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Abstract

We consider the ground state energy of a scalar field in the background of a general
potential which dependes on one coordinate. We consider a general expression fol-
lowing from the analytical properties of the one dimensional scattering matrix. We
show, that reflections give a positive and bound states a negative contribution to
the effective potential and we calculate explicitely two simple examples, the square
well potential and a picewise oscillatory potential. We demonstrate our formulas by
an easy rederivation of the mass of the kink.



1 Introduction

The ground state energy is the response of the vacuum to some external conditions
or background fields. The most popular example is the Casimir effect. Important
applications arise for spaces with nontrivial topologies, especially in connection with
spontaneous compactification, within external gravitational fields, in the bag model
and other areas. Sharp boundary conditions are often a good approximation of a
physical situation. However, there is a interest in calculating the ground state energy
in cases with smooth background fields too. Possible applications include nonideal
boundaries, general background fields and metrics and others. Special interest comes
from classical solutions of field equations like solitons, which can be considered as
smooth background fields when calculating quantum fluctuations around them.

The calculation of the ground state energy is quite easy and powerful methods
- the zeta function method [1] and the heat kernel expansion for instance — are
known for a variety of different boundary conditions and topologies and also in
constant background fields. There is a full understanding of the renormalization.
However, the calculation of the bound state energy in general background fields is
still a difficult task. In the general case one is left with perturbative expansions with
respect to the background field or with respect to its derivatives.

The aim of the present paper is to make a step forward in the investigation of
the ground state energy a general background field. For this reason we consider the
effective potential’

Vg = % Trlog(D — m? — V(z)) (1)

in the external potential V(z). Then the problem is to find the spectrum of this op-
erator. For a time independent potential V(z) this is equivalent to a nonrelativistic
Schrédinger equation which is a well investigated object. Therefor it is natural to
adopt these results. There are several attempts to do so in literature. For instance
this idea has been proposed in [2] and recently in [3]. Also, the expression of the
effective potential as a frequency sum over the mode density or the scattering phase
shift is commonly used, see [4] or recently [6]. Actual interest is in connection with
chiral fields {5] and the evolution of bubble-walls [7].

In the present paper we restrict ourself to the case when V(z) depends on one
coordinate only and decreases as z — oo so that [%3 |V(z)|(1+ |z|)dz is finite. This
case is the simplest one. It is generic in (141) dimensions and it serves as a model in
(341) dimensions. Using well known properties of the S-matrix of the corresponding
nonrelativistic Schrodinger equation we give a closed representation for the effective
potential. By means of an analytic continuation we obtain a representation which
incoporates the bound states in a very natural manner and which has a improved
convergence. Using this representation we consider two simple examples - the square
well potential and a picewise quadratic potential - and calculate the ground state
energy numerically. A different representation is obtained in using the analytical
properties which allow for a general conclusion concerning the sign of the effective

10ften this termin is used in the case of a constant background field and the corresponding
quantity in a nonconstant background field is called effective action.



potential. A explicit calculation is possible for all reflectionless potentials. We give
the corresponding formulas. We apply them to the kink model in (1+1) dimensions
and we rederive the corresponding result [11].

The case of a potential depending on one coordinate which is considered here,
is of restricted interest. The next step will be the extension of this method to a
spherical symmetric potential, for instance.

2 Modesummation and analytic continuation

The effective potential requires for its renormalization the imbedding into a external
system. In order to have a concrete model we consider the Lagrange density

L=%Q(D-M’—/\<I>2)<I>+%¢(D—m2——)\’¢>2)cp. ()

The field ® should be considered as a classical background field depending on one
coordinate. By means of

V() = N@? (3)

it defines the potential in (1) for the field ¢(z), which should be quantized in the
usual way. The energy density per unit area of the plane perpendicular to z; is
given by

1 M?

2V9+—2'V1+)\V2+Veﬁ, (4)

whith the following notations: V, = %% da1 (£ &(z1))", Vi = [, dz: ((1))’

and V, = [ dz; (®(z1))*. The effective potential Veq is given by (1), a regulariza-
tion is provided. We use the regularization known from the zeta function method
Vi = 22 Te(0 - m? = V(a2)) 4™ (5)
¢ 2 63 ! |l=° )

The parameter g has the dimension of a mass and appears in order to adjust the
dimensions.

Instead of the effective potential one can use the ground state energy (for a
detailled discussion see [12])

E

1 ¢ d%k (1-2s)
Eo=3 Wzﬂ:\/kf+k§+w§+m2 p (6)
with s to zero in the end.

The system has to be considered within a large box —~L < z; < L because Ey
as well as V.g contain a contribution which is proportional to L. It appears as a
consequence of the translational invariance which is unbroken in the case when the
potential V(z) is absent. Therefor, that contribution is independent on V(z) and
can be dropped. The corresponding Schrédinger equation reads

(_% + V(z)) Y(z) = K ¥(z). (7)
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For —L < z; < L, the eigenvalues k — w,, are discrete.

Because the potential depends on one coordinate only, after integration over the
momenta corresponding to the directions with unbroken translational invariance the
effective potential can be written in the form

_ _138T(s-3/2) ) 9\3/2-5
Ver = 29s 8m3/2[(s) 2 (w" tm )

n In=0

(8)

The frequency sum in this expression is the essential quantity to be calculated. It
is known to have a single pol at s = 0:

3/2-s 1
T (2 +m?) " =22 4 S+ 0(s), (9)
where X_; is the residuum and % is the regular part.

Using this, the effective potential takes the form

2_1 4 H 20
A U (T T o R I 10
Vert 6r (3“"2) 127 (10)

A similar calculation yields for the ground state energy

1 2_1 2_1 1 E0
E=—-——-———(— )—— . 11
o s12nr 67 \3 +lou 127 +0(s) (11)
The renormalization will be discussed later on. In order to calculate the fre-
quency sum (9) we use the following well known properties of the 1-dimensional
Schrodinger equation. Under the asymption of a sufficiently fast decreasing poten-
tial V(z) the two independent solutions can be choosen to have the asymptotics

wl ~ elkI + 812 e—nk.z: , 'd)l ~ s11 elkx
Tr—0 T—x
i e 1 i 12
,¢2 ~ Sag € ikz , ¢2 ~ 891 enkx +e ikz . ( )
r=——00 =00

The S-matrix S = (s;;) is unitary. The coeflicient sy3(k) is a meromorphic
function of k with possibly a finite number of simple poles on the upper half of
the imaginary axis at k = ik, where &, are the corresponding bound state energies.
The reflection and the transmission coefficients are given by T'(k) = [s11(k)|* and
R(k) = |s12(k)|?, respectively. Obviously, 1 = R+ T holds.

At z = £ we impose Dirichlet boundary conditions to ¥(z). Other conditions
could be choose well, the difference between distinct choices can be shown to be
independent on the potential.

Under these conditions, the eigenvalues w, are solutions of the equations

(sux sn)e”‘L te =g,



These conditions correspond to the linear combinations ), + 13, which form a inde-
pendent set of solutions too. Now, we express the sum (9) in the form

S (2 4m?) T = 5 (=2 m) P (13)
b b () D (o )t - )
((511 +321) 1kL+e—1kL)]

where the integration path 4 goes from oo above the real axis to zero and further
below the axis from zero to oo so that the points k¥ = w, > 0, which are poles
of the integrand, are inside. In the r.h.s. of this formula, the sum corresponds to
the bound states k = ik, and the integral corresponds to the contribution of the
continuous part of the spectrum in the limit L — oo.

To perform the limit L — oo we consider the upper half part of 4. By means of
k — k +ie (¢ > 0) we have

n [((on = sm) e — ) (o + ) &4 4 <75
= —2ikL + 2¢L — it + O(e™ L) .
For the lower half part we note k — k — ie and have

g [((Sn —sm)et — e_ikL) ((311 +sp1) € + e-ikL)]
= 2ikL + 2¢L + In (311 321) + O(e —cL) -
In the limit L — oo we obtain up to exponentially small contributions

S@+m)t = D) o [T ()T g

Wn Kn

+/0 ;7]:1 (k2 )3—3 —a%ln (311 321) + O(e™ %) .

The second term in the r.h.s. is the contribution, which is independent on V(z) and
which is proportional to L. It will be dropped. Now, the integration path can be
turned to the imaginary axis: k — ik. Using the relation

k .
o=l

which is a consequence of the unitarity of S and where §(k) is the scattering phase,
we obtain

E (wi -+ 1‘!‘L2)%_‘s - _COSWS /oo dk (k2 _ m2)g aak lnSu(lk) (15)

wn L

up tp terms independent on V(z). The contribution from the boundstates has been
canceled by the extra contributions appearing from the poles at k=i, when turning
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the integration contour to the imaginary axis. This formula connects the ground
state energy with the S-matrix taken at imaginary momentum k. It it remarkable
that the contributions of the bound states are not explicit here. They are implicit
present, of course.

Now, let us discuss the renormalization. As it was shown in (8], the function
log s1; has the following asymptotics as k — oo:

YW A
—t+ ——= + O(k~*

2% T @y T O
with V; and V; defined below eq.(4). Inserting this two terms into the representa-
tion (15) of the frequency sum, we can calculate the resulting residuum at s=0 and
the regular part according to formula (9). We denote them by £2, and X§° corre-
spondingly. Now, the effective potential V.q splits into two parts Vg = V3 + Vb
with

lOg Sll(ik) ~ —-

. A m2 2 Alz m?2
o = 353 (log—ﬂ—,‘,——l)m VI+G47I'2 log—ﬂ—zvg. (16)
Inserting the last line into formula (4) for the energy of the whole system and using

(3) it is clear, that these terms perform a renormalization of the mass M and the
coupling A of the field &:

2y/ 2
M? - M?* 4+ m:\ (logr-:— - 1) (17)

6472 F '
This renormalization is a finite one. The reason is the use of the zeta function which

yields finite results. When using the formula (6) for the ground state energy instead,
the same calculation can be performed. In that case, the renormalization reads

2/\/ 2 1
M? - M? 4 717;7r2 (log :;2 +1- ;) (18)
A2 m> 1 1
A— A log— +=~--].
- +647r2(0g4p2+2 s)

It is infinite, as usual in quantum field theory. Also, from general theory of renormal-
ization, these coefficients can be connected with the renormalization group functions,
especially with the beta function, of course. Remark, that in this case there is no
renormalization of the kinetic term, i.e., of that term which contains derivatives of '
the field .

Substracting the asymptotic terms (16) out from log s;;(ik) in (15), the integral
becomes finite for s =0. The corresponding contribution to the effective potential

reads:

vab = 1 /w dk (k* — m2)3/2-2 log s11(ik) +

1272 Jm 6’6 (19)

YV X,
2k 8k3



3 Two simple examples

In this section we apply the above formulas to two simple examples for the potential
V(z), namely the square well potential

0 |z|>L
V. = 20
@={7, 7 (20)
and the picewise oscillatory potential
0 |z| > L

Vatz) = { (21)

Vo(1—|=l/L)* el< L~

Let us first consider the square well potential V,q (20). The contribution Vg to
the energy, which results from the gradient of the field @, is infinite, the other two
parts are simply Vi = LV, and V; = LV?. Therefor, the total energy is not a
meaningful quantity, nevertheless the effective potential can be calculated and the
renormalization can be carried out.

The S-matrix for this potential is well known and it reads (already after the
rotation to the imaginary axis k — ik):

4kq e2kL

sn(ik) = (k + q)z 2l (k — q)? e~29L

(22)

with ¢ = v/k2+ V. This expression can be inserted into Ve (19). After some

simple calculations we obtain:

L 2 Ve 3 ~
sub __ 2 _9_ - _Zy2
V' = 3o <(m + Vo) log <1+m2) mVo 2V°> (23)
S e 2 a3z (k= q)°
+——127r2fm dk (K = m?)Pl? S
1 oo 1 1+ kL
_57?/"1 dk (k? — m?)*/? E(k_+s -
k_q) etel — 1

It is represented in Fig. 1 for several values of the parameters L and V;. The first
term within this expression is proportional to L, the ‘length of the potential well’.
Its sign depends on Vp/m? and takes both values, positive and negative. The second
part depends on V,/m? only. The third part depends on all parameters. For large
L it is proportional to exp(—4v/m? + VoL). The convergence of the k-integral is a
consequence of the subtractions performed. In the second term the convergence of
the integral is by powers of k. In the third term, which is the most complicated one,
the integrand falls off exponentially as k — oo and the integral converges very easy.
This is a result of rotating the integration contur in Vg (15).

The representation (23) is valid for both signs of Vo, i.e., for repulsive as well as
for attractive potentials V(z). In the last case, there is always at last one bound
state. Its contribution to the frequency sum is taken into account by formula (19)



vVeff
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Fig. 1 The effective potential for the square well potential as function of the length L
of the well for some values of its heigth V,

automatically. In the case V5 < —m < 0, the potential is overcritical with respect
to particle creation. Correspondingly, V5 acquires a imaginary part.

Now we turn to the picewise oscillatory potential V,, (21). The scattering matrix
can be obtained in the following way. We consider the solution of the Schrédinger

equation (7)

ei*T 4 5 e7ike z< -L
¥(z) = equ(—z) + frv(~z) -L<z<0

oru(z) + Bav(z) 0<z<L’

Sllelkz L<z

where u(z) and v(z) are two independent solutions in the interval 0 < r < L, a and
B being constants. This function and its first derivative have to be continuous at
z =0 and z = L. From these conditions, one obtains
ik W? e~ 2k
sulk) = 24

) = Qe =P o) @ w0 - P v(0) 24
with W = uv’ — u'v and where the abbreviations P = v/(L) — ik u(L) and Q =
v'(L) — ik v(L) are used. These solutions can be expressed by hypergeometric
functions. We choose the following combinations [9]:

uz) = Ula,y) (25)
v(z) = Ule,—y) (26)



Veff

Fig. 2 he effective potential for the picewise oscillatory potential V,, as function of the
length L for some values of the heigth Vo form =1

with the notations

O 2 N (i PR
= YV

and

U(a,y) =

vr {lFl(a, 1/2%,v%/2) V2. Fia+ 1/2,3/2;312/2)] -y
2° | T(a+1/2) I'(a)

with & = a/2 + 1/4. From (9] we find W = —\/47r\/Vo/L/T(a +1/2) in this case.

Using these formulas, we obtain

4n/Vo 1 L? ; 13 L2\] -2/
7 [1F1 (as 5,?) + Vel Fy <a+ 33 €

Q u(0) — P v(0) = —

and

' 27 1 1 L2 ,f 1 L?
Q w(0) - P v/(0) = {2 By (-511:; (a,g;g) #1F (Q,E;T))

2vV% L? 13 L? I 13 L? _
+v2mra Lo((l——§-> 1P (a+§,§' )+L1F1 (a+§,§;—2—))}e L*/4

with L = /2L+/V; and 1 F"1(a, b; z) is the derivative of the hypergeometric function
with respect to z. These formulas are sufficient to calculate s11(k), also the rotation

9



k — ik can be performed. Before carrying out the calculation of the effective
potential the subtractions have to be performed. From (21) we calculate V} = :—:;VOL
and V; = %VJL. Inserting all these into the effectice potential Vb (19), the integral
in finite and can be calculated numerically for any values of the parameters. The
result is represented in Fig. 2 as a function of L for several values of the depth V;.
For negative V4, the potential is attractive. In that case one has to perform the
formal substitution a — —ia and L — V/iL in the above formulas. For sufficiently
large values of V;, the potential becomes overcritical and the effective potential takes
complex values.

4 Analytical properties and reflectionless poten-
tials

Consider the Schrédinger equation (7). The set {R(k),Bn,&n(n = 0,1,...,N)},
where R(k) is the reflection coefficient, the x, are the bound state energies, the 3,
are some numbers and N is the number of bound states, is called scattering data.
The potential V(z) can be restored from the scattering data uniquely. In general,
by means of its analytic properties, the coefficient s11(k) can be represented in the

form ) N
=1 e log(1 — |R(q)|*) k+ik,
log s11(k) = 27 ./-oo k—q+ie dg + Z log ’ (27)

where ¢ — +0 and R(q) = 1 — |s1:(¢)|? is the reflection coefficient and the sum goes
over the bound states. The continuation to the positive imaginary axis, i.e., k — ik
yields

k rologls N k+ kn
log511(k)=;/; ——-————gqlr(qu)l) dq-+-§:logk_fg
' n=1 n

where s,;(—k) = 51,(k) has been used. In order to perform the renormalization we
use the formulas [8]

, o0 __2 =) N
MV, = /_ V(e)ds = = /_ log |s11(q)| dg =4 3 ka

n=1

N
2

n=1

) ol —8 [ 16
N, = [_ V(z)dz = — | q’log |s11(q)| dg + 3

and obtain from (19)

1 [ d 2 [~ 4
sub 2 032 Y )2 q
Vei” = 1272 ,/m dk (k" —m’) ok {‘A’/o quz(k2 T qg)' log |s11(g)|

+§j (log ke —2% + % (%)3)} : (28)
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This formula can be simplified

w _ L[ . VEE 4 1
Veﬂ" = -8_7-5/0 dqq{—2q+ g + m?log }log

V@ +ml—g |s11(g)]
N
L S [(m2 — k2)*?arcsin Iny éns - nnmz] . (29)
on2 = n m 3

From this formula it follows that the bound states give a negative contribution to the
effective potential whereas the integral in r.h.s. of this formula, which resuits from
the reflections (it vanishes for |s1;1| = 1, i.e., for a vanishing reflection coefficient),
gives a positive contribution (note |s;;| < 1 and the expressions in both figure
brackets in (29) are nonnegative). This conclusion is different from what one would
expect from the known fact, that a repulsive resp. attractive potential yields a
negativerep. attractive phase shift.

An important special case are the reflectionless potentials. In that case we have
|s11(k)} = 1 and sy;(k) is a rational function

N k4
k)= =, 30
311( ) nI;I1 b — iﬂn ( )
The potential V(z) can be restored from the scattering data explicitly
d’
V(z) = —2——logdet A , (31)

dz?
where the matrix A is
6’1 e—2nn.r
Kn+ Km
The effective potential is in this case given by the second term in r.h.s. of formula
(29)

Anm = ‘Snm +

sub __
Va =

1 X . ka4
A [(m2 — k2)*?arcsin En L 263 - xnmz] .

- 3
6m2 =1 m 3

It is completely negative. The contribution of one bound state to this formula is
shown in Fig. 3a.

5 The Kink

In this section we demonstrate how our method reproduces the well known correction
to the mass of the kink. For this purpose we need to rewrite the basic formulas in
(1+1) dimensions. The formulas (2)-(5) remain unchanged, instead of (8) we obtain

19T (s—=1/2) 2 2\1/2-5
Voo = =335 3T & AT
Expression (9) is independent on the dimension and (10) becomes

1
Vi = T4 (1+1n§) - 5%o.
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-0.002
-0.15
-0.003
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-0.004
-0.25
-0.005
-0.3
Fig. 3a The contribution of one Fig. 3b The contribution of one
bound state to the effective po- bound state to the effective po-
tential for a reflectionless poten- tential for a reflectionless poten-
tial in the (3+1) dimensional case tial in the (141) dimensional case

The renormalization has been changed in that sense, that only one subtraction 1s
necessary and only the mass term is renormalized. For the effective potential we
1

obtain P 'V,
b - _/ dk (k2—m"’)"2a [logsll(ik)+ 1] :

271’ m 2k

In the case of a reflectionless potential we note (30) and this integral can be calcu-
lated. We obtain for the effective potential

N
O — 5 L [T gk (52— m2)2 0 (g K _gkn
Ver nz=:127r/md (k" —m’) ak[logk—fc; 2k
N1 K
=y - (m? — k2)Y? arcsin — — K,| . (32)
n=1 n " m

This function is very closed to that in the (3+1) dimensional case. It is shown in
Fig. 3b. In this form it was first derived in [10] in connection with static solitons.

These formulas can easily applied to the kink. It is a static solution ®4 of the
scalar ®* theory in the case of a mass term with ‘wrong sign’

1 89\’ A
S(®) = §/dx ((5;7) +M2<I>’-—§<I>“) .

It reads ®a(z) = % tanh -’\% ,. By means of a expansion of the action around the
classical solution ® = &, + ¢, i.e.,

S(@a-+9) = S@a) + 5 [ 42 w20 e(a) + .

12



we obtain the Lagrangean (2) with m = v/2M and V(z;) = 3M?/ cosh?(mz;/v/2).
This is the well known Eckhart potential. It has 2 bound states x; = M/v/2 and
k2 = V2M. Inserting these values into formula (32) we obtain immediately

1 3
Vsub = _ M
eff (2\/6 \/571’)

in aggreement with [11].
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