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Due to its construction, the nonperturbative renormalization group (RG) evolution of the con-
stant, field-independent term (which is constant with respect to field variations but depends on the
RG scale k) requires special care within the Functional Renormalization Group (FRG) approach.
In several instances, the constant term of the potential has no physical meaning. However, there
are special cases where it receives important applications. In low dimensions (d = 1), in a quantum
mechanical model, this term is associated with the ground-state energy of the anharmonic oscillator.
In higher dimensions (d = 4), it is identical to the Λ term of the Einstein equations and it plays
a role in cosmic inflation. Thus, in statistical field theory, in flat space, the constant term could
be associated with the free energy, while in curved space, it could be naturally associated with
the cosmological constant. It is known that one has to use a subtraction method for the quantum
anharmonic oscillator in d = 1 to remove the k2 term that appears in the RG flow in its high-energy
(UV) limit in order to recover the correct results for the ground-state energy. The subtraction is
needed because the Gaussian fixed point is missing in the RG flow once the constant term is in-
cluded. However, if the Gaussian fixed point is there, no further subtraction is required. Here, we
propose a subtraction method for k4 and k2 terms of the UV scaling of the RG equations for d = 4
dimensions if the Gaussian fixed point is missing in the RG flow with the constant term. Finally,
comments on the application of our results to cosmological models are provided.
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I. INTRODUCTION

The quantum field theory of gravity, i.e., Quantum Einstein Gravity (QEG) is perturbatively non-renormalizable. It
requires infinitely many unknown parameters to be set by experiment. A possible solution to perform renormalization
is the use of a nonperturbative treatment. Indeed, nonperturbative renormalizability, which is also referred to as
asymptotic safety, provides us with a nontrivial high energy, i.e., ultraviolet (UV) fixed point of the renormalization
group (RG) flow. The RG flow leads to a finite number of UV-attractive couplings; so, it is sufficient to perform only
a finite number of measurements. In other words, it controls the UV behavior of the dimensionless couplings. They
do not need to be small or tend to zero in the UV limit but tend to finite values at the nontrivial UV fixed point.
It was shown in [1] that for the simplest truncation of QEG which is the Einstein–Hilbert action, such a nontrivial
fixed point is indeed present. Up to the present, many different works have already confirmed that the asymptotic
safety scenario is possible. For a recent review, we refer to [2]. For applications to cosmology, one consults Ref. [3, 4],
and for applications to black-hole physics and instructive explicit functional renormalization-group computations, we
refer to [5–16].

Asymptotic safety is the concept that a theory is UV completed by an interacting theory which, in the RG formalism,
is described by a nontrivial (non-Gaussian) UV fixed point and includes the assumption that the RG formalism
can be used to solve the so-called cosmological constant problem, too. One can use different methods to test this
assumption. The non-perturbative RG is a possible method, but there are also others, including lattice and Monte
Carlo methods. In general, the nonperturbative RG method [17–21] has been used successfully in many areas of
physics from statistical mechanics to high energy physics [22–30] and in cosmology [31–38] with particular attention
to the cosmological constant problem [39–57]. It is obvious that the vacuum energy density induced by the quantum
fluctuations would add to the cosmological constant (see Ref. [58, 59]). However, the calculated vacuum energy density
is larger by many orders of magnitude than the observed cosmological constant; this is the essence of the cosmological
constant problem [60, 61]. Also, it is well known that the bare values of a physical theory are connected to the low-
energy phenomenology by RG transformations [62–67]. So, if one could establish a connection of the bare value of the
cosmological constant to its low-energy equivalent by an RG method, then one could possibly solve the problem: The
bare value of the cosmological constant carries no physical meaning and is treated as a running parameter. Indeed, in
principle, RG running can be used to connect its UV value to the observed low energy, i.e., infrared (IR) one. Thus, in
the functional renormalization group (FRG) treatment of gravity, one sees that the cosmological constant corresponds
to a relevant direction. It means, there is no cosmological constant problem in the nonperturbative treatment of
gravity; it is a free parameter to be fixed by observations. However, let us note that one has to distinguish between
the RG scale k and the observational scale, which we denote as p. One should compute the physical limit k → 0 by the
RG method first and then compute observables using the full quantum effective action. Unfortunately, this is not yet
possible in reasonable approximations, so, one has a qualitative understanding of the implications of asymptotically
safe gravity, assuming that the artificial flow with k is a good approximation to the physical flow with respect to
the physical momentum p, which one can extract from the effective action in the limit k → 0. The flow generated
by the FRG equation can be analysed in regard to the question of whether it allows trajectories that are compatible
with the observational constraints on the parameters of the action, since it is related to the k-flow and not to the
p-flow. In principle, the effective action, in the limit k → 0, has infinitely many parameters, but only N of these
parameters (those associated with the N relevant directions of the non-Gaussian UV fixed point) must be fixed using
N experimental inputs.

The RG running could be associated with the temporal evolution of the Universe according to the identification
k ∝ 1/H(t) where H(t) is the time-dependent Hubble-parameter, according to an idea promoted in Ref. [4]. Thus,
one could treat the field independent constant, i.e., the Λ term in Einstein’s equations, as a running parameter which
varies over the temporal evolution of the Universe. If there is no other scalar field in the theory, the cosmological
constant must play an important role in the mechanism of cosmic inflation, too. So, its value must be fixed to be
large at a sub-Planckian scales. Thus, renormalization conditions must be chosen very accurately in order to solve the
corresponding hierarchy problem. In other words, the running cosmological constant has to be scaled down from high
to low energies; this cannot be done straightforwardly in the framework of conventional perturbative renormalization.
So, again, a nonperturbative treatment is needed. As an example, a nonperturbative approach has been used in [56]
to study the RG evolution in the presence of compact extra dimensions. As a consequence, the studied parameters
can be substantially reduced to be comparable with observational values. So, if there is a single scalar in the theory,
then one would need to adjust the running of the cosmological constant to accommodate both inflation and late-time
dark energy. However, FRG generates infinitely many operators, so that together with the cosmological constant the
theory is equipped with an additional scalar degree of freedom (the one of Starobinsky inflation) that can take care
of the inflationary era. This has been studied extensively in the literature, see for instance [68, 69].

Therefore, the use of the FRG method and asymptotic safety can solve several important problems of cosmology
and quantum gravity. Nevertheless, the FRG approach has its own drawbacks; the evolution of the constant (i.e.,
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field-independent) term could be problematic due to the construction of the method. In particular, divergent terms
could appear in the RG flow in its UV limit. These could represent non-physical behaviour. It can be quite a subtle
problem to analyze the renormalization of the field-independent term, because of the conditions imposed canonically
on the regulator function in the FRG equation (Wetterich equation) [19, 20, 24]. These canonically imposed conditions
imply that the solution of the FRG equation reproduces the bare action in the UV only up to a field-independent,
but k-dependent term; the latter, in addition, could be infinite. Hence, the analysis becomes subtle. Yet, physical
conditions, to be imposed on the RG evolution of the constant term due to consistency considerations, lead to
subtracted RG equations whose solution fulfills all physical boundary conditions in IR and UV limits.

Indeed, the idea to remove these UV divergent terms of the RG evolution of the field-independent term in the
framework of the FRG method is well known in quantum-mechanical models, and in statistical mechanics. For
example, as suggested by quantum mechanical calculations [see Eq. (37) of Ref. [24] and additional discussions in
Refs. [25, 26]], the application of a suitable subtraction reduces the quadratic (k2) divergence of the RG evolution
in the UV limit and produces correct results for the free energy in the IR limit. However, it is very important to
observe that the non-physical behaviour, i.e., the k2 divergence of the UV limit is the consequence of the absence of
the Gaussian fixed point in the RG flow once the constant term is included. Of course, one finds the Gaussian fixed
point in the RG flow if the constant term is explicitly set to zero and excluded from the model in its entirety. Once
the constant term is included, the problem of the k2 divergence in the UV limit emerges, and the Gaussian fixed point
not only disappears; it becomes unstable against tiny variations of the initial conditions of the RG flow. Conversely,
if the β-functions of a certain model allow the existence of the Gaussian fixed point in the presence of the constant
coupling, no further subtraction is required.

It is possible to generalise the idea of the subtraction method for higher dimensions. Indeed, a similar procedure
has been proposed in Ref. [70] for cosmological applications. In d = 4 dimensions, in the absence of the Gaussian
fixed point, k4 and k2 divergences appear in the RG flow of the field-independent but k-dependent term in its UV
limit which may need special attention.

However, in the framework of the asymptotic-safety (AS) scenario, the situation is more complex. The β-functions
of AS gravity (without scalar degrees of freedom) predict the existence of Gaussian and non-Gaussian UV fixed points,
see for example [1–3] and the RG flow diagram of Fig. 1. At the non-Gaussian UV fixed point, the dimensionless
couplings are required to attain a non-zero value. Thus, if we assume that the non-Gaussian UV fixed point is found
in the asymptotic region, then at least some of the dimensionful counterparts of the couplings become divergent. For
example, if we assume that the dimensionless cosmological constant λ(k) = Λ(k) k−2 tends to a finite value at the
non-Gaussian UV fixed point λ(k = k?) = λ?, then its dimensionful counterpart Λ(k), for large k, can have at most
a k2 divergence. So, one could argue that a subtraction might be required which removes the k2 divergence and
leaves at most a logarithmic divergence, for large k. However, AS gravity (without scalar fields) has the Gaussian
UV fixed point, too. The β-functions derived from the FRG equation signal the Gaussian UV fixed point, so the
field independent term vanishes if all the other couplings tend to zero in the UV limit. Thus, there is no need of any
further subtraction method and the scaling of the potential as k4 is not a problem in AS gravity since the β-functions
predict the existence of the Gaussian UV fixed point, too. However, if one adds scalar degrees of freedom as matter
fields to the Einstein-Hilbert action which is the simplest truncation for AS gravity models, the resulting action, i.e.,
the simplest gravity-scalar system might have problem with the existence of the Gaussian fixed point. Of course, by
the application of the subtraction method [70], the Gaussian fixed point can be restored and the method, i.e., the
inclusion of subtraction terms does not affect the position of the non-Gaussian UV fixed point.

Therefore, the quantum field theory and the renormalization of gravity and also the consequences of the RG running
on cosmology are well defined, well understood due to asymptotic safety (and the presence of the Gaussian fixed point).
However, one might ask what would happen if one chooses different approaches to the problem of quantum gravity,
for example M-theory or loop quantum gravity. In these cases, one can use quantum field theory maybe together with
supersymmetry and RG considerations up to the Planck scale only. In addition, it is maybe required to use an effective
quantum field theory beyond the Standard Model. As an example one can mention the effective branon theory in
(3+1) dimensions which involves the absolute value of the branon field, leading to a non-differentiable potential and
wave function renormalization [71]. For discussions of branons, see, e.g., Refs. [72–78]. This can re-open the discussion
on the UV divergent nature of the RG flow of the field-independent term, i.e., the cosmological constant which could
play an important role in the mechanism of cosmic inflation, too. For example, it is known that supersymmetric
extensions of the Standard Model deal with quadratic divergences. It may resolve major hierarchy problems within
the Standard Model, by guaranteeing that quadratic divergences of all orders will cancel out in perturbation theory,
however, there is no experimental evidence that a supersymmetric extension to the Standard Model is correct. Due to
the negative results from the LHC, it has been a matter of discussion whether the Minimal Supersymmetric Standard
Model is no longer able to fully resolve the hierarchy problem. Thus, if not the asymptotic safety scenario is the correct
approach to quantum gravity, the problem of UV divergences of the field independent term may require attention.

Indeed, in Ref. [57], the so-called Running Vacuum Model has been studied; it assumes a scale-dependent vacuum,
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i.e., a running cosmological constant. The authors of [57] proposed a suitable subtraction of the so-called Minkowski
contribution in the framework of the adiabatic regularization method. It results in an RG scaling for the running
vacuum described by equation (6.9) of [57], where the running RG scale is denoted by the mass-like term M while its
UV value is given by M0. The result of their subtraction method is the absence of the M4 term in the scaling relation
for the running vacuum. In the UV limit (when M →∞), the M4 is a source of exceedingly large contributions. Due
to the subtraction method of Ref. [57], the RG scale-dependence of the running vacuum is characterised with M2

and log(M2) terms only. Our goal here is to show how the subtraction method can be further improved in order to
eliminate from the RG scaling of the running vacuum, not just the k4 (i.e., M4 of Ref. [57]) but also the k2 (i.e., M2

of Ref. [57]) terms which results in a purely logarithmic dependence on the scale.

II. FIELD-INDEPENDENT TERM IN COSMOLOGY

While, in ordinary particle physics, a constant, field-independent term of the potential carries no physical meaning,
it has great importance in the case of gravity. For example, in order to describe the observed accelerated expansion of
the Universe at present [81, 82] a possible solution is the inclusion of a constant term into Einstein’s equation which
reads (in the absence of matter)

Gµν = Rµν −
1

2
Rgµν = −Λgµν (1)

where R is the scalar curvature and Λ is the cosmological constant. The latter is assumed to be related to dark
energy [83–87] and is expected to cause the accelerated expansion of the universe observed today. Indeed, by using
the Friedmann–Lemâıtre–Robertson–Walker (FLRW, see Ref. [88–91]) metric (in our units, the speed of light is c ≡ 1
and h̄ ≡ 1), gµν = diag(−1, a2, a2, a2) the scale factor a(t) of the expanding homogeneous and isotropic Universe can

be calculated which results in an exponentially fast expansion, a(t) ∼ exp(
√

Λ/3 t).
There is, however, a serious problem with this scenario, namely the discrepancy between the theoretical prediction

for the cosmological constant by quantum field theory (vacuum energy) and the energy density needed to explain
the accelerated expansion of the present Universe. In other words, the estimated value is 120 orders of magnitude
greater than the energy density of all the other matter. Thus, the cosmological constant which correctly describes the
acceleration rate is very small compared to the Planck scale. This is the so-called cosmological constant problem.

One possible solution to this problem could be the existence of a hypothetical scalar field, referred to as quintessence
[92–101], which is minimally coupled to gravity. Compared to other scalar-field models such as k-essence [102–104],
quintessence is the simplest scenario where the slowly varying field along a potential results in a negative pressure
and accelerated expansion. This mechanism is very similar to the particle physics model for cosmic inflation in the
early Universe, but the difference is that non-relativistic matter cannot be ignored and the quintessence potential is
much smaller than that of the inflaton potential. Let us first review the inflationary mechanism of the early Universe.

The key observation is that scalar fields can mimic the equation of state for negative pressure. Thus they represent
an excellent model for inflation,

S =

∫
d4x
√
−g

[
m2
p

2
R+ Lφ

]
, Lφ = −1

2
gµν∂µφ∂νφ− V (φ) , (2)

where
√
−g =

√
−det(gµν) = a3 with the (reduced) Planck mass m2

p = 1/(8πG), and G is Newton’s constant. The
Einstein equation has to be written in the presence of matter fields,

Gµν = 8πGTµν , Tµν = diag(−ρ, p, p, p), (3)

where the stress-energy tensor of the scalar field has the following form,

Tµν = − 2√
−g

δ(
√
−gLφ)

δgµν
= ∂µφ∂νφ+ gµν Lφ. (4)

Since over the inflation the field can be considered to be homogeneous (∇φ/a = 0), the relation between the density
and pressure reads as

ω =
p

ρ
=

1
2 φ̇

2 − V
1
2 φ̇

2 + V
if

1

2
φ̇2 � V =⇒ ω = −1 , (5)
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which results in exponential expansion similar to the case of the cosmological constant. Although the cosmological
constant and the special equation of state (ρ = −p) both results in the same rate of expansion but the former cannot
be used for inflation since it has to end. There is another condition for slow roll inflation which ensures a sufficiently
prolonged inflation. These two slow-roll conditions in Planck units (mp ≡ 1), have the following forms,

ε ≡ V̂ ′2/(2V̂ 2)� 1 , η ≡ V̂ ′′/V̂ � 1 , (6)

which have to be fulfilled by a suitable potential for a prolonged exponential inflation with slow roll down. The e-fold

number N ≡ −
∫ φf

φi
dφ V

V ′ should be in the range 50 < N < 60 where φi and φf are the initial and final configurations

of the field, respectively. The power spectra of scalar (PS) and tensor (PT ) fluctuations can be characterized by their
scale dependence, i.e., PS ∼ kns−1, where k is the comoving wave number. Then, slow-roll parameters are encoded
in expressions for the scalar tilt ns − 1 ≈ 2η − 6ε and for the tensor-to-scalar ratio r = PT /PS ≈ 16ε, which can be
directly compared to CMBR data [105–107].

The potential is determined by the slow-roll conditions (6) up to an overall multiplicative factor, but this factor is
fixed by the absolute normalisation. According to Eq. (23) of Ref. [108] and Eq. (218) of Ref. [109], the normalisation
condition is

V (φi) ≡
r

0.01
(1016 GeV)4 . (7)

The tensor-to-scalar ratio r is given by the slow-roll parameters which are fixed at the scale of inflation (ki), according
to remarks preceding Eq. (218) of Ref. [109]. Thus, the scale of inflation is given by the following relation

V (φi) ≡ k4
i , ki =

( r

0.01

) 1
4

1016 GeV, (8)

which entirely fixes the inflationary potential including the constant term. Therefore, the field-independent term is
fixed at the scale of inflation, too.

Let us now come back to the idea of quintessence. The cosmological constant is static which means once it is fixed
(e.g., to describe the rate of accelerating expansion of the Universe today) its value remains constant over the history
of the Universe. Thus, extrapolating back in time to the early Universe, it has a very small value compared to the
Planck mass. It would be more natural for the dark energy to start with an energy density similar to the density of
matter and radiation in the early Universe. The concept of quintessence was introduced to overcome this problem
which assumes a scalar field similar to inflaton with negative pressure but with a very large wavelength. The equation
of state of the quintessence is dynamic, time-evolving and given by (5) which has been used for the inflaton case, too.
Therefore, it does not matter whether one relies on the idea of quintessence or on the cosmological constant. The
field-independent term of the action is involved in the theoretical model, and its value is determined.

Thus, the Standard Model of Cosmology requires two periods of accelerated expansion: in the early Universe, when
the Universe doubles in size in every 10−35s, and today, when the doubling time is 50 orders of magnitude greater.
The field-independent term of the action has to be fine-tuned in each period of acceleration, thus a reliable theory
should take into account the change of this term over the time-evolution of the Universe. If the time-evolution of the
Universe and the momentum scale of renormalization is related to each other (inversely), then the required variation
of the cosmological constant in time can be produced by RG methods.

Indeed, the essential idea of the nonperturbative RG analysis is to describe the evolution of the self-interaction
potential from the UV (from the Planck scale or from over the Planck scale) to the scale of inflation and towards to
the low-energy (IR) limit, and of course, it is an important question how to describe the RG running of the constant
term. The asymptotic safety scenario of quantum gravity is designed for that purpose, and its essence is the existence
of a non-Gaussian UV fixed point. To summarise its cornerstones, one can start from the simplest realization of
Quantum Einstein Gravity (QEG) which is the Einstein-Hilbert truncation of the effective average action

Γk =
1

16πGk

∫
d4x
√
−g (R− 2Λk) , (9)

where g is the determinant of the metric tensor, R is the Ricci scalar and the scale-dependent parameters are
the cosmological constant Λk and the Newton coupling Gk. The field independent term V (φ = 0) of the scalar
potential (2) is related to the cosmological constant, i.e., V (φ = 0) = m2

pΛ. The scale-dependence of Λk implies the

scale-dependence of Vk(φ = 0), and it is analyzed in terms of dimensionless couplings, λk ≡ Λkk
−2, gk ≡ Gkk

2 with
the help of the β-functions, see for example [3]

k∂kgk = βg , k∂kλk = βλ (10)
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which are calculated by the Litim regulator [111]

βg = (2 + ηN )gk, βλ = (ηN − 2)λk +
gk

12π

[
30

1− 2λk
− 24− 5

1− 2λk
ηN

]
, (11)

where the anomalous dimension of Newton’s constant ηN = G−1
k k∂kGk is given by

ηN =
gk B1

1− gk B2
, (12)

where

B1 =
1

3π

[
5

1− 2λk
− 9

(1− 2λk)2
− 7

]
, B2 = − 1

12π

[
5

1− 2λk
− 6

(1− 2λk)2

]
. (13)

The RG flow diagram based on the above β-functions is plotted on Fig. 1.

-0.4 -0.2 0.0 0.2 0.4

0.0

0.2

0.4

0.6

0.8

1.0

λk

g
k

NG

G IR

FIG. 1: We present the RG flow diagram of QEG based on the Einstein-
Hilbert trunction given in Eq. (9).

The β-functions contain the information on fixed points g? and λ? of the RG flow where the beta functions vanish
simultaneously. They give rise to two fixed points: the Gaussian (G) UV fixed point situated at (g?, λ?) = (0, 0)
and the non-Gaussian (NG) UV fixed point located at (g?, λ?) = (0.707, 0.193). As we argued in the introduction,
the existence of the non-Gaussian UV fixed point can solve important problems of quantum gravity. In order to find
cosmological applications, the running RG cutoff k is identified with a typical length scale of the system [5]. There
are several types of cutoff identifications [5]; among these, one finds k ∼ t−1, where t is the cosmic time, or k ∼ H(t)
where H(t) is the Hubble parameter, or k ∼ T , where T is the temperature of the cosmic plasma. The idea is to
use RG running to connect the physics of various energy scales. For example, one should find the non-Gaussian
fixed point above the Planck scale k � mp = 2.4 × 1027 eV. By contrast, cosmic inflation takes place below the
Planck scale k = kinf = 1022 eV, and the well-known value of Newton’s constant is fixed by laboratory experiments
Gk = G = 6.67 × 10−57 eV−1 at low-energies k = klab = 10−5 eV. Finally, one should mention the accelerated
expansion of the Universe at present which requires Λk = Λ = 4× 10−66 eV2 at the scale k = kHub = 10−33 eV. The
nonperturbative RG (using various extension of the Einstein-Hilbert truncation, see for example [6]) is capable to
build up connection between these scales and cover many orders of magnitude in change of couplings, like the Newton
and the cosmological constants.

Our goal here is to consider the RG flow of the field independent term in the presence of scalar fields, i.e. when the
coupling constants of the action (2) are considered as running parameters similarly to (9),

Γk[φ] =

∫
d4x
√
−g

[
1

16πGk
R− 1

2
gµν∂µφ∂νφ− Vk(φ)

]
, (14)
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where the scalar potential is usually expanded in terms of the field. If this expansion is terminated at the quartic
order, it has the following form

Vk(φ) = Vk(0) +
1

2
m2
kφ

2 − 1

4!
λ4,k φ

4 , Vk(0) ≡ 2Λk
16πGk

, (15)

which is one of the simplest scenarios when a single real scalar field is coupled to gravity. For a detailed study of scalar
fields coupled to asymptotically safe quantum gravity see for example [79] where the existence of the non-Gaussian
fixed point was shown for the simple case of (15) with non-minimal coupling to gravity. The fixed points of the RG
flow for a scalar field in curved space with non-minimal coupling is discussed in [80], too where the RG equation for
the scalar potential in the so-called Local Potential Approximation of the Wetterich equation with the Litim cutoff
reads as

k∂kVk(φ) = µdk
d k2

k2 + ∂2
φVk(φ)

, (16)

with µd = 1/[(4π)d/2Γ(d/2 + 1)]. The existence of the Gaussian (G) and non-Gaussian (NG) fixed points and the RG
flow of the full (dimensionless) potential is discussed, for example, in Refs. [79] and [80] but no β function is given for
the field-independent term. In this work, we are interested in the RG flow of the field-independent term, Vk(0), with
a special attention on its UV limit.

Let us discuss the RG flow of of the cosmological constant in the absence of quantum gravity effects, but take
into account the RG equation (16) for the scalar potential (15). We use the relation Ṽk(0) ≡ 2λk

16πgk
which connects

dimensionless couplings and gives

k∂kλk = 8π
(
gkk∂kṼk(0) + Ṽk(0)k∂kgk

)
(17)

In the absence of quantum gravity effects, i.e., assuming a scale-independent dimensionful Newton’s constant, Gk = G,
the anomalous dimension vanishes because ηN = G−1 k∂kG = 0, and one finds k∂kgk = 2gk which results in a trivial
RG scaling gk ∼ k2. The RG flow equation for the dimensionless field-independent term obtained from (16) reads as

k∂kṼk(0) =
1

32π2

(
1

1 + m̃2
k

)
− 4Ṽk(0) (18)

which can be used to obtain the RG flow equation for the dimensionless cosmological constant,

k∂kλk =
1

4π
gk

(
1

1 + m̃2
k

)
− 2λk. (19)

In this approximation, gk has a trivial scaling, gk ∼ k2, it tends to infinity in the UV limit. The UV scaling of the
dimensionless mass term is m̃2

k ∼ k−2, so, it tends to zero in the UV limit. Although the UV Gaussian fixed point

formally exists, it cannot be reached because the corresponding β-function diverges in the UV limit, gk

(
1

1+m̃2
k

)
→∞

if k →∞. Our goal in this work is to show that one has to apply additional subtraction terms in order to restore the
Gaussian fixed point in (19).

We will discuss that, even though the Gaussian fixed point is known to exist in many quantum field theories, there
may be questions regarding the proper definition and retention of the Gaussian fixed point due to presence of the
divergent constant term. A point emerging in our discussion is that with the use of subtractions, one can restore the
Gaussian fixed point of the pure scalar theory in the RG flow based on the β-functions even if the field-independent
term is included. We will show that the inclusion of these subtraction terms do not influence the non-Gaussian fixed
point of the gravity-scalar models, but could modify their IR behavior.

In summary, the constant term, i.e. the cosmological constant plays an important role (i) in the physics above the
Planck scale, (iii) in the mechanism of inflation in the early Universe, (iii) in the accelerating expansion at present.
This justifies our main interest in the RG evolution of the constant term in general, which we extensively discuss in
the next section.

III. FIELD-INDEPENDENT TERM IN RG

The modern formulation of nonperturbative RG usually referred as the Wetterich RG equation [19, 20] has the
following form for the one-component scalar field theory:

k ∂kΓk[φ] =
1

2

∫
ddp

(2π)d
k ∂kRk(p)

Rk(p) + Γ
(2)
k [φ]

, (20)



8

where k is the RG scale, Γk[φ] is the running effective action with its Hessian Γ
(2)
k [φ], and Rk(p) is the so-called

regulator function. It is illustrative to discuss its connection to the effective action, which has the following form at
the one-loop level:

Γeff [φ] = SΛ[φ] +
1

2

∫
ddp

(2π)d
ln
[
S

(2)
Λ [φ]

]
+O(h̄2), (21)

where SΛ is the classical (bare) action. A Pauli-Villars approach is used to regularise the momentum integral which
can be divergent at its upper (UV) and lower (IR) bounds. This can be achieved by adding a momentum dependent
mass term 1

2

∫
Rk(p)φ2 to the bare action, and introduce a scale-dependent action

Γk[φ] ≡ SΛ[φ] +
1

2

∫
ddp

(2π)d
ln
[
Rk(p) + S

(2)
Λ [φ]

]
, (22)

which recovers the effective action (at one-loop) in the IR limit if the regulator function Rk(p) fulfils the requirements,
Rk→0(p) = 0, Rk(p → 0) > 0 [see Eqs. (13)—(15) of Ref. [24]]. The latter condition is important to avoid IR
divergences. However, one canonically also imposes the condition

Rk→Λ(p) =∞ (23)

(see Ref. [24]), and thus, in the UV limit, the scale-dependent action reproduces the classical (bare) action only up to
a field-independent, constant term. If one can differentiate Eq. (22) with respect to the running scale k (and multiplies
both sides by k), then one finds

k∂kΓk[φ] =
1

2

∫
ddp

(2π)d
k∂kRk(p)

Rk(p) + S
(2)
Λ [φ]

, (24)

which recovers the “exact” Wetterich RG equation (20) up to the replacement S
(2)
Λ → Γ

(2)
k .

Let us come back to various limits of the scale-dependent action Eq. (22). It recovers the effective action in the
limit k → 0 and the bare action for k → Λ, up to a field-independent but k-dependent term, which we will denote as
Vk(0) for reasons which will become obvious immediately,

Γk→Λ[φ] = ΓΛ[φ] = SΛ[φ] + const. = SΛ[φ] +

∫
ddxVk→Λ(0) . (25)

This clearly signals that the formulation of the RG evolution of the constant, field-independent term Vk(0) requires
special care within the nonperturbative approach implied by the Wetterich equation (see also Sec. 2.3 of Ref. [24]).
Moreover, if we implement the condition Rk→Λ(p) = ∞ on the regulator, then it turns out that in many cases, the
“constant term” Vk(0) in Eq. (25), actually is given by a divergent integral.

Therefore, the constant term Vk(0) needs a special treatment in the framework of the nonperturbative RG method.
In the following, we will consider cases where Vk(0) can naturally be identified with the zeroth-order term (in φ)
obtained from the scale-dependent potential Vk(φ). One might argue that, for many purposes, the precise form of the
function Vk(0) is physically irrelevant as it constitutes a field-independent constant. However, there are special cases
where the RG evolution of a constant (field-independent) part of the potential has physical meaning. For example,
if one aims at a determination of the free energy in a flat background or of the cosmological constant in a general
non-flat background, then the problem of unambiguously determining Vk(0) has to be seriously considered.

The explicit form of the nonperturbative RG equation which is suitable for application can be obtained by from (20)
using various approximations. Derivative expansion is one of the widely used approximation and its leading order
is the local potential approximation (LPA) [110]. Within the LPA, the RG equation (20), using the so-called Litim
cutoff [111], reads as

k∂kVk =
2αd
d

kd+2

k2 + ∂2
φVk

, (26)

where Vk is the dimensionful scaling potential in d dimensions, k is the running momentum, and αd = Ωd/(2(2π)d) is
related to the d-dimensional solid angle Ωd = 2πd/2/Γ(d/2). Eq. (26) has been obtained projecting the exact functional
RG equation [17–21] [see Eq. (20)] on a functional ansatz for the scalar field effective action, which contains only the
bare kinetic term plus a scale dependent effective potential Vk. Then, Eq. (26) represents the non-perturbative
β-function of the effective potential in absence of any renormalization for the non-local operators in the action [22–
24, 27–30].

In the following, we will investigate the role of the RG evolution of the field-independent terms in the framework
of the nonperturbative RG approach. We would like to use the RG treatment of the constant term developed for
low-dimensional quantum mechanical systems [24] and extend this method to higher dimensions.
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IV. RG EVOLUTION OF THE CONSTANT TERM

We now come to the most important point to be discussed in the context of the current work. Namely, from
Eq. (26), one could in principle derive an RG equation for the constant term Vk(φ = 0). Written for the dimensionful
potential, one would näıvely obtain the following RG equation for Vk(0) from Eq. (26) in d = 4 dimensions:

k∂kVk(0)
?
=

k4

32π2

k2

k2 + ∂2
φVk(φ)|φ=0

. (27)

It has already been mentioned above that, within the nonperturbative RG equations used by us, extra care is needed
in the analysis of the field-independent terms.

The essence of the problem of the RG scaling of the constant term is the (possible) absence of the Gaussian fixed
point which, otherwise, is present, if the constant term is not considered. In other words, the β-function of the
constant term should vanish if all couplings are set to zero. If the Gaussian fixed point is retained when the RG
flow of the constant term is considered, which is the case in QEG, then one finds no problem with the RG scaling of
the constant term. However, if the Gaussian fixed point is missing once the field-independent coupling is included,
then one finds problematic UV divergences which requires a subtraction method. It was shown that such divergences
occur for the quantum anharmonic oscillator and if one considers it in higher dimensions one has to generalise the
subtraction method for d = 4 dimensions. Indeed, in the limit k2 � ∂2

φVk(0), the solution to Eq. (27) is

Vk(0)
?
=VΛ(0) +

k4 − Λ4

128π2
, (28)

which would otherwise indicate a rampant quartic divergence of Vk(0) in the limit of large Λ and lead to a considerable
change in Vk(0) between the Planck and the GUT scales, possibly requiring some fine-tuning of our model in the UV,
i.e., at the Planck scale. In view of the quartic divergence of Vk(0) in the UV, the fine-tuning problem would be of
quite an extreme nature and conceivably render the model rather questionable.

In order to address the problem, it is necessary to include a longer discussion. The problem is exacerbated by
the fact that Vk(0) could in principle be associated with a cosmological constant term. As shown in the discussion
surrounding Eq. (A2)—(A5), for an FLRW metric, one can bring the action into a form resembling a flat-space theory,
but upon going back to the original FLRW coordinates, one would realize that Vk(0) indeed can take the role of a
cosmological constant [see also Eq. (A6)].

One should observe that the rampant k4 behavior in Eq. (28) persists, even if we set, e.g., all coupling terms of
the model to zero. In principle, one might think that it would be difficult to argue that a quartic divergence could
be obtained for the RG running of the constant term Vk(0) of a potential that completely vanishes in the IR. The
suspicion arises that the behavior implied by Eq. (28) cannot be physical and must be spurious.

V. DIVERGENCES IN d = 1 OSCILLATORS

We start this section by observing that questions related to the RG running of field-independent constant terms
belong to the more subtle questions connected with nonperturbative RG equations. In Sec. 2.3 of Ref. [24], a (0 + 1)-
dimensional model problem is studied which illustrates the spurious nature of these terms, namely, an anharmonic
quantum mechanical oscillator. For a potential of the form

Vk(x) = E0k +
1

2
ω2
kx

2 +
1

24
λ2
kx

4 + · · · =
Ncut∑
n=0

g2n,k

(2n)!
x2n, (29)

where E0k ≡ g0,k, ω2
k ≡ g2,k and λ2

k ≡ g4,k.
One may investigate what happens if one drops the anharmonic term (λ = 0), which implies that ωk = ωk=Λ ≡ ω.

In this limit, the following RG equation is obtained for the constant term E0k [see Eq. (40) of Ref. [24]],

d

dk
E0k

?
=

1

π

k2

k2 + ω2
. (30)

When integrating this equation, one would obtain a spurious linearly divergent ground-state energy of the anharmonic
oscillator in the harmonic limit (λk → 0, i.e., when the anharmonicity vanishes).

This behavior cannot be physical and cannot be trusted. The answer is connected with the observation surrounding
Eq. (25), which implies the necessity of subtracting a spurious field-independent constant term if one would like to
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recover the bare action (in the UV) from the nonperturbative RG equation. In the case of the (0 + 1)-dimensional
field theory, the solution is given by subtracting the spurious term from the right-hand side RG equation (30), and
to solve instead

d

dk
E0k

!?
=

1

π

(
k2

k2 + ω2
− 1

)
. (31)

Integrating this equation, one obtains the correct ground-state energy 1
2 ω [see Eq. (40) of Ref. [24]].

Let us consider what happens if one keeps the anharmonic term (λ 6= 0). In order to study the dependence of the
results on the truncation Ncut we use the general form for the potential where the couplings are denoted by g2n. One
can derive the flow equations for the running couplings g2n,k by using the subtraction method explained above. For
example by using the Litim regulator [111], and the truncation Ncut = 2 the flow equations become

k∂kg0,k =
k

π

(
k2

k2 + g2,k
− 1

)
, (32)

k∂kg2,k =− 1

π

k3g4,k

(k2 + g2,k)2
, (33)

k∂kg4,k =
6

π

k3g2
4,k

(k2 + g2,k)3
. (34)

By solving these differential equations we computed the ground state energy, E0 = g0,k=0, with different initial
conditions and got consistent results with the solutions of the Schrödinger equation as shown in Fig. 2 and Fig. 3.

20 40 60 80 100
g4 L

1.1

1.2

1.3

1.4

E0

FIG. 2: The dependence of the ground state energy of the quantum anharmonic oscillator on the g4,Λ initial condition,
obtained for a single-well potential (g2,Λ = 4, g0,Λ = 0), using the truncation Ncut = 2. The solid curve is from the solutions
of the Schrödinger equations, while the dashed curve is computed by FRG.

The unphysical behaviour of the ground state energy for the double-well potential in low g4,Λ is just the result
of our approximations. In fact better approximations improve these results, for example improving the truncation
(Ncut = 3) gives an improved curve, see Fig. 4.

Therefore, the use of the subtraction method for the set of RG flow equations recovers the correct results for the
quantum anharmonic oscillator in d = 1.

VI. DIVERGENCES IN THE COSMOLOGICAL MODEL

A. General Discussion and Idea

If the need for such subtractions arises in the context of (0 + 1)-dimensional field theories, then we can expect
similar or even aggravated problems in our (3 + 1)-dimensional case. We should clarify that the subtraction leading
from Eq. (30) to Eq. (31) is not rigorously derived in Ref. [24], but constitutes more than an ad hoc subtraction.
Namely, as pointed out in the text preceding Eq. (37) of Ref. [24], the physical requirement is that the constant term
in the potential must remain zero under the RG in the limit of vanishing parameters ω → 0, and λ→ 0. As pointed
out in between Eqs. (36) and (37) of Ref. [24], this requirement fixes the subtraction term. The subtraction leading
to Eq. (31) is justified by the fact that it reproduces the known ground-state energy of the harmonic oscillator.
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FIG. 3: The dependence of the ground state energy of the quantum anharmonic oscillator on the g4,Λ initial condition,

obtained for a double-well potential (g2,Λ = −4, g0,Λ =
3g2

2,Λ

2g4,Λ
), using the truncation Ncut = 2. The solid curve is from the

solutions of the Schrödinger equations, while the dashed curve is computed by FRG.
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FIG. 4: The dependence of the ground state energy of the quantum anharmonic oscillator on the g4,Λ initial condition,

obtained for a double-well potential (g2,Λ = −4, g0,Λ =
3g2

2,Λ

2g4,Λ
), using the truncation Ncut = 3. The solid curve is from the

solutions of the Schrödinger equations, while the dashed curve is computed by FRG.

Based on the analogy with Ref. [24], one might investigate if a valid subtraction scheme for the field-independent term
in a nonperturbative RG could be obtained by subtracting from the naive RG equation (27) the spurious asymptotic
(UV) terms which cause the unphysical divergences. One should take into account that one single subtraction, as in
Eq. (31), may not be enough. In a different context, namely, in the case of perturbatively renormalizable theories
such as quantum electrodynamics (QED), one sometimes has to introduce more than one subtraction term. E.g., the
regularization of the vacuum polarization integral, discussed in Eq. (7.3) ff. of Ref. [112] necessitates the introduction
of more than one “heavy fermion” in order to eliminate a spurious quadratic divergence, for large loop momenta.
In the case of the nonperturbative RG method used here, one can show that, in general, the RG equation for Vk(0)
implies a dependence with the functional form kd in the UV (when no subtractions are applied), consistent with the
cases d = 1 discussed in Eq. (30) and the case d = 4 discussed in Eq. (28). This observation might suggest that more
than one subtraction could be required for higher dimensions.

Let us try to formulate possible, but not unique, further requirements, in terms of conjectures, that could be
imposed on the subtracted, physical, RG evolution of the constant term. These constitute mild generalizations of the
considerations reported in Ref. [24].

(i) The RG evolution of Vk(0) must vanish in the UV, in the limit of vanishing expansion coefficients of the model.

(ii) The subtraction terms, originating from the UV, should have a polynomial functional form (in k), as they are
obtained from an asymptotic expansion of integrals obtained in the limit k → Λ, which typically gives rise to
an asymptotic expansion with polynomial terms.

(iii) The subtractions cannot possibly influence the IR behavior of the RG, as they originate purely from the UV
behavior of the regulator given in Eq. (23).
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Condition (iii) implies that the subtractions cannot induce IR divergences. This means that one cannot subtract “too
many” terms; otherwise one incurs infrared problems.

B. Double Subtraction

As suggested by the above general considerations, we observe that a single subtraction, based on the replacement

k∂kVk(0) =
k4

32π2

k2

k2 + ∂2
φVk(0)

→ k4

32π2

[
k2

k2 + ∂2
φVk(0)

− 1

]
→ − k2

32π2
∂2
φVk(0) , k →∞ , (35)

in Eq. (27), leaves a quadratic term (in k) on the right-hand side of Eq. (27) in the UV limit. This subtraction term
modifies the RG evolution of the cosmological constant. Thus, Eq. (19) is changed as

k∂kλk =
1

4π
gk

(
1

1 + m̃2
k

− 1

)
− 2λk, (36)

from which one observes that the corresponding β-function does not diverge in the UV limit but tends to a non-

vanishing finite value, i.e., the expression gk

(
1

1+m̃2
k
− 1
)

approaches a negative constant, where we keep in mind that

gk ∼ k2 and m̃2
k ∼ k−2 in the UV limit.

It is well known that comparable subtractions produce the correct result for the free energy of certain interacting
quantum-statistical mechanics models (see Chap. 8 of Ref. [113]). Further remarks on related issues can also be found
in Ref. [114, 115]. One might argue that the negative value of Vk(0) in the UV, implied if we assume Eq. (35) to be
valid in the UV, is akin to the negative mass square acquired by the Higgs particle upon considering tadpole diagrams
involving fermionic loops (Yukawa coupling), which also diverges quadratically in Λ. Furthermore, one might argue
that this problem would be on the same level as the so-called hierarchy problem of the Standard Model. Conversely,
if a subtraction is carried out in the RG evolution of the field-independent term [see Eq. (35)], the hierarchy problem
for the field-independent term in our model for the inflaton, is reduced to the same level at which the Higgs particle
mass of the Standard Model itself suffers from a comparable RG running and concomitant hierarchy problem. (The
lack of experimental evidence for supersymmetric particles, whose presence could potentially alleviate the hierarchy
problem of the Standard Model, does not need to be stressed in the current context.)

The leading term on the right-hand side of Eq. (35) has a peculiar property: It vanishes for vanishing couplings
of the model but diverges for Λ → ∞. The physical condition of a vanishing RG evolution for the field-independent
term in the limit of vanishing couplings is implemented in Eq. (35), but the limit is not approached uniformly in the
sense that, colloquially speaking, if Λ goes to infinity faster than the couplings go to zero, there is a remaining term.
If, in addition to conjectures (i), (ii), and (iii), we also conjecture that the limit of vanishing parameters (expansion
coefficients) be approached smoothly, then the second subtraction would be required. Of course, this additional
subtraction eventually has to be justified on a calculation based on first principles. It is permissible, though, to
consider a more favourable scenario where the use of an optimized regulator, which enables us to recover the bare
action from the solution of the RG equation in the UV, will translate into a modified RG evolution for the constant
term, which involves more than one subtraction in the UV, for our four-dimensional case. Let us therefore investigate
the doubly-subtracted RG evolution

k∂kVk(0) =
k4

32π2

(
k2

k2 + ∂2
φVk(0)

− 1 +
∂2
φVk(0)

k2

)
, k →∞ , (37)

which is still infrared safe because of the k4 prefactor. The subtraction of even more asymptotic terms would contradict
conjecture (iii). In the UV limit, one then obtains

k∂kVk(0) ∼
[∂2
φVk(0)]2

32π2
, k →∞ . (38)

If the double subtraction implied by Eq. (37) holds for a modified RG evolution which avoids the unphysical diver-
gences, then this would lead to a cosmological constant that diverges in the UV, but only logarithmically.

Indeed, the RG flow equation (19) of the dimensionless cosmological constant is modified as

k∂kλk =
1

4π
gk

(
1

1 + m̃2
k

− 1 + m̃2
k

)
− 2λk, (39)
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from which one observes that the β-function tends to zero in the UV limit, since we have the asymptotic behavior

that gk

(
1

1+m̃2
k
− 1 + m̃2

k

)
→ 0 if k →∞, where we keep in mind that gk ∼ k2 and m̃2

k ∼ k−2 in the UV limit.

In Ref. [57] the authors show that no M4 term is present (due to the subtraction) and the RG scale-dependence is
characterised by M2 and log(M2) terms, where M denotes the running RG scale. Here we use a double subtraction
in (38), thus, there is no k4 term in the UV limit of the RG equation. If one neglects the scaling of the mass term
mk → m, the solution of the flow equation can be obtained and reads

Vk(0) ∼ 1

32π2
m4 log(k), k →∞. (40)

Relating the RG scales k ∼M in (40) and by setting ξ = 0 in equation (6.9) of [57], the two runnings can be compared,
as is done in Sec. VI C.

Let us explore a (possibly curious) analogy to the emergence of other logarithmic divergences in quantum field
theory, which seem to have a long history, ever since Bethe, in his first calculation of the Lamb shift [116], obtained
a logarithmically divergent result (expressed in terms of a UV cutoff parameter), in addition to the logarithmic sum
over hydrogenic excited state which bears his name. The logarithmic divergence was classified as nonproblematic in
Ref. [116], as it was clear that a natural cutoff (in the case of Ref. [116], the electron mass scale) exists. (In our case,
of course, a natural UV cutoff is found at k ∼ Λ, the Planck scale.) The problem was later analyzed in greater detail
by French and Weisskopf [117], and Kroll and Lamb [118], as well as Feynman [119], who clarified the matching of UV
and IR divergences (see p. 777 of Ref. [119]). Without drawing any further analogies here, we note that the original
subtraction introduced by Bethe in Ref. [116] was completely ad hoc at the time; the full physical picture was clarified
later. May it be permissible to mention that corresponding subtractions, to obtain physically acceptable results in
problems of advanced classical electrodynamics, have recently been discussed in Chap. 8 of Ref. [120].

The subtractions introduced in Eqs. (35) or (37) are not unique, and we do not have a rigorous derivation at
present beyond the considerations described above. However, the physical requirements that should to be fulfilled by
the subtracted RG evolution of the constant term, as formulated in the conjectures (i)–(iii) above, are in agreement
with the physical requirements expressed between Eqs. (36) and (37) of Ref. [24]. The conjecture and the subtraction
terms enter as an additional input into our calculations. In general, it might be possible to avoid the unphysical
divergences of the constant, field-independent terms via a suitable modification of the condition (23) imposed on the
regulator function.

C. Comparison with Other Results

In the previous subsection we proposed a new subtraction in order to get rid of the spurious divergent terms k4 and
k2 in the RG flow equation of the constant (field-indepedent) term of the action, which is related to the cosmological
constant. In the literature, the RG running of the cosmological constant has been already suggested using subtraction
ideas in order to solve the cosmological constant problem. Thus, let us compare them to our double-subtracted RG
equation (38) and its solution.

In [121], slightly generalized DeWitt-Schwinger adiabatic renormalization subtractions are proposed in curved space
to include an arbitrary renormalization mass scale µ. The running of the cosmological constant is obtained in equation
(21) of Ref. [121]. A similar running is given by Eq. (14) of Ref. [122], which reads as

Λ(µ) = Λ0 −
1

128π2

(
−(µ4 − µ4

0) + 2m2(µ2 − µ2
0)− 2m4 log

(
m2 + µ2

m2 + µ4

))
, (41)

and it only differs from equation (21) of [121] in the prefactor of the second term of the right hand side by a
multiplicative factor of 2. The prefactor is, however, scheme dependent and it also depends on the physical content
of the studied Lagrangian. Thus, it is not surprising that one finds different values in the literature [see Eq. (33) of
[122]]. In Eq. (41), the running RG scale is denoted by µ with the UV value µ0. Regarding the RG running, three
distinct scale dependencies are present; a term that is proportional to µ4, one with µ2 and lastly a logarithmic term
logµ2. The RG running of the first two, especially of the µ4 term, can cause a rampant divergent behavior.

Now, let us take a look at the leading terms of Eq. (27) that do not yet contain subtractions. Insted of µ we denoted
the RG running scale by k. In the limit k2 � ∂2

φVk(0), the solution to Eq. (27) is Eq. (28),

Vk(0) ∼ +
1

128π2
k4, k →∞, (42)

which indicates the same rampant quartic divergence of Vk(0). The prefactor 1/(128π2) is also identical to the one
in Eq. (41). If one uses a single subtraction (35) also proposed in [24], then the leading term in the UV yields the
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solution

Vk(0) ∼ − 1

64π2
m2k2, k →∞. (43)

This still contains a k2 divergence in the UV limit, so, we propose a double subtraction, see equation (38), which has
only a mild logarithmic divergence in the UV limit. For constant mass, its solution can be written as (40)

Vk(0) ∼ +
1

64π2
m4 log(k2), k →∞. (44)

Again, the prefactors 1/(64π2) also match exactly the prefactors of equation (41).
In Ref. [57] the so-called Running Vacuum Model has been studied which assumes a scale-dependent vacuum,

i.e, a running cosmological constant. The authors of [57] propose a suitable subtraction of the so-called Minkowski
contribution in the framework of the adiabatic regularization method which results in an RG scaling for the running
vacuum described by equation (6.9) of [57]

ρvac(M) =ρvac(M0) +
3

16π2

(
ξ − 1

6

)
H2

[
M2 −M2

0 −m2 ln
M2

M2
0

]
− 9

16π2

(
ξ − 1

6

)2 (
Ḣ2 − 2HḦ − 6H2Ḣ

)
ln
M2

M2
0

, (45)

where the running RG scale is denoted by the mass-like term M while its UV value is given by M0. The result of the
author’s subtraction method is the absence of the M4 term in the scaling relation for the running vacuum. This has
great importance; in the UV limit (when M →∞), the M4 is a well-known source of exceedingly large contributions.
The term ξ stands for the non-minimal coupling to gravity.

One can relate the RG scale of Ref. [57] [denoted as M2 in Eq. (45)] and the one used by us (which we denote as k);
the result is the proportionality k ∝M . Therefore, one can find very interesting similarities between our approaches.
In our case, we have minimal coupling, i.e., we do not include an extra ξRφ2 coupling between gravity and the matter
content, and thus ξ = 0. Thus, for minimal coupling, i.e., for ξ = 0, the numerical prefactors of the M2 and log(M2)
terms are −1/(32π2) and 1/(32π2). Despite the factor of 2 difference compared to our results, we can say that the
functional forms encountered in the RG running in Ref. [57] and here are compatible. In Ref. [57] the authors show
that no M4 term is present (due to their subtraction of the Minkowskian contribution), and the RG scale-dependence
is characterised by the M2 and log(M2) terms only. Arguments for the absence of the quartic M4 term are also
presented in Refs. [123, 124], where similar flow equations are obtained. If a double-subtraction method is used (40),
only a logarithmic scale dependence remains.

VII. CONCLUSIONS

In this work, we have discussed the role of the constant term in the non-perturbative RG evolution. In particular,
we investigated whether the rampant divergent terms k2 and k4 which naturally appear in the RG equation for d = 4
dimensions for the scalar inflaton field (in the absence of the Gaussian fixed point) can be removed by a suitable
subtraction method. These divergent terms are the consequence of the construction of the functional RG method and
considered as unphysical. They make the application of the functional RG method on the proper treatment of the
cosmological constant very questionable if the Gaussian fixed point is absent.

Renormalisation and RG scaling could be a possible tool to handle the cosmological problem and they are under
intense debate, see for example the recent works, [56, 57]. In Ref. [57] the Running Vacuum Model has been studied
which assumes a running cosmological constant where the running vacuum described by equation (6.9) of [57] and
the running RG scale is denoted by the mass-like term M . Based on the subtraction method of [57] it is possible
to remove the divergent M4 term and RG scale-dependence of the running vacuum is characterised with M2 and
log(M2) terms only.

Here we showed how the subtraction method can be improved further in order to eliminate from the RG scaling of
the running vacuum, not just the k4 (i.e., M4 of Ref. [57]) but also the k2 (i.e., M2 of Ref. [57]) terms which results in a
purely logarithmic dependence on the scale, thus, the unphysical rampant behaviour of the naive approach is handled.
As a future improvement on our subtraction method we think it would be interesting to include the contributions of
a theory that is non-minimally coupled to gravity (ξ 6= 0).
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Appendix A: Field–Independent Term and Cosmological Constant

The standard model of cosmology implies the requirement of an exponentially fast expansion [125–129] of the early
Universe which is usually achieved by assuming a hypothetic inflaton field which slowly rolls down from a potential
hill towards its minimum. Particle physics provides us with possible candidates for the inflaton field. A first guess
involves a scalar field, φ, as a candidate for the inflaton field, with a (Euclidean) action that includes the scalar
curvature R with minimal coupling to gravity,

S[φ] =

∫
d4x
√
−g

[
1

2
gµν ∇µφ∇νφ+ V (φ) +

m2
p

2
R

]
, (A1)

where the Planck mass m2
p ≡ 1/(8πG) has been used and

√
−g =

√
−det gµν = a3 with gµν = diag(−1, a2, a2, a2).

Here, the scale factor a = a(t) describes the cosmological scaling in the Friedmann–Lemâıtre–Robertson–Walker
(FLRW, see Ref. [88–91]) metric (in our units, the speed of light is c ≡ 1 and h̄ ≡ 1).

The FLRW metric is given by

gµν = diag(−1, a(t)2, a(t)2, a(t)2) , (A2)

with the line element

ds2 = −dt2 + a(t) d~r 2 , (A3)

where ~r = (x, y, z). For scalar fields, the partial and covariant derivatives coincide, and hence, we can replace, in
Eq. (A1),

gµν ∇µφ∇νφ→ − φ∇µ∇µφ = −φ
(
− ∂2

∂t2
+

1

a(t)2

∂2

∂~r2

)
φ . (A4)

One may stretch the spatial coordinates, in a “flattening” transformation, according to

~r′ = a(t′)~r , φ(t, ~r) = φ′(t′, ~r′) , t′ = t . (A5)

After this transformation, the action is brought into the form

S[φ] =

∫
dt′
∫
d3r′

[
−1

2
φ′
(
− ∂2

∂t′2
+

∂2

∂~r′2

)
φ′ + V (φ′) +

m2
p

2
R

]
, (A6)

If we now re-identify

t′ → i t (Wick rotation) , ~r′ → ~r , φ′(t′, ~r′) = φ(t, ~r) , V (φ′)→ V (φ) , (A7)

and ignore the curvature term which is the cosmological constant term, then we obtain

S[φ] =

∫
d4x

[
1

2
(∂µφ)2 + V (φ)

]
, (A8)

with a fully local (Euclidean) action of our theory, formulated in Euclidean four-dimensional space. In comparison
to Eqs. (A1), Eq. (A8) has the same structure as would otherwise be expected for flat space, and makes the model
amenable to a nonperturbative RG analysis using established techniques [111].
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Basel, 2005).
[116] H. A. Bethe, The Electromagnetic Shift of Energy Levels, Phys. Rev. 72, 339–341 (1947).
[117] J. B. French, V. F. Weisskopf, The Electromagnetic Shift of Energy Levels, Phys. Rev. 75, 1240–1248 (1949).
[118] N. M. Kroll, W. E. Lamb, On the Self-Energy of a Bound Electron, Phys. Rev. 75, 388–398 (1949).
[119] R. P. Feynman, Space-Time Approach to Quantum Electrodynamics, Phys. Rev. 76, 769–789 (1949).
[120] U. D. Jentschura, Advanced Classical Electrodynamics, (World Scientific, Singapore, 2017).
[121] A. Ferreiro, J. Navarro-Salas, Running gravitational couplings, decoupling, and curved spacetime renormalization, Phys.

Rev. D 102, 045021 (2020).
[122] A. Ferreiro, S. Nadal-Gisbert, J. Navarro-Salas, Renormalization, running couplings and decoupling for the Yukawa model

in curved spacetime, Phys. Rev. D 104, 025003 (2021).
[123] E. Kh. Akhmedov, Vacuum energy and relativistic invariance, arXiv:0204048 [hep-th]
[124] G. Ossola, A. Sirlin, Considerations concerning the contributionsof fundamental particles to the vacuum energy density,

Eur. Phys. J. C 31, 165–175 (2003).
[125] A. H. Guth, Inflationary universe: A possible solution to the horizon and flatness problems, Phys. Rev. D 23, 347–356

http://arxiv.org/abs/0907.5424


19

(1981).
[126] A. A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys. Lett. B 91, 99–102 (1980).
[127] V. F. Mukhanov, G. V. Chibisov, Quantum fluctuations and a nonsingular universe, JETP Lett. 33, 532–535 (1981)

[Pisma Zh. Eksp. Teor. Fiz. 33, 549–553 (1981)].
[128] A. D. Linde, A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and

primordial monopole problems, Phys. Lett. B 108, 389–393 (1982).
[129] A. Albrecht, P. J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys.

Rev. Lett. 48, 1220–1223 (1982).


	 Contents
	I Introduction
	II Field-Independent Term in Cosmology
	III Field-Independent Term in RG
	IV RG Evolution of the Constant Term
	V Divergences in d=1 Oscillators
	VI Divergences in the Cosmological Model
	A General Discussion and Idea
	B Double Subtraction
	C Comparison with Other Results

	VII Conclusions
	 Acknowledgments
	A Field–Independent Term and Cosmological Constant
	 References

