
− σσ0

(2π)d/2 md trV
d

(m|a⊥−A|)1−(d/2)K(d/2)−1(m|a⊥−A|) .

(2.31)

By using the definition of the traceless tensor (2.25), Eq.
(2.31) can be rewritten in the form

EIII(m,d) =− σ0

(2π)d/2 m1+(d/2)|a⊥−A|1−d/2[
tr(σV )

d
K(d/2)−1(m|a⊥−A|)

+
d

∑
i, j=1

(a⊥−A)i

|a⊥−A|
(σDi j)

(a⊥−A) j

|a⊥−A|
K(d/2)+1(m|a⊥−A|)

]
.

(2.32)

Result (2.32) is equivalent to (2.29) and gives the inter-
action energy, intermediated by the massive scalar field, be-
tween a point charge placed at a and an uniform distribution
of four-poles lying along a brane, placed at A, and with four
pole density σV . In the limit m → 0, Eq. (2.32) reduces to
(2.27). In (2.32) we have, explicitly, separated the contri-
bution to the energy due to the trace of the tensor V and a
contribution which does not come from the trace of V .

For d = 3, and considering a space-time with 3+1 dimen-
sions, we have a system composed by a point-like four-pole
and a test charge, which has the corresponding interaction
energy

EIII(m,d = 3) =−σ0

4π
m2 1

|a−A|
exp(−m|a−A|)[

tr(σV )
3

+
(a−A)i

|a−A|
(σDi j)

(a−A) j

|a−A|

×

(
1+

3
m|a−A|

+
3

m2|a−A|2

)]
. (2.33)

To conclude this section, we consider the stationary cur-
rent distribution in 3+1 dimensions given by

Jn(x) = σ
µ1µ2µ3...µn [∂n

µ1µ2µ3...µnδ
3(x−A)]+σ0δ

3(x−a),
(2.34)

that is, a point charge located at a and the derivative of ar-
bitrary order of a Dirac’s delta function concentrated at the
point A. The quantity σµ1µ2µ3...µn is a completely symmet-
ric tensor. For the sake of simplicity, we consider only the
four-dimensional case and point-like Dirac’s delta functions.

Replacing the current (2.34) in (2.5) and proceeding as
before, we obtain

En =−σ0

2
σ

µ1µ2µ3...µn∂
n
(a)µ1µ2µ3...µn

(
e−m|a−A|

4π|a−A|

)
, (2.35)

where ∂n
(a)µ1µ2µ3...µn

means the derivative with respect to the
a coordinates.

Considering the limit m → 0 and defining the vector r =
a−A we get

En =−σ0

8π
σ

µ1µ2µ3...µn∂
n
µ1µ2µ3...µn

1
r
. (2.36)

It can be easily verified that the expression above gives
the interaction between a point charge and an N-pole. For
instance, whenever n = 3, we have the interaction between
a point charge and a four-pole; for n = 4, the interaction be-
tween a point charge and an octupole, and so on.
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3. MAXWELL FIELD

In this section, we extend the results obteined for the scalar
field, in the previous section, for the electromagnecic field.
We always take models described by the lagrangian density

L =−1
4

FµνFµν− 1
2α

(∂µAµ)2 + JµAµ , (3.1)

where Aµ is the electromagnetic field, Fµν = ∂µAν − ∂νAµ is
the field strength and Jµ is a stationary external current, dif-
ferent for each model we consider. In the above equation α

is a gauge parameter.
Following similar steps which lead to equation (2.5), the

vacuum energy corresponding to the lagrangian (3.1) can be
writen in the form

E =
1

2T

Z Z
dd+D+1xdd+D+1x Jµ(x) ∆µν(x,y) Jν(y) , (3.2)

where ∆µν(x,y) is the photon propagator

∆µν(x,y) =

−
Z dd+D+1k

(2π)d+D+1
1
k2

[
ηµν− (1−α)

kµkν

k2

]
exp [−ik(x− y)] .

(3.3)

The first model we study is given by the current

Jµ
IV = σW µ

δ
d(x⊥−A)+σ0η

µ0
δ

d+D(x−a) , (3.4)

which is a generalization of the one specified by the current
(2.6). The quantity W µ is a (d + D + 1)-vector taken to be
constant and uniform in the reference frame we are perform-
ing the calculations. In order to ensure gauge invariance for
the last term in the right-hand side of the lagrangian (3.1), the
(d +D+1)-vector W µ must satisfy the condition W⊥ = 0.

Inserting (3.4) into (3.2), using the Fourier representa-
tion (3.3), performing, in the following order, the integrals
dx0dk0dy0dDx‖dDy‖dDk‖ddx⊥ddy⊥ and taking into account
that W⊥ = 0 we have

EIV (d) = σ0(σW0)
Z ddk⊥

(2π)d
1

k2
⊥

exp [ik⊥ · (a⊥−A)] . (3.5)

In reference [1], the above integral is calculated for any d 6=
2,

EIV (d)=
σ0(σW0)
(2π)d/2 Γ

(
(d/2)−1

)
2(d/2)−2|a⊥−A|2−d , d 6= 2 .

(3.6)
If we take W µ ∼ ηµ0, the result (3.6) becomes the interac-

tion energy between a point-like test charge placed at a and
a uniform charge distribution along a D-brane with charge
density σ and placed at A.

For d = 2, we insert a mass parameter in the propagator
(3.3) as a regulator parameter in order to identify infrared
divergences. This procedure leads to the expression

EIV (d = 2) = lim
m→0

σ0(σW0)
Z ddk⊥

(2π)d
1

k2
⊥+m2

exp [ik⊥ · (a⊥−A)]

= lim
m→0

σ0(σW0)
2π

K0(m|a⊥−A|)

→ −σ0(σW0)
2π

ln

(
|a⊥−A|

a0

)
, (3.7)

where we have proceeded similarly to what we have done in
Eq. (2.10).

The second model we study for the Maxwell field is given
by the current

Jµ
V = σW µV α

∂α

(
δ

d(x⊥−A)
)
+σ0η

µ0
δ

d+D(x−a) , (3.8)

where W µ and V µ are four-vectors defined in the same way
as in Eq’s (3.4) and (2.12), respectively.

Inserting the current (3.8) in the energy (3.2), using def-
inition (3.3) and performing similar steps which lead to the
result (2.15) from (2.5) we have

EV (d) =
σ0

(2π)d/2 Γ(d/2)2(d/2)−1

|a⊥−A|−d(−σW 0V) · (a⊥−A) . (3.9)

If we take W µ ∼ ηµ0, Eq. (3.9) can be interpreted as the
interaction energy between a point-like charge and a uniform
distribution of electric dipoles along a D-brane, with dipole
density given by −σV α. In order to make this fact clearer
let us take d = 3, W µ = ηµ0 and restrict ourselves to a 3 + 1
spacetime. In this case, we have a point-like dipole and the
energy (3.9) reads [9, 10]

EV (d = 3) =
σ0

4π

(−σV) · (a−A)
|a−A|3

. (3.10)

The third and last model we consider for the Maxwell field
is described by the current

Jµ
V I = σW µV αβ

∂α∂β

(
δ

d(x⊥−A)
)
+σ0η

µν
δ

d+D(x−a) ,
(3.11)

where V αβ is a tensor with the same features of the one used
in the current (2.21) and W µ is the same (d + D + 1)-vector
used in (3.4).

Inserting the current (3.11) in the expression (3.2) and
performing similar steps which lead to the result (2.27), we
have, for the electromagnetic field, the energy

EV I(d) =
σ0

πd/2 Γ
(
(d/2)+1

)
|a⊥−A|−d−2

d

∑
i, j=1

(a⊥−A)i(σW 0Di j)(a⊥−A) j, (3.12)

where we have used definition (2.25).
For W µ ∼ ηµ0, we can interpret Eq. (3.12) as the interac-

tion energy between a point-charge and an uniform four-pole
distribution along a D-brane, with four-pole density given by
σDi j. In 3 + 1 dimensions with W µ = ηµ0 the energy (3.12)
reads

EV I(d = 3) =
3σ0

4π
|a⊥−A|−5

d

∑
i, j=1

(a−A)i(σDi j)(a−A) j ,

(3.13)
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which is the interaction energy between a point-like four-
pole (σDi j) placed at A and a test charge σ0 placed at a [9,
10].

To conclude this section, we stress that we could obtain,
for the electromagnetic field, a result similar to the one pre-
sented in equation (2.36) for n-pole distributions.

4. CONCLUSIONS AND FINAL REMARKS

In this paper, we have carried out an investigation on the
role of external currents concentrated at specific regions of
space (D-dimensional branes) and coupled to bosonic fields,
specifically, the scalar and electromagnetic ones.

We have considered a D + d + 1 dimensional space-time
and three kinds of currents for each field. All currents are
composed by two parts where the second one describe the
presence of a stationary point-like test-charge used to in-
vestigate the force field produced by the former one. From
the results obtained for masless fields, we could notice that
the first term of each current describe the presence of sta-
tionary charges, dipoles or four-poles distributions along D-
dimensional branes.

As for the results for dipole-distributions (the second and
fifth models studied), we corrected a flaw in reference [1] on
the interpretation of the dipole-distribution sign described by
the currents.

We have shown that, for masless fields, the four-pole ten-

sor density corresponding to a uniform four-pole distribution
along a D-brane can be defined as being traceless in any di-
mension, once its trace does not contribute to the interaction
energy between a test charge and the corresponding four-pole
distribution.

For massive fields, we have shown that the trace of the
four-pole tensor density always contributes to the interac-
tion energy between a point-like test charge and the corre-
sponding four-pole distribution. This fact can be seen from
Eq. (2.32), where we have the interaction energy between a
point-like test-charge and a four-pole distribution mediated
by the massive scalar field. In this result, we have separated
the contributions to the energy due to the traceless part of
the four-pole density tensor, σD, and the contribution due
strictly to the trace of this tensor, σ trD.

Finally, we have obtained that, if we consider a mass-
less scalar field in four-dimensional space-time in interaction
with a stationary current composed by a point-like Dirac’s
delta function and the n-th derivative of a point-like Dirac’s
delta function, the result is the interaction energy between a
point charge and a point-like N-pole. We stress that an iden-
tical result can be obtained also in the electromagnetic case.
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