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Computation of. the one-loop vacuum energy is attempted for closed bosonic string compactified on 
various tori. Modular invariance of the one-loop vacuum energy is shown. The divergent tachyon 
contribution forces us to employ a subtraction prescription. For one-dimensional torus, the affine Kac­
Moody algebra for 5U(2) x 5U(2) is realized at the absolute minimum of the vacuum energy. For 
general r-dimensional torus, the algebra for [5 U (2) x 5 U (2) 1 r is found to be an unstable saddle point. A 
detailed study of r=2 case shows that 5U(3) x 5U(3) has the lowest vacuum energy. 

§ 1. Introduction 

At present string theories are best candidates for a unified theory including gravity. 
Since string theories can exist only in specific dimensions of space-time,I),2) 
compactification of extra dimensions is of great interest. The string compactification is 
severely constrained by the requirement of no anomaly for the reparametrization invari­
ance in the string world sheet. Generators of infinitesimal reparametrizations satisfy the 
Virasoro algebra.3) The central charge of the Virasoro algebra should be unchanged 
under compactification in order to avoid quantum anomaly for the infinitesimal repa­
rametrizations. Moreover the compactified string must be invariant under large repa­
rametrizations which cannot be reached continuously from the identity. This requirement 
manifests itself as the modular invariance in one-loop amplitudes.4

),5) 

Among many possible manifolds, compactifications on torus6
),7) satisfy at least the 

consistency for the infinitesimal reparametrization invariance. This is because the com­
mutation relations among string variables are a local property and unchanged by the 
compactification on torus (flat space). Orientable closed strings compactified on tori 
corresponding to special lattices realize an extremely interesting structure -- the affine 
Kac-Moody algebras: They give rise to solitons which become gauge bosons to form a 
semi-simple group together with the Kaluza-Klein U(l) gauge bosons.8

),9) In particular, 
tori associated with self-dual lattices are used to construct the the heterotic string. IO) 

The true vacuum state in quantum field theory is given by the configuration with the 
lowest vacuum energy. The purpose of this paper is to compute and to compare the 
one-loop vacuum energy of string compactified on various tori. Superstrings give vanish­
ing vacuum energy for torus compactifications if supersymmetry is intact. ll ),I2) Hence we 
take the bosonic orientable closed string in 26 dimensions and calculate the vacuum 
energy density in the (26- r) dimensions when r dimensions are compactified on various 
tori. We shall see that there are two classes of r-dimensionallattices which give consis­
tent torus compactifications. The first class is based on our intuitive concept of torus 
compactification, and allows tori with arbitrary sizes and angles. We shall demonstrate 
the modular invariance explicitly for this class of compactifications. The second class 
consists of only special lattices corresponding to the affine Kac-Moody algebras.9),I3) One 
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Vacuum Energies of String Compactified on Torus 693 

should note that the first class allows sizes and angles of the lattice to be changed 
continuously, whereas only isolated values are admitted for the second class. 

In closed string one-loop amplitudes, integration regions of string parameters related 
by the modular transformation give equivalent contributions of a single string 
configuration which must not be double-counted.4

),5) After being restricted to one integra­
tion region such as the fundamental region, one-loop amplitudes with external particles 
have no divergences except those interpretable as self-energy insertions in external 
lines.4

),14) The vacuum energy, however, is divergent due to tachyons in the loop even 
after restricted to the fundamental region. Having no new ideas to solve the tachyon 
problem properly, we shall adopt a simple prescription of subtracting contributions of the 
tachyon in the fundamental region. 

With this tentative prescription for the vacuum energy subtraction, we find that the 
affine Kac-Moody algegra for SU(2) X SU('2) is realized at the minimum of the vacuum 
energy when one dimension is compactified. If r dimensions are compactified on torus of 
the first class, we find an unstable saddle point of vacuum energy at the symmetric point 
where the affine Kac-Moody algebra for [SU(2) X SU(2)Y is realized. A detailed analy­
sis for the r=2 case shows that the lattice realizing the affine Kac-Moody algebra for 
SU(3) X SU(3) has the lowest vacuum energy. 

In the next section string compactification on one-dimensional torus is summarized 
and its vacuum energy is derived. In § 3, compactification on various r-dimensional tori 
is treated and the two-dimensional case is analyzed in detail. < Useful formulas for 
numerical analysis of the vacuum energy is summarized in the Appendix. 

§ 2. Compactification on one-dimensional torus 

Although the compactification on one-dimensional torus is well_known,6),7),lO) we shall 
briefly summarize the formalism. When we identify points which differ by 2J[R in a 
spatial direction, the corresponding momenta< become discrete 

p=m/R, m=integer, (2·1) 

because of [x, p] = i. The boundary condition for an orientable closed string*) 

X(r, 6=J[)=X(r, 6=0) mod. 2J[R, (2· 2) 

admits winding numbers L in units of R 

L=IR, l=integer. (2· 3) 

Hence an additional term appears in the normal mode expansion in the compactified 
direction 

X( r, 6) =x +2a' pr+2L6 

(2·4) 

The orthonormal gauge conditions in the light-cone gauge X+(r, 6)=x++2a'P+r 

*) The winding numbers for the nonorientable closed string may be characterized by /=0 or 1 mod. 2. Open 
strings do not possess winding numbers and have tendency against compactification.ll ) 
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694 N. Sakai and I Senda 

(ax P/aa)2+(ax P/ar)2=0, (2'5) 
-

(aX
p 
/aa)' (axp/ar) =0, (2-6) 

can be integrated over to give the mass-shell condition and a constraint 

, R2 
=N + N -2+ 2~2 m2 + 2a' 1

2
, (2'7) 

N-N=P'L=ml, (2'8) 

where the oscillator sum N ,N includes both compactified and uncompactified transverse 
dimensions 

(2'9) 

The c-number ambiguity due to operator ordering in Eq. (2'7) is fixed by requiring the 
closure of the Lorentz algebra in uncompactified dimensions. Constraint (2'8) assures 
the independence on the choice of the origin in the coordinate. 10

) There are two massless 
vector particles a'::'Jil-llo> and a-la'::'IIO> corresponding to U(l) gauge bosons due to the 
Kaluza-Klein mechanism. Tachyons occur only when N=N=O (and consequently m=O 
or 1=0). Among tori of various sizes, only one special torus with R=R realizes the 
affine Kac-Moody algebra, and gives rise to massless solitons which form SU(2) X SU(2) 
gauge bosons together with the two U(l) gauge bosons. 

The vacuum energy density in the remaining flat 25-dimensional space is denoted as 
V25 • Although we shall later find necessary modifications for the correct string vacuum 
energy, let us start to write V25 as a sum of the vacuum energies of infinitely many modes 
of string (trace of logarithm of the inverse propagator) 

(2·10) 

where 5!1 is the mass operator (2'7) and the trace represents the integral over 25-dimen­
sional momentum P and disorete sum over modes including discrete momenta and winding 
numbers.*) The constraint (2'8) can be implemented by**) 

o - -_1_17C d ' il1'(N-N-ml) 
N,N+ml- 27f -7C a e . (2'11) 

Summation over oscillator modes Nand N in Eq. (2·9) can be done by introducing2
) 

(2'12) 

*) We suppose that tree level vacuum energy dependent on R is absent. There have been attempts to 
compute th~ "shift" on the tachyon field. IS

} 

**) The variable 15' is related to the string coordinate 15 in Eq. (2'4) as 15'=215-7[. 
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Vacuum Energies of String Compacti/ied on Torus 695 

Similarly to the other one-loop amplitudes with external particles,6),7) the vacuum energy 
can be expressed' as an integral with the "correction factor" Fl which arises from the 
replacement of momentum integration by a sum over discrete momenta and winding 
numbers 

(2-13) 

( 
1 

)
1/2 = 

F - I '" -il5'ml (a 2/2)m2+(1/2a 2)l2 
1- n- £... ex, 

X m,l=-= 
(2-14) 

a=W/R. (2-15) 

Changing x, (5' to a complex variable r is more convenient to examine the modular 
invariance 

r= rl+ir2, 

~ { i7fr ( I )2 i7fr* ( I )2} FI =y 27fr2~eXp -2- ma-a --2- ma+a 

where 83 is the Jacobi theta function. 16
) 

Modular transformations SL(2, Z) are given by 

ar+b 
r~cr+d ' ad-bc=1 

with a, b, c, d integers and are generated byl6) 

r~r+1, 

r~-l/r. 

(2-16) 

(2-17) 

(2-18) 

(2-19) 

(2-20) 

(2-21) 

The vacuum energy density (2-17) is trivially invariant under (2-20), Invariance under 
the second transformation (2-21) can be shown by applying-jacobi's imaginary transfor­
mation l6

) once for the sum over I and once over m 

(2-22) 

or by the method of Fourier transform7
) whose generalization will be given in the next 

section for the general case of r-dimensional compactification. The original integration 
region 

(2-23) 

or equivalently 
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696 N. Sakai and 1. Senda 

ImT 
't T 

ReT 
--1 ..... !2.~-~---:V....,.,2=-> 

Fig. 1. The integration region in the· r-plane. The 
shaded area is the fundmental region of the 
modular group. 

1 1 --<r<-2 - 1- 2 ' rz>O, 

z 

-3 

Fig. 2. The integration region in the z-plane. The 
shaded area is the fundamental region. 

(2·24) 

is divided into infinitely many equivalent regions which can be mapped each other by the 
modular transformations (2·19) as illustrated in Figs. 1 and 2. In order to avoid multiple 
counting of the same string configurations we have to restrict the integral to one of these 
equivalent regions, usually taken as the fundamental region4

) 

1 1 --<r<-2 - 1- 2 ' 

or equivalently 

rz>j1- r/ , (2·25) 

(2·26) 

Let us stress that dividing out the infinite volume (Z x Z) of the modular invariance group 
is an unavoidable characteristic feature of string theories. Asa consequence the correct 
vacuum energy of string is different from a naive sum of the vacuum energies of each 
individual mode as we originally started in Eq. (2·10). In fact after being restricted to the 
fundamental region, the string vacuum energy is free from ultraviolet divergences 

. (singularity near x = 1), in contrast to the case of the naive sum of individual modes 
(2·10). 

Even after being restricted to the fundamental region, the vacuum energy is divergent 
due to tachyons circulating in the loop, This is presumably due to either i) inappropriate 
choice of vacuum for the bosonic string, or ii) inconsistency of the bosonic string itself. 
At the present level of understanding of .string theories, we shall tentatively employ a 
simple prescription: 

(2·27) 
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Vacuum Energies of String Compactified on Torus 697 
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Fig. 3. The one· loop vacuum energy as a function of 

the parameter a=/a'/R when one dimension is 
compactified on torus. It is invariant under the 
exchange a<------>a- 1

• The asymptotic behavior 
for a~O is given by Eq. (2'31). 

which amounts to subtracting tachyon 
contributions (N=N=O) in the fundamen­
tal region.*) The corresponding subtrac­
tion procedure in integration regions other 
than the fundamental region can be found 
by applying the modular transformation. 
It turns out that the prescription becomes a 
subtraction of a singularity at x = 1 
(ultraviolet divergence) in other regions. 
We finally arrive at the finite expression 
for the vacuum energy density 

-1 
V25= 4Jr(2Jra')25/2 

( (1 )-27
/2 

X JFdxdo' In-X . 

00 x ~ e-irJ'mlx a2m2/2+l2/2a2 , 
m,l=-oo 

(2-28) 

where F denotes the fundamental region (2-26). 
The vacuum energy is clearly invariantll) under a~ a-I, namely 

V25 (R) = V25(a' / R) . 

Therefore R = W is a stationary point 

dV25/dR=0 at R=W, 

(2- 29) 

(2-30) 

where the affine Kac-Moody algebra for SU(2) x SU(2) is realized. In the limit R~oo, 
the vacuum energy is found to be proportional to 2JrR (the volume of the compactified 
space) and the proportionality constant A (vacuum energy density in the 26-dimensional 
fiat space) is found to be positive 

V25/2 JrR---> constant = A as R~oo, 

A= 4Jr(;~')I31.dxdo'(ln ~ rI

\-3(lf(xe
irJ'W- 1) . 

::::::;2.10x10-8 -(2Jra')-I3. 

(2-31) 

(2-32) 

Numerical evaluation of the second derivative d 2 V25/ dR2 at R = W shows that the 
extrema is a local minimum. We have numerically evaluated V25(R) as a function of R 

and found that R=W is the absolute minimum as shown in Fig. 3. Therefore we 
conclude that the affine Kac-Moody algebra for SU(2) x SU(2) is realized as the absolute 
minimum of the vacuum energy when one dimension is compactified on torus. 

*) Unfortunately this subtraction is not the same as the subtraction of the vacuum energy of the 
uncompactified string, since tachyons with nonzero discrete momenta or winding numbers give R·dependent 
divergent contributions. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/75/3/692/1916343 by guest on 20 August 2022



698 N. Sakai and I Senda 

§ 3_ Compactification of r dimensions 

Similarly to the one-dimensional torus, compactification on r-dimensional torus intro­
duces r-dimensional discrete momenta p and winding number vector L into the normal 
mode expansion 

X( r, a) =x+2a' pr+2La 

(3-1) 

It is sometimes more convenient to use right- and left-moving decomposition of momentum 
and winding number 

WR=j2a'p/2-L/j2a' , 

WL=j2a'p/2+L/j2a' , 

X( r, a) =x+j2a'( r-a) WR+M( r+a)WL + .... (3· 2) 

Since the central charge of the Virasoro algebra is unchanged, the torus compactification 
satisfies invariance under infinitesimal reparametrizations. Constraint (2 -8), which 
assures the independence on the choice of a-coordinate origin, becomes 

(3 -3) 

Consistent compactification requires the right-hand side of (3- 3) to be integers. On~ 

possibility is to consider an arbitrary nonsingular lattice specified by basis vectors Ei U 
= 1, "', r) and identify points in real space x which differ by integer multiples of 27fR E i. 
Winding number vectors L are then given by 

. L=RL;,liEi , li = integer . (3-4) , 

Discrete momenta are given by introducing inverse lattice basis vectors ei U=l, "', r) 

mi = integer. 

Then constraint (3-3) becomes 

N-N="'E.mdi. 
i 

The mass operator in Eq. (2-7) becomes 

j}i=a'(mass)2/2=N +N -2+2a'( ~ r + 2~'V 

=N+N-2+ 21~(migijmj+li9i/O, 
'.J 

(3-5) 

(3-6) 

(3-7) 

(3- 8) 
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Vacuum Energies of String Compactified on Torus 699 

where gij is the metric of the lattice defined by the basis vectors ei 

(3· 9) 

One should note that sizes and angles of the lattice are arbitrary and can be changed 
continuously for this class of compactifications. It has been noted previously that this 
class of compactification cannot produce affine Kac-Moody algebras of simple groups 
except the 5U(2) case in the previous section.10),lS) Let us examine in detail possible 
additional massless vector bosons besides the usual Kaluza-Klein U(l) gauge bosons in 
general r-dimensional case. The mass operator (3·8) shows that N + N::::;;l is required 
for massless particles with nontrivial winding numbers and/ or discrete momenta. Since 
N = N = ° gives tachyons, we only need to consider N = 1, N = ° or oN = 0, N = 1 cases. 
Defining 

v=Rp=~miei , 
i 

V=L/ R=~liEi, 
i 

massless condition and constraint (3'7) becomes 

v' V=±l, 

which are equivalent to 

v=±V, 

(3·10) 

(3·11) 

(3·12) 

Since the 'vectors v and V are on two lattices defined by ei and Ei which are inverse of 
each other, their magnitude can be equal to unity, if and only if two lattices are the same 
and (lJ and (mi) are unit vectors 

(li), (mJ =one of (1,0, ···,0), ... , (0, ···,0,1) . (3 '13) 

The resulting configuration is nothing but a direct product of r-copies of the one­
dimensional torus compactification at the symmectric point R = R. Hence we find that 
the first class of r-dimensional torus compactification can give only the affine Kac-Moody 
algebra*) of [5U(2) x 5U(2)Y at the symmetric point gij=gi/= Oij. 

As the second class of compactifications which make the right-hand side of (3·3) 
integers, we can take the string compactifications for the affine Kac-Moody algebras.S),9),13) 
It was explicitly constructed in Ref. 13) as 

(3·14) 

where PL and PR run over root lattice AR of a simply-laced group G9
) and wo are minimal 

weights of distinct irreducible representations of the center of G. This class of 
compactification admits only particular lattices which cannot be changed continuously.**) 

*) It is of course possible to have an incomplete realization, [5U(2) x 5U(2)]' 0:;;; l:;;; r, if only lout of r basis 
vectors e; are of unit length and orthogonal to each other and to all other basis vectors. 

**) A direct product of two classes of compactifications is of course possible. 
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700 N. Sakai and L Senda 

Self-dual lattices, which exist in 8· n dimensions, are most special and even allow different 
groups for left- and right-movers (PRE'A R, PLE'AR, AR::\;:AR).13) This fact enabled the 
construction of the heterotic string. 10

) 

The one-loop vacuum energy density in 26- r dimensions can easily be obtained for 
the first class of r-dimensional torus, by generalizing Eq. (2 ·13) 

V26-r 4n(2n~'~(26-r)/211 dx 1: da'( In ~ r1
\-3If(xe i <1') 1-48

• Fr , (3·15) 

(3·16) 

Changing x,a' to r in Eq. (2·16), we obtain 

V - - n rd 2 (2 )-14 41r'2If( 21ri')1-48 F 26-r- (2na')(26 r)/2 ) j r nr2 e e . r, (3·17) 

Fr( r) = (2nr2) r/2 ~ exp( - nMTAM) , 
mi,li 

(3 ·18) 

where M is a 2r component column vector and A is a 2r by 2r matrix 

(3 ·19) 

(3·20) 

The first modular transformation (2·20) is trivially satisfied. To show invariance under 
the second modular transformation (2·21), we ~se a generalization of the Fourier trans­
form method in Ref. 7). Let us consider an auxiliary expression 

Fr( r ; x) = (2nr2)r'2~exp{ - n(M + x) TA(M + x)} , 
M 

(3·21) 

which is periodic in Xi, i=l, ... , 2r with period 1. Hence it can be expanded in a Fourier 
series 

detA=lrI2r. (3·22) 

Putting x = 0, we find the modular invariance of the correction factor 

Fr(r)=Fr(-I!r) . (3·23) 

Since other factors together with the integration measure in Eq. (3·17) is modular invar­
iant,2) V26-r is invariant under (2·21). Even after restricted to the fundamental region, 
the vacuum energy density V26- r is still divergent because of tachyon contributions, 
similarly to the one-dimensional case. Applying the same subtraction prescription (2·27) 
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Vacuum Energies of String Compactified on Torus . 701 

to this case, we arrive at the finite expression 

Vz6- r 4X(2x~'5(Z6 r)/zLdxdO'(ln ~ rI4x-3(lf(xeiO"')1-48-1). Fr. (3·24) 

For the second class corresponding to the root lattice AR of a simply-laced group C, 
the vacuum energy density is given by the same expression as (3 ·15) or (3 ·17) except that 
the correction factor Fr is replaced by 

(3·25) 

where ~' is the finite sum over minimal weights Wo of all distinct irreducible representa­
tions of the center of C.13) The modular invariance of the correction factor F/ was 
shown previously.13).18) Also for this case, we choose the fundamental region as the integra­
tion region and apply the same subtraction (2· 27) to remove divergent tachyon contribu­
tions. 

The vacuum energy density for the first class tori given in Eqs. (3·24) and (3·16) is 
clearly invariant under the interchange 

(3·26) 

Hence the symmetric point gij=Oij is an extremum of the vacuum energy 

(3·27) 

At this extremum the affine Kac-Moody algebra for [SU(2) X 5U(2)Y is realized. From 
the symmetry of integrand (3·16) at the symmetric point gij=Oij, we find that only 
diagonal elements of second derivative matrix are nonvanishing 

Table 1. The nonvanishing second derivatives (3'2S) 
at the symmetric point g ij = O;j of the first class 
lattice when r dimensions are compactified. All 
quantities are in units of (27ra')-(26- rl/2. 

r 02 V26-r/ogr, 02 V26- r/Ogr2 

2 1.97X 10-7 -2.05X1O-8 

3 5.55X 10-7 -5.93XI0-8 

4 1.61 X 10-6 -1.71 X 10-7 

5 4.66X1O-6 -4.93xI0-7 

6 1.35 X 10-5 -1.42x 10-6 

7 3.90X 10-5 -4.10X1O-6 

S 1.13X 10-' -l.1SXI0-5 

9 3.26X 10-' -3.40X 10-5 

10 9.43 X 10-' -9.79X1O-5 

11 2.73X 10-3 -2.S2X1O-' 
12 7.SSX 10-3 -S.09X1O-' 
13 2.2SX 10-2 -2.32X 10-3 

14 6.57X 10-2 -6.66X 10-3 

15 1.90 X 10-1 -1.91 X 10-2 

16 5.47 x 10-1 -5.47XI0-2 

az VZ6-r/agrl = ... = az Vz6-r/ag;'r3r0 , 

otherwise. 
(3·28) 

We have numerically computed the second 
derivatives as shown in Table I and found 
that the extremum is unstable. On the 
other hand we find that Vz6-r is propor­
tional to the volume of the compactified 
space in the limit of large size lattices: gi/ 
=)..gi/, )..-)000 with gij fixed 

VZ6- r----* {2xW) r detg;:/· A , 
(3·29) 

where the proportionality constant A is 
positive and is given by Eq. (2·32). Com­
bined with symmetry (3·26), we see that 
the effective potential increases inde-
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2TTrn= 
Ci1JSffi9 

Fig. 4. The parametrization of Eq. (3'30). 

finitely for very large and very small 
size lattices. Hence we expect that the 
most favorable torus compactification in 
the first class should occur at a certain 

lattice whose size is of order U. 
To study the stability and the global 

behavior in detail, we take the r = 2 case 

~ 
IV 

~, -, 

3 

N 2 
x ..... 
o.!.,. 

1 0 TT/4 TT/2 3TT/4 TT 

e( rad) 

Fig. 5. The one-loop vacuum energy as a function of 
the angle e at a,=az=l when two dimensions 
are compactified. 

and evaluated the vacuum energy density V24 numerically. A convenient parametrization 
for r = 2 is given by ai, a2 and e as 

gll = al2 I sine, 

g22= al I sine, 

(3·30) 

This lattice corresponds, in physical space X ( r, (J), to a periodicity unit of the parallelo­

gram whose sides have length 2lfUI (a;/sine) and make an angle e as shown in Fig. 4. 
Symmetry (3·26) of the vacuum energy density becomes in this parametrization 

ai~ai-l and e~lf-e. (3·31) 

From the symmetry property of the integrand we find that the vacuum energy is stationary 
for two directions at and a2 at at = a2 = 1 for any e 

(3·32) 

and moreover 

(3· 33) 

By evaluating the vacuum energy density numerically along this symmetric line, it is 
found that V24 (at = a2 = 1, e) has a local maximum at e = lfl 2 and a minimum at eo near 
lfl3 (and also at If- eo) as shown in Fig. 5. Useful formulas for the numerical evaluation 
is summarized in the Appendix. We also find that the 2 x 2 second derivative matrix 
o2V241oaiOaj is positive at at=a2=1 for not too small e. Thus we obtain that the 
extremum corresponding to the affine Lie algebra for [SU(2) x SU(2))2 is an unstable 
saddle point, whereas the point e = (fo, ai = a2 = 1 is at least a local minimum 

(3·34) 
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Vacuum Energies of String Compactified on Torus 703 

By evaluating the vacuum energy density for intermediate values of aI, a2 and e numer­
ically, we find that the local minimum is in fact a global mimimum. One should note that 
this minimum configuration does not realize any affine Kac-Moody algebras, even though 
it resembles the lattice for the SU(3) x SU(3) affine Kac-Moody algebra. In fact we have 
seen already that the first class compactification can give massless solitons only for 
[SU(2) x SU(2) r or SU(2) X SU(2). 

The only remaining consistent compactification for r = 2 is the case of the affine 
Kac-Moody algebra for SU(3) X SU(3). The vacuum energy density in this case is given 
by 

(3· 35) 

'" 
F'2=2JfT2 ~ e2 1<i!f).1jJ, 

nRi,nLf= -co 

1jJ = 1 + e i 1<j,(2/3+2nRl)-,*(2/3+2nLl)} + e i 1<{,(2/3+2nR2)-,*(2/3+nL2)} • (3·36) 

'Ve have evaluated the vacuum energy density numerically 

(3· 37) 

and found that it is lower than the minimum of the first class (3·34). It is intriguing that 
the higher symmetry configuration realizing the affine Kac-Moody algebra has the lower 
vacuum energy. 

In conclusion, our result so far seems to suggest that the vacuum energy for torus 
compacifications favors higher symmetry configurations and hence the affine Kac-Moody 
algebras tend to be realized. On the other hand, we should have in mind that the more 
satisfactory resolution of the tachyon problem in the bosonic string theory has to be found 
before the choice and stability of the string vacuum configuration is really settled. This 
question may be more properly answered by finding the effective action or equations of 
motion of string theories. 
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Appendix 

Here we summarize useful formulas for numerical evaluation of the one-loop vacuum 
energy integral (3·24). As we mentioned in the text, we must perfo~m this integral in the 
fundamental region. Let us use x and (/ as integration variables. Then the integral 
becomes 

1 l e-2>r 11< l e
-.f3>r (I- U

(X) 11< ) dxdo' = dx do' + dx do' + do', 
F 0 -1< e-2 >r -1< U(x) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/75/3/692/1916343 by guest on 20 August 2022



704 N. Sakai and L Senda 

(A·1) 

In evaluating this integral, we integrate over (]' first. To do this we must know the (]' -
dependence of the mode sum part (If(xe i<1') 1-48 -1) . We can see easily that this mode sum 
part depends on (]' only in the form of cosine, and we can write 

(A·2) 

where On(X) is a polynomial of x and its lowest power is n except Oo(x). Since we have 
subtracted the tachyon contribution as in Eq. (2·27), Oo(x) contains only XZ or higher 
powers of x. 

After integration over (]', the integral becomes 

Vz6- r= _-.L(2JrG')-(Z6-r)/z{2 ~i~'=O[1(1)(14_..1:.. M)+ 1(Z)(14-..1:.. M)] . 
4Jr . (m,l,) 2 ' 2 ' 

(A·3) 

j<Z)(a, b) =l
e

-.f3n dxx b,Z- 3(lnl )-a[(Jr-8(x)) Oo(x) - ~ sin(n8(x)) On(X)], 
e-2n X n>o n 

j<3)(I~mJil, a, b) = l e

-

2n 

dxx b,Z- 3(ln ~ ra 
JrOI~m'l'I(X) , 

j<4)(I~mJil, a, b) = l
e

-.f3n dxx b,Z-3(lnl )-a 
i e-2lT X 

Explicit forms of On(X) are as follows: 

Oo(x) = 576x z+ 104976x4+ O(x 6
) , 

Ol(X) =48x + 15552x3+ O(x 5
) , 

Oz(x) =648x z+ 153600x 4 + O(x6) , 

03(X) =6400x 3+ O(x 5
) , 

04(X) =51300x 4 + O(x6) . 

(A·4) 

, (A·5) 

We were not able to perform the integral analytically, but evaluated it numerically. 
Because we restricted the integration region to the fundamental region, x is very small 
( ~ 10-3

) and a power series expansion in x converges rapidly. Hence it is sufficient to use 
first few terms in 0 n (x ) . 
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The vacuum energy for the SU(3)X SU(3) case (3'35) and (3·36) involves an 
integral which can be treated similarly. 
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