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Vacuum Expansion and Collapse Inside an Infinite Shell

Christopher A. Laforet
(Dated: July 26, 2023)

The FRW model of cosmology assumes a Universe with uniform pressure and density everywhere
in space at a given time. But at the largest scales, the Universe has a web-like structure surrounding
large voids, violating these assumptions. Furthermore, a given region of spacetime is describable
only by a single metric and therefore it cannot be that the Universe is modelled as an FRW perfect
fluid since this would be the incorrect description of both the web and the voids. The cosmic web
must be described by metrics with non-zero energy-momentum tensors with non-uniform pressure
and density describing the matter within it. Therefore, the model of cosmology describing the
expansion of the Universe must be a vacuum solution describing the empty spaces in the Universe
surrounded by an infinite, massive shell (the surrounding Universe). The internal Schwarzschild
metric is the model for these vacua. A detailed analysis of falling frames in the external metric
in Kruskal-Szekeres coordinates shows that the source of the Schwarzschild metric is at the event
horizon, a location/time of infinite density, not at the singularity, as it is currently assumed.
The spatial homogeneity of the internal metric is demonstrated by visualizing the geometry in
Kruskal-Szekeres coordinates (visualized in 1+2 dimensions) as well as examining the Killing
vectors for the internal spacetime. Using the coordinate age of the Universe and transition redshift,
this predicts the accelerated expansion, the Hubble diagram fits currently available cosmological
data, and it gives a Hubble constant H0 of 71.6km/s/Mpc. The angular term of the metric
describes the relativistic kinematic precession effect known as Thomas Precession which can be
interpreted as spin about the time dimension.
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I. MOTIVATION AND ROADMAP

The current model of cosmology is based on the FRW
metric, which comes from the assumption that the Uni-
verse is accurately modelled as perfect fluid. This means
that we are modelling the Universe as having uniform
density and pressure at all points in space. While
this may be a good approximation for the early pre-
recombination Universe, the perfect fluid assumption is
clearly no longer a valid one in the later Universe. We
observe that the Universe is not a uniform distribution
of galaxies, but rather a web-like structure of matter sur-
rounding large voids. Thus, the pressure and density
is surely not uniform at all locations in space, making
the perfect fluid assumption less and less accurate as the
Universe expands and cools.

Furthermore, it is notable that a given region of space-
time can only be described by one metric. This means
that the region containing a star, for example, is not
described by the FRW metric, it is described by a
spherically-symmetric metric with a radially-dependant
mass density and pressure where the metric must match
the external Schwarzschild metric at the star’s outer ra-
dius. Therefore, the cosmic filaments cannot be described
by the FRW metric because they are not perfect fluids
(with regions of uniformly dense gas being the excep-
tion) and the spacetime in those regions will be described

by metrics whose mass distribution matches the config-
urations of the filaments. What this implies is that a
cosmological metric (one that accurately describes the
expansion of the Universe) must be a vacuum solution
describing the empty spaces surrounded by the matter in
the Universe. This empty space differs from Minkowski
space in that the empty spaces in the Universe are sur-
rounded by the infinite mass of the Universe and there-
fore should be modelled as a spherically-symmetric vac-
uum surrounded by a shell of infinite mass.

It will be argued in this paper that the metric prop-
erly describing the vacuum of the Universe, including its
accelerated expansion, is the internal Schwarzschild met-
ric. Sections III and IV demonstrate how the source of
both the external and internal metrics are not at r = 0,
but rather at the event horizon which represents an in-
finitely dense shell as viewed from the outside in the case
of the external metric, and an infinitely dense shell as
viewed from the inside in the case of the internal metric.
The justification for the mass not being concentrated at
r = 0 is also supported by the fact that if this were true,
it would violate the vacuum assumption of the metric.
Justification for the internal metric representing a vac-
uum surrounded by a shell at infinity comes from looking
at the geometry in Kruskal coordinates and noting that
the horizon is located at spatial infinity for the internal
metric. This means that in the internal metric, the shell
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has an infinite Schwarzschild radius and therefore infinite
mass. In both metrics, as will be shown, these shells look
like infinitely dense points in the frame of an observer ap-
proaching the shell in space for the case of the external
metric and in time for the case of the external metric.
The temporal nature of the spatial expansion and con-
traction of the internal metric matches what we observe
in regards to the structure of the Universe.

In section III, we define the Lorentz boost and Rapid-
ity for falling frames of the external metric in Kruskal-
Szekeres coordinates by finding the relative velocity be-
tween the rest frame and falling frame in these coor-
dinates. The analysis of the Kruskal-Szekeres coordi-
nate differentials leads to an expression that gives the
full Kruskal-Szekeres derivative as the relativistic veloc-
ity addition of the velocity of the rest frame and the
relative velocity between the rest frame and falling frame
in Kruskal-Szekeres coordinates. The velocity of the rest
frame is a function of only the Schwarzschild time t and
since the Schwarzschild metric is independent of t this
velocity is merely a coordinate artifact and does not cor-
respond to a physical velocity. By solving for the rel-
ative velocity between the rest frame and falling frame
in Kruskal-Szekeres coordinates, we are able to define
the Lorentz boost in Kruskal-Szekeres coordinates of the
falling frame relative to the rest frame and find that at
the horizon, the entire spacetime is length contracted in
the falling frame as the horizon is approached, such that
there is no spacetime inside the horizon in that frame.
This bolsters the conclusion that the internal metric is
not describing the inside of a black hole, but rather infi-
nite space surrounded by an infinitely dense shell located
at a past time in the frame of a present observer. The
rest of the paper provides detailed analysis of the internal
metric spacetime and its cosmological consequences.

In section IV, we also demonstrate that surfaces of con-
stant time in the internal metric can be visualized as a
collection of 2-sheeted hyperboloids analogous to how the
external metric at a given radius can be visualized as a
collection of one sheet hyperboloids. The 2-sheeted hy-
perbolic nature of the metric changes the interpretation
of the angular term relative to the external metric, and
it is shown that the metric describes a Universe that is
isotropic, homogeneous in space and inhomogeneous in
time, as our Universe has been observed to be. The ho-
mogeneity of space of the internal metric is demonstrated
by analyzing the Killing vectors in the context of the in-
ternal metric. It is also demonstrated that the angular
term of the internal metric comes from the kinematic rel-
ativistic effect known as Thomas Precession. This pre-
cession acts as an intrinsic ’spin’ around the time dimen-
sion. In section V, it is shown how this term gives rise
to Coriolis accelerations that affect curvilinear motion of
massive objects as well as gravitational lensing angles.

In section VIII we solve for the unknowns for the in-
ternal Schwarzschild metric, namely our current cosmo-
logical position in the metric and the counterpart of the
Schwarzschild radius, using existing cosmological data.

The model is then used to calculate relevant cosmolog-
ical parameters and it is found that the model fits the
cosmological data very well.
In section XII, we place the external metric in the back-

ground cosmology of the internal metric and show that
a Black Hole event horizon can never form during the
expansion phase. We see that gravity becomes repulsive
during the collapse phase and would-be Black Holes be-
come White Holes. This is a consequence of the Universe
moving in the opposite direction of time during collapse
relative to expansion.
We will begin the argument by examining the geometry

of the full Schwarzschild metric in detail.

II. THE SCHWARZSCHILD METRIC IN

SCHWARZSCHILD AND KRUSKAL-SZEKERES

COORDINATES

The event horizon of the Schwarzschild metric is de-
scribed as a coordinate singularity in Schwarzschild coor-
dinates. This singularity is overcome using the Kruskal-
Szekeres coordinates for the spacetime since the metric
is regular at the horizon. However, the meaning of the
the Kruskal-Szekeres coordinates in terms of spacelike
and timelike basis vectors is not clear. For much of the
spacetime, the Kruskal-Szekeres coordinates are mixtures
of space and time such that the meaning of the slope of
a worldline in these coordinates is not always clear.
In this paper, the Kruskal-Szekeres coordinates and the

derivatives of worldlines in these coordinates is clarified.
We find that we can define a Lorentz boost and rapidity
in Kruskal-Szekeres coordinates for falling frames, and
with those, it is shown that the worldlines of all frames
approaching the event horizon become light-like there,
even if the slope of the worldline in Kruskal-Szekeres co-
ordinates is not ±1 there. This is possible because the
derivative of the worldline in Kruskal-Szekeres coordi-
nates at the horizon is not a true velocity due to the
fact that the coordinates are mixtures of space and time.
But we can mathematically extract a derivative for the
worldline in Kruskal-Szekeres coordinates which is a true
velocity relative to the rest frame for any point on the
worldline by removing the part of the derivative related
to the rest frame at the same point, and we find that this
velocity goes to 1 at the horizon for all worldlines.

III. THE FALLING FRAME OF THE

EXTERNAL METRIC IN KRUSKAL-SZEKERES

COORDINATES

The Schwarzschild metric is the simplest non-trivial
solution to Einstein’s field equations. It is the metric that
describes every spherically symmetric vacuum spacetime.
The the external form of the metric can be expressed as:

dτ2 =
(

1− rs
r

)

dt2 − 1

1− rs
r

dr2 − r2dΩ2 (1)
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Equation 1 is the external metric with t being the timelike
coordinate and r being the spacelike coordinate. The
Schwarzschild radius of the metric is given by rs = 2GM
in units with c = 1. The external metric is the metric
for an eternally spherically-symmetric vacuum centered
in space.
We can see in equation 1 that as r → rs, the magnitude

of the basis vector ∂t goes to zero while the magnitude
of ∂r goes to infinity. This location is called the ’Event
Horizon’ of the metric. The behaviour of the basis vectors
at this location seem to imply that there is a coordinate
singularity at this location since the spacetime curvature
is not infinite there.
In order to overcome the behaviour of the basis vec-

tors at this location, different coordinate systems have
been developed which do not have degenerate behaviour
at the Event Horizon. The most important of these co-
ordinate systems are the Kruskal-Szekeres coordinates,
which are the maximally extended coordinates for the
Schwarzschild metric. The coordinate definitions and
metric in Kruskal-Szekeres coordinates are given below
(derivation of the coordinate definitions and metric can
be found in reference [1] where v = T and u = X).

T =

√

(

r

rs
− 1

)

e
r

rs sinh

(

t

2rs

)

X =

√

(

r

rs
− 1

)

e
r

rs cosh

(

t

2rs

)

(2)

With the full metric in Kruskal-Szekeres coordinates
given by:

dτ2 =
4r3s
r
e−

r

rs

(

dT 2 − dX2
)

− r2dΩ2 (3)

Finally, we plot the metric on the Kruskal-Szekeres coor-
dinate chart [2] in Figure 1:

FIG. 1. Kruskal-Szekeres Coordinate Chart

In this section, we will be focusing on region I in
this chart, which is the spherically symmetric spacetime
around a spherically symmetric source in space.
We can see in Figure 1 that for a rest frame (r =

const), that dX
dT depends on the value of t we evaluate

the derivative at since the derivative for the rest frame
is the tangent to the hyperbola at t. Since the metric
is time-symmetric, we know that the actual physics does
not depend on the value of t and therefore, we need a
deeper understanding of the meaning of the changing dX

dT
in the rest frame and how it relates to the falling frame
at the same point.
Let us first take the differentials of T and X in equa-

tions 2:

dX =
∂X

∂r
dr +

∂X

∂t
dt

dT =
∂T

∂r
dr +

∂T

∂t
dt

(4)

Calculating the partial derivatives, rearranging and

defining R ≡ re
r

rs

2rs

√

( r

rs

−1)e
r

rs

we get:

dX

dt
= R

[

dr

dt
cosh

(

t

2rs

)

+
(

1− rs
r

)

sinh

(

t

2rs

)]

dT

dt
= R

[

dr

dt
sinh

(

t

2rs

)

+
(

1− rs
r

)

cosh

(

t

2rs

)] (5)

Next, we need to calculate dX
dT from equations 5 by fac-

toring out
(

1− rs
r

)

cosh
(

t
2rs

)

from each equation and

dividing:

dX

dT
=
dX

dt

dt

dT
=

dr
dt

(

1− rs
r

)

−1
+ tanh

(

t
2rs

)

dr
dt

(

1− rs
r

)

−1
tanh

(

t
2rs

)

+ 1
(6)

Next, we make the following definitions:
(

dX

dT

)

0

≡ tanh

(

t

2rs

)

(7)

This is the derivative of the rest frame at t since plugging
dr
dt = 0 into equation 6, we get dX

dT = tanh
(

t
2rs

)

. Since

we know the Schwarzschild metric is independent of t,
this derivative must represent the flow of the spacetime
itself in these coordinates (it is a non-physical artifact
of the Kruskal-Szekeres coordinates) at fixed r and is not
related to any actual change in motion through space and
time.
And we define the relative velocity of the frame in mo-

tion relative to the rest frame as:
(

dX

dT

)

rel

≡ dr

dt

(

1− rs
r

)

−1

(8)

This is the relative velocity in Kruskal-Szekeres coordi-
nates between the frame in motion and the rest frame at
r. This derivative is 0 for the rest frame since dr

dt = 0 in
that frame. Note that this derivative seems to be prob-
lematic at r = rs, except that reference [3] tells us that
dr
dt for an observer falling from rest at r = r0 is given by:

dr

dt
= −

(

1− rs
r

)

√

rs
r − rs

r0

1− rs
r0

(9)
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And if we combine equations 8 and 9 we get:

(

dX

dT

)

rel

= −
√

rs
r − rs

r0

1− rs
r0

(10)

Which is well behaved and equal to -1 when r = rs Plug-
ging these definitions into equation 6, we get:

dX

dT
=

(

dX
dT

)

rel
+
(

dX
dT

)

0
(

dX
dT

)

rel

(

dX
dT

)

0
+ 1

(11)

We recognize that equation 11 is the relativistic velocity
addition formula giving us the total velocity as the rel-
ativistic sum of the rest frame velocity and the relative
velocity between the moving frame and the rest frame.
We can solve for

(

dX
dT

)

rel
to get an expression for the

relative velocity between a frame in motion and the rest
frame in Kruskal-Szekeres coordinates:

(

dX

dT

)

rel

= −
(

dX
dT

)

0
− dX

dT

1−
(

dX
dT

)

0
dX
dT

(12)

Assuming that
(

dX
dT

)

0
ranges from -1 to 1 and 1 > dX

dT >
−1, we see that the relative velocity approaches 1 or -1 for
all dX

dT as the horizon is approached since the horizon is at

t = ±∞, such that
(

dX
dT

)

0
= 1 there. Equation 12 is also

constant along a given hyperbola (i.e it is independent
of t) since it represents the relative velocity between the
moving and rest frames. In fact, it is the dX

dT we get when
setting t = 0 in equation 6 which makes sense because
at t = 0, the Schwarzschild basis vectors and Kruskal-
Szekeres basis vectors are aligned there, meaning that
the X and T in

(

dX
dT

)

rel
are pure spacelike and timelike

basis vectors and thus the derivative gives a true velocity
relative to the rest frame. This is in contrast to the gen-
eral dX

dT which is a derivative without a clear spacetime
meaning since the X and T coordinates are mixtures of
space and time everywhere else.
It is also notable that equation 11 is undefined when

t = ∞ because there
(

dX
dT

)

0
= 1 and

(

dX
dT

)

rel
= −1 which

gives us dX
dT = −1+1

−1+1 = 0
0 . Thus, the full derivative is

undefined at t = ∞.
We will now get an expression for the Lorentz boosts

of frames in motion relative to the rest frame. First, we
note that the reference frame shown in Figure 1 is the
rest frame at t = 0. If we chose the rest frame at some
t ̸= 0, the T and X axes would be boosted relative to
the t = 0 frame because the rest frame has a non zero
velocity in Kruskal-Szekeres coordinates when t ̸= 0. So
we want to find an expression for the Lorentz boost that
uses

(

dX
dT

)

rel
since that velocity is the velocity of frames

in motion relative to the rest frame, regardless of what
the Kruskal-Szekeres velocity of the rest frame is.
We can solve for dt

dτ in equation 1 as follows:

dt

dτ
=

1
√

(

1− rs
r

)

(

1−
(

dr
dt

)2 (
1− rs

r

)

−2
)

(13)

We get the time dilation for the rest frame by setting
dr
dt = 0. If we define

(

dt
dτ

)

0
≡ 1

√

(1− rs

r
)
, this is the time

dilation caused only by the spacetime curvature at r (i.e.
this is the pure gravitational time dilation of the rest
observer). We can define the Lorentz boost of the moving
frame relative to the rest frame by dividing dt

dτ in equation

13 by the gravitational time dilation
(

dt
dτ

)

0
since we are

only interested in the time dilation relative to the rest
frame when considering Lorentz boosts:

γ =
dt
dτ

(

dt
dτ

)

0

=
1

√

1−
(

dr
dt

)2 (
1− rs

r

)

−2

=
1

√

1−
(

dX
dT

)2

rel

(14)

The rapidity ω relative to the local rest observer in
Kruskal-Szekeres coordinates is given by:

ω = tanh−1

((

dX

dT

)

rel

)

(15)

Finally, we can combine these to get the Lorentz factor
as a function of rapidity:

γ =
1

√

1− tanh2 (ω)
(16)

The Kruskal-Szekeres coordinate axes in Figure 1 are the
spacelike and timelike bases of the spacetime in the rest
frames at t = 0 because dX

dT = 0 for the rest frames when

t = 0. So
(

dX
dT

)

rel
is the velocity of the falling frame as

seen from the rest frame. But a falling frame will have
an increasing velocity relative to the rest observers, and
therefore, their reference frames will be Lorentz boosted
relative to the rest frame per equation 14. Figure 2 shows
three snapshots of boosted falling frames that started
falling from infinity with the frame’s r coordinate (the r
the frame had fallen to when the boost is being depicted)
labelled below each snapshot.

FIG. 2. Lorentz Boosted Frames During Freefall

In this figure, we can see that the basis vectors of the
boosted frames are rotated relative to the rest frame (the
X ′ and T ′ axes represent the boosted frames).
From this, we can also get a sense of length contraction

in the falling frame. Firstly, we must note that the dX
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term of the metric really should be dR since it represents
a change in the radial position of a particle. This means
the Lorentz boost the falling frame experiences when it
falls is radial in all directions, with the origin of the frame
at the horizon (it is the radial ∂X = ∂R basis vector
that rotates in Figure 2). The planar surfaces perpen-
dicular to a Cartesian coordinate axis in the Minkowski
metric become spherical surfaces centered on the met-
ric source in the Schwarzschild metric. So when we talk
about length contraction in a radially falling frame, we
are saying that circumferences around the source of the
metric are length contracted in that frame and remain
circular. This radial contraction is necessary for all in-
ertial observers to see the spacetime as spherically sym-
metric. If the length contraction was dependant on the
direction of the radial fall, then inertial observers would
disagree on the spherical symmetry of the metric.

We can see the length contraction effect in Kruskal-
Szekeres coordinates by looking at the X distance from
the horizon to some radius r along a line of constant T
for two different cases where the observers started falling
from a different radius in each case such that when when
we look at the frame of each observer at some time after
they started falling, the Lorentz factor and rapidity have
different values for each case.

FIG. 3. Length Contraction in the Falling Frame

In the above figure, the left frame has a lower radial
velocity and therefore a lower rapidity (ω = −0.25 in this
case) relative to the right frame, which has a rapidity of
ω = −0.75. We chose the same point in both frames for
comparison to look at its distance from the event horizon
in both frames. By comparing the dark lines in each
picture, which represent the distance from the horizon
to some r (the same r in both cases) measured in X ′

at constant T ′ in each frame, we clearly see that this
distance is shorter in the frame on the right compared to
the frame on the left.

We can calculate the actual ratio of the lengths in the
two frames given the length contraction equation X =
X0

γ . The ratio of the lengths of the lines on the left (XL)

and right (XR) sides of Figure 3 will be a ratio of Lorentz
factors. We can see from the figure, that ωL = −0.5 and
ωR = −1.5. Using equation 16, we can solve for the ratio

of the lengths in the falling frames as:

XL

XR
=
γR
γL

=

√

1− tanh2 (−0.25)

1− tanh2 (−0.75)
≈ 1.26 (17)

Note that we would get the same result regardless of
which point on the r hyperbola we draw the line to, as
long as we use the same point in all frames being com-
pared and draw the lines to the horizon along a line of
constant T in each frame.
As the rapidity increases further, we can see that this

line will tend toward a null geodesic as the horizon is
approached indicating that the spacetime contracts fully
to the horizon in the falling frame, which is consistent
with the argument that the falling frame becomes light-
like at the horizon.
The contraction of the r coordinate in these frames

relative to the rest frame can be calculated by plugging
the contracted X length into equation 2 and solving for
r. By calculating the contracted r coordinate, we can
calculate the contracted circumferences around the met-
ric source in the falling frame and we can see from the
above analysis that these circumferences will contract to
zero when the frame reaches the horizon.
Given the length contraction observed, the observer

should also see the volume of the source contract in the
falling frame. Applying the length contraction equation
to the volume of the source:

V ′ =
V

γ3
=

4πr3s
3γ3

(18)

Where rs is the Schwarzschild radius. The mass of the
source is related to its Schwarzschild radius by M =
rsc

2

2G If we assume the mass of the source is within the
Schwarzschild radius, the density of the source in the
falling frame is given by

ρ =
M

V ′

=
3c2

8πGr2s
γ3

(19)

So in the falling frame, γ goes to infinity as the horizon
is approached such that the density there also goes to
infinity. This shows us that due to the length contraction,
there is no space beyond the event horizon in the falling
frame, indicating that the event horizon is the end point
of gravitational collapse. At the horizon, the falling frame
will see the entire Universe radially length contracted to
the horizon as well due to length contraction. This is
reflected in the rest frame by the fact that all hyperbolas
intersect with the horizon when t = T = X = ∞, which
is the horizon itself. We see therefore that the Kruskal-
Szekeres coordinates represent the spacetime in the frame
of the source which is an infinitely dense point at r =
1. This point looks like a surface to a distant observer,
but is length contracted to a point when the horizon is
approached.
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What has been demonstrated here is that the T =
X = 0 point on the Kruskal-Szekeres chart represents
the source of the metric. In fact, all the points on the
T = ±X lines are the same event since they all have
the same spatial coordinate r = rs and the points on
those lines are connected by null geodesics. So if two
points on the chart have the same spatial location and
are separated by zero proper distance, then they must be
the same event. So, in a sense, X marks the spot of the
metric source in the Kruskal-Szekeres coordinate chart.
What the Kruskal-Szekeres coordinates tell us is that

the Schwarzschild metric is not only spherically symmet-
ric, but also hyperbolically symmetric (the hyperbolic
symmetry is manifest in the external metric as time-
independence). As will be discussed, the hyperbolic sym-
metry manifests as homogeneous space in the context of
the external metric. The metric symmetries will be fur-
ther discussed in section IV.
This leaves us with two important questions. The first

is what do the other three regions of the chart represent.
The second is what is the r = 0 curvature singularity and
what happens there if it is not the source of the metric.
These questions are the focus of the remainder of the
paper.

IV. SYMMETRIES OF THE SCHWARZSCHILD

GEOMETRY

Having discussed the geometry of the external metric,
let us turn to the internal metric (Region II in Figure 1).
The internal form of metric can be expressed as:

dτ2 = −
(

1− u

r

)

dt2 +
1

1− u
r

dr2 − r2dΩ2 (20)

Equation 20 is the internal metric and for the rest of the
paper it is important to remember that when discussing
the internal metric, t is the spacelike coordinate and

r is the timelike coordinate . To help distinguish be-
tween the r, t, τ , and Ω coordinates in the internal and
external metrics, from this point forward, we will

denote the external metric with primed coordi-

nates: r′, t′, τ ′, and Ω′. So r refers to the internal
coordinate and r′ refers to the external coordinate. This
delineation will be important in later sections.
The internal metric is currently believed to describe

the interior of a Black Hole. But consider the case
of a spherically-symmetric vacuum surrounded by a
spherically-symmetrically distributed infinite amount of
mass. This would be a spacetime surrounded by a shell
with an infinite Schwarzschild radius (because the mass of
the shell is infinite). Since this is a spherically symmetric
vacuum, it must be described by the Schwarzschild met-
ric. This is also the description of spherically-symmetric
vacua in our Universe, since the surrounding Universe is
effectively a shell of infinite mass (every region of the Uni-
verse is light-like connected to the Big Bang in all direc-
tions, which acts as a shell of infinite mass/Schwarzschild

radius). Therefore, the internal metric describes the
spacetime of the pockets of empty space in the Universe.
The constant u in the internal metric is a time constant
whose value in years will be later derived from cosmo-
logical data. Choosing a value for this constant amounts
to choosing the units of time for analysis. This metric is
essentially the Minkowski metric with a variable speed of
light, which can also be interpreted as an expanding or
collapsing space.
So the Schwarschild metric describes the curved space-

time caused by an infinitely dense shell from two perspec-
tives:

• The external metric describes the spacetime around
an infinitely dense shell of finite mass and radius in
the frame of an observer infinitely far away from
the shell

• The internal metric describes the spacetime inside
an infinitely dense shell located at infinity in the
frame of an observer at rest inside the shell. In the
case of the Universe, the shell would be the entire
Universe at time r = u (as will be shown, the scale
factor is zero there and therefore we have infinite
coordinate density).

Figure 1 shows the Kruskal-Szekeres coordinate chart for
both the internal and external metrics where light travels
on 45 degree lines on the chart. This will help illustrate
the above points more clearly.
On this diagram, the T = ±X lines represent the in-

finitely dense shells in both scenarios. We can see that
at r = rs = u (the ’Horizon”), both metrics are the
same. The origin T = X = 0 location/time describes
an infinitely dense point in space for the external solu-
tion for all time and a time at which all infinite space is
contracted for the external solution. The T = ±X lines
are light-like because light cannot escape an infinitely
dense region of space, regardless of the mass (i.e. the
external observer cannot receive light emitted from the
Schwarzschild radius and the internal observer cannot re-
ceive light from the time when space was infinitely con-
tracted). The different quadrants of Figure 1 will be
examined in section X. We can also see in Figure 1 that
for the internal metric, the horizon is located at t = ∞,
meaning the Schwarzschild radius and therefore mass of
the shell is infinite (because t is the spacelike coordinate).
Thus, it is clear from the geometry that the source masses
of the Schwarzschild metric are not concentrated at r = 0
(which is currently assumed and accepted by most physi-
cists today, but is not anywhere mathematically implied
or demanded in the derivation of the Schwarzschild met-
ric), but rather at the event horizon itself.
So the internal solution describes a spherically sym-

metric vacuum surrounded by a horizon which, from the
perspective of an observer at some r between the horizon
and r = 0, surrounds the vacuum infinitely far away in
space and at some finite time in the past. And from the
perspective of that observer, this horizon, which looks
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like a surrounding sphere, is a time where space is in-
finitely dense. A spacetime fitting this description would
be any empty space in the Universe whose surrounding
mass is spherically symmetric. Voids in the cosmic web
would be an example of such a spacetime, and the hori-
zon of the metric in this case would be the Big Bang,
which is an event at some finite time in the past that
surrounds all points in the Universe which has an infinite
density. And an observer in the present Universe can
never reach the Big Bang, no matter how far they travel
through space, which is in alignment with the fact that
the surface, from the perspective of a present observer,
is infinitely far away from them in space. So we might
think of the expanding Universe as baking bread where
the air pockets that expand as the bread bakes give the
bread a web-like structure over time, where the bread it-
self would be analogous to the cosmic filaments of matter
in the Universe.
Therefore, the Big Bang looks like an infinitely dense

shell (viewed from the inside) at times later than the Big
Bang, but looks like an infinitely dense point (because
the proper distance goes to zero regardless of coordinate
distance at that time) in the frame of an observer in the
Universe as the Universe approaches that time (we will
show that the scale factor at r = u is 0 in section VI).
In other words, both the internal and external metrics
look the same in the frame of an observer approaching
the source, which is to be expected since they have the
same mathematical description there.
Now we must show that the space in the internal met-

ric is isotropic and homogeneous. The equation for a
2D hyperboloid surface embedded in three dimensions is
given by:

x2

a2
+
y2

b2
− z2

c2
= ±1 (21)

For our purposes, we will be considering the special case
where a = b = c, which gives the one and two sheeted
hyperboloids of revolution. Next, we note the following
relationship with regards to the Kruskal coordinates:

X2 − T 2 =
( r

u
− 1

)

e
r

u (22)

Equation 22 is only for one dimension of space, but we
know that the metric is spherically symmetric and can
therefore extend Equation 22 to 2 spatial dimensions by
simply adding a Y coordinate to get an equation that
matches the form of Equation 21 where a2 = b2 = c2 =
(

r
u − 1

)

e
r

u ≡ ρ2:

X2 + Y 2 − T 2 = ρ2 (23)

Equation 23 describes 2D hyperboloid surfaces for a given
r where the external metric has positive ρ2 and the inter-
nal metric has negative ρ2. This means that the external
metric describes a 1-sheet hyberboloid while the internal
metric describes a 2-sheeted hyperboloid.
We will for now focus on regions I and II from Figure 1,

where region I captures the external metric and region II

captures the internal metric. If we choose some constant
value of r = r0 in each region and plot Equation 23 for
each region, we get the surfaces shown in Figure 4.

FIG. 4. 2D Surfaces of Constant r for Internal and External
Metrics

In the internal case where we have two separate sheets,
we will only focus on the top sheet for now. The mean-
ing of the bottom sheet will be discussed in section X.
In the external metric, the sheet represents an equato-
rial circle of space around the central body at all times.
This circle is on a plane with a normal at the center and
pointed vertically in Figure 4. If we then consider cir-
cles on all planes whose normals are at different angles
relative to the normal of the plane we are currently vi-
sualizing, we get a 2D spherical surface representing the
space surrounding the central body at constant r.
Light cones in Figure 4 are oriented vertically and light

travels on 45 degree lines. If we consider the right side
of Figure 4, representing the external metric, choose any
point on the surface and project a past and future light
cone out of that point (this will just be a vertical cone
centered at that point). We see that the external metric
is anisotropic and inhomogeneous because the surface is
asymmetric relative to the surface left and right as well as
into and out of the page. But the light cone is symmetric
vertically relative to the surface. We can see this because
we are allowed to circularly and/or hyperbolically rotate
any point to a point at the throat of the surface and
the space will remain unchanged. This is because the
metric is spherically symmetric (representing circular ro-
tations) and static (representing hyperbolic rotations).
It becomes clear that the cone is vertically symmetric
relative to the surface at the throat since both the cone
and surface are vertically symmetric in a plane parallel
to the throat. So any point we choose to start with can
be moved to the throat of the surface and we see that the
cone is vertically symmetric relative to the surface when
we move a point there.
Now consider the top sheet on the left side of Figure 4

representing the internal metric. Again choose any point
on the surface and project a past and future light cone
vertically from that point. Just like in the case of the
external metric, we can move that point anywhere on
the surface to the apex of the surface by hyperbolically
and/or circularly rotating the point there (and the space
will remain unchanged). When the point is rotated to
the apex, we see then that the light cone is symmetric
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relative to the surface left and right and into and out of
the page. This symmetry means the internal metric is
isotropic and homogeneous. The cone is not vertically
symmetric relative to the surface, however, and that re-
flects the fact that the internal metric is not static.
The above arguments tell us something important

about the Schwarzschild metric. When the metric is de-
rived from Einstein’s field equations, it is usually done
from the perspective of the external metric. In the deriva-
tion, we assume spherical symmetry and a static space-
time. It is notable that in spite of the static assumption,
we still get an internal metric that is non-static. This
is because the static assumption for the external met-
ric is actually an implicit assumption of hyperbolic sym-
metry. Therefore, we can more correctly state that the
Schwarzschild metric is the vacuum solution to Einstein’s
field equations that is both spherically and hyperbolically
symmetric. This hyperbolic symmetry manifests itself as
a static metric when the time coordinate is hyperbolic
(the external metric) and an isotropic and homogeneous
metric when the space coordinate is hyperbolic (the in-
ternal metric).
We can further extend this to three spatial dimensions

by adding a Z2 term to equation 23, and given the spher-
ical symmetry we can define R2 ≡ X2 + Y 2 + Z2 and
change Equation 22 to

R2 − T 2 = ρ2 (24)

In this formulation, we put ourselves atR = 0 and the cir-
cles on the surfaces in Figure 4 will become spheres that
are isotropic and homogeneous in space and inhomoge-
neous in time, which is consistent with the Cosmological
Principle.
Let us examine the Killing vectors for the geometry

on a surface of constant r in the internal metric. In the
1D spatial representation of the metric in quadrant II of
Figure 1, we see that the spacelike coordinate t has pos-
itive and negative values. Given the spherical symmetry
of the metric, we can construct a Cartesian basis in t for
the metric at fixed time r as follows:

FIG. 5. Cartesian Killing/Basis Vectors on a Surface of Con-
stant r

We know that ∂t is a Killing vector of the spacetime
and the X,Y, Z labels in Figure 5 represent the 3 spatial
directions in Kruskal coordinates. The perpendicular hy-
perbolas shown on the sheets on the left side of Figure
4 represent the ∂t,X and ∂t,Y coordinates of Figure 5.

So we see that we can construct a Cartesian basis for
the 3D space of the internal metric out of Killing vectors
and therefore the 3D space of the metric must be homo-
geneous and isotropic at a given time r. So all motion
through space in the internal metric can be described as
motion in the basis depicted in Figure 5 (i.e. even circu-
lar motion involves changes in location t).
In the external metric, the tKilling vector runs in the T

direction of the Kruskal coordinates and so it has more of
a radial characteristic. Therefore, in the external metric,
∂t,T can be seen as pointing in all directions at fixed r.
The circles on the sheets on the right side of Figure 4 are
circles of constant time t. Figure 6 shows these contours
on a plane with the Killing/Basis vectors ∂t,T plotted on
the contours.

FIG. 6. Radial Killing/Basis Vectors on a Surface of Constant
r

It is important to note here that in the external met-
ric, the angular term dΩ describes the translation of a
reference frame along a curvilinear path, whereas in the
internal metric, the term describes the precession of a
reference frame about an axis of time. This implies that
the angular term in the internal metric is describing a
spin about the time axis (r), which is discussed in section
V. Curvilinear motion through space is also discussed in
section IX.
From this analysis, we can see that the Kruskal co-

ordinates are extrinsic coordinates, allowing us to view
the full geometry from ’the outside’, as opposed to the
Schwarzschild coordinates which are intrinsic. The ex-
trinsic nature of the Kruskal coordinates is what makes
the event horizon seem like a non-special location that is
traversable without issue even though in actuality, that
location/time represents a hard boundary of infinite co-
ordinate density (the curvature there is not infinite, but
the geometry is discontinuous there and that discontinu-
ity is obscured in the extrinsic basis). This is the 4D
equivalent of looking at the surface of a sphere in 3D
using an extrinsic Cartesian basis (in fact, if we plotted
a surface in the X, Y, Z Kruskal coordinates at fixed r
instead of T, X, Y as shown in Figure 4, we would see
spherical surfaces plotted in a Cartesian basis). Note
that if we plotted one such sphere in the Kruskal X, Y,
Z basis, we would see that the surface shrinks to a point
when r = u, supporting the argument that the horizon
is a point of infinite coordinate density.
To show this, we first note the definition of the Kruskal
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T coordinate in terms of the Schwarzschild coordinates
for the internal metric:

T 2 =
(

1− r

u

)

e
r

u cosh2
(

t

2u

)

(25)

If we substitute Equation 25 into Equation 24 and solve
for R we get:

R =

√

(

1− r

u

)

e
r

u sinh

(

t

2u

)

(26)

Therefore, we see that as r approaches u, R goes to zero
for all t.

Now imagine we are situated at some point in empty
space in the Universe facing in some direction. There is a
plane of infinite space at the present time perpendicular
to the direction we are facing. This plane is the hyper-
bolic sheet depicted on the left side of Figure 4 where we
are situated at the apex of the sheet. So the direction
we are facing is the normal vector to this sheet (with the
vector origin at the apex of the sheet) and just like in the
external case, there are similar planes constructed from
normals at all different angles to the direction we chose
to face and when we put all of these together, we get an
infinite 3D space at the present time.

But the points on this collection of sheets at r0 are
spacelike to us because they all exist at the same time
as us and we can only see points on past sheets whose
light has had time to reach us. Light paths in Figure 1 are
lines at 45 degrees and light cones in Figure 4 are oriented
vertically where the beginning of the Universe is at the
origin between the two sheets and time moves forward
as the top sheet moves up the diagram vertically. So we
can construct an image of what a 2D slice of the Universe
would look like to us in this geometry with our position at
the center. Figure 7 shows the present sheet (r0) where
we are positioned in space at the apex of the sheet. We
then show a cross section of that sheet on the Kruskal-
Szekeres coordinate chart with the past light cone shown
(dashed lines at 45 degrees emanating from t = 0 at r0).
That light cone intersects past sheets of constant r > r0
(past sheets not shown in the top left of Figure 7 but are
represented by the hyperbolas the dashed lines intersect
in the top right of the figure) and these intersections are
projected onto the plane at the origin to give us a 2D
image of our past light cone of the Universe. The density
of the coordinates at different radii (and therefore times)
is depicted with the shading inside the projection.

FIG. 7. Projection of the Past Light Cone on a Flat Plane

Despite the hyperboloic nature of the spacelike planes,
space still looks flat from our perspective because our
past light cone intersects past surfaces as circular cross-
sections. As we can see in the lower projection in Figure
7, concentric circles around the center of the projection
(marked with ’x’) are circles of constant distance and
time from us. So we see that as we look further away
in space and back in time, the Universe becomes more
dense until at the beginning of the Universe, which cor-
responds to an infinite distance and finite time from us,
the Universe is infinitely dense. This is in line with our
current observations of the Universe.

V. THE ANGULAR TERM r2dΩ2

To understand the angular term of the internal metric,
let us first think about the external metric in a reference
frame attached to an observer in the gravitational field
of a star. In this frame, if the observer is in circular or-
bit around the star, then the star will appear to revolve
around the observer. But the star will also appear to re-
volve around the observer if the observer is just spinning
in place. In order to distinguish between these to cases,
we need a gyroscope.
We start by drawing a line between the observer and

the star and orient the axis of the gyroscope along this
line. In the frame of the observer, if the gyroscope main-
tains its orientation along this line as the star revolves
around the observer, then they know they are just spin-
ning in place and not actually orbiting the star. If how-
ever they see that the angle between the gyroscope axis
and connecting line changes as the star revolves around
the observer, then they know they are in orbit around the
star and their angular velocity as described by the angu-
lar term in Equation 1 will be the rate at which the angle
between the gyroscope axis and connecting line changes.
So the angle of the external metric describes the angle
between a gyroscope axis and a line connecting the ob-
server’s reference frame to the center of the source body
of the metric.
For the internal metric, there is no central body like the

star that can be referenced as the source of the metric.
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Instead, we must use the distant surrounding Universe
as a reference, with the Cosmic Microwave Background
being an optimal reference in this case. Just like in the
external case, we can draw a line from the observer to
some point on the CMB and orient the gyroscope along
that line. As we move through empty space, the change
in angle between the gyroscope axis and the connect-
ing line will be the change in angle dΩ in Equation 20,
representing a change in the orientation of the reference
frame. In a Newtonian Universe, this angle would never
change because even if we moved around a curvilinear
path through space, the gyroscope would remain fixed in
its orientation. But in Special Relativity, there is a kine-
matic effect known as Thomas Precession in which the
orientation of the gyroscope will change as a result of an
acceleration being applied to the observer at an angle to
the observer’s current velocity. The Thomas Precession
is given by:

ω⃗T =
1

c2

(

γ2

γ + 1

)

a⃗× v⃗ (27)

Where

γ =
1

√

1− v2

c2

(28)

At non-relativistic speeds, this precession is very small,
essentially zero at human scales. Also note that we do
not include dynamical relativistic precession effects such
as geodetic precession and frame dragging in this because
those effects are accounted for by the metrics describing
the curved spacetime that causes them. We discuss how
to find the total proper time of a worldline resulting from
the combined metrics in section XIII. We can think of
this kinematic precession as the ’spin’ of an object since
it is an intrinsic rotation of the object’s reference frame.
As will be discussed in section IX, dt

dr is related to the
magnitude of the CMB dipole that would be seen when
moving through space. In terms of curvilinear motion,
dt
dr will always represent the tangential velocity to the
observer’s path. Furthermore, the combination of the
CMB dipole’s magnitude as well as the angular velocity
of the dipole as it moves across the CMB will give us the
acceleration normal to the path at each point. Noting
that the centripetal acceleration of a body moving with
tangential velocity v and angular velocity ω can be ex-
pressed as a = ωv, we can get an alternate expression for
the Thomas Precession as follows:

ω⃗T = ω⃗D

(

γ2

γ + 1

)(

1

c

dt

dr

)2

(29)

Where ω⃗D is the angular velocity of the CMB dipole as
it moves over the CMB and dt

dr is the tangential velocity,
which is related to the magnitude of the CMB dipole. If
we create a basis for the observer’s reference frame by
aligning gyroscopes along the ∂t,X , ∂t,Y , and ∂t,Z direc-
tions, then we can define the angles θ and ϕ in that basis

which describe the general motion of the dipole over the
CMB. With those, we can express Equation 29 in terms
of θ and ϕ as:

ωΩ = (ωD,θ + ωD,φ sin θ)

(

γ2

γ + 1

)(

1

c

dt

dr

)2

(30)

Therefore, Equation 30 tells us how the orientation of the
observer’s reference frame changes at each instant while
the observer is in motion, giving us the magnitude of
dΩ
dr = ωΩ for the frame at each instant. This change in
orientation manifests itself in the frame of the observer as
a rotation of the surrounding Universe around the basis
defined by the aforementioned gyroscopes. An important
thing to note here is that at modest speeds ( dtdr << c),
the rotation of the reference frame’s orientation (which is
what the internal metric describes), is much lower than
the rotation of the CMB dipole such that if the dipole
makes a 2π rotation in a given amount of time, the actual
angle of rotation in the metric will be much lower than
2π over the same period of time. We can further simplify

Equation 30 by noting that
(

1
c
dt
dr

)2
= γ2

−1
γ2 = (γ+1)(γ−1)

γ2 ,
giving us:

ωΩ = (ωD,θ + ωD,φ sin θ) (γ − 1) (31)

But from the metric, it is clear that there can still
be precession of the reference frame, even if there is no
centripital acceleration through space (there are time-
like paths where dt = 0 in the metric). An observer
moving in a straight line with a precessing inertial frame
would see the CMB dipole angle fixed relative to the gy-
roscope basis and the entire Universe would appear to
rotate around the gyroscopes. The same would be true
for a co-moving observer with the difference being that
there would be no dipole visible on the CMB. The iner-
tial rotation could also be deduced without the dipole or
gyroscopes because the reference frame precession for an
inertial observer would create a quadrupole on the CMB
in the observer’s frame. The features of this quadrupole
would contain the information needed to determine the
dΩ term of the metric for the inertial observer with a
precessing frame.
Going back to the two-sheeted hyperboloid in Figure

4, we can keep our observer’s frame fixed at the apex
of the sheet and describe this precession as the sheet re-
volving around the apex (i.e. from the observer’s frame,
it appears the Universe is revolving around them). Like-
wise, we can describe motion in the t dimension by again
keeping the observer fixed at the apex and hyperbolically
rotating the sheets under the observer in the direction of
travel. Given these interpretations of the motion in t and
Ω, it is notable that if an object had some intrinsic spin
already and started moving in t, the object would move
on a curved trajectory analogous to a charged particle
moving in a magnetic field.
In the frame of an observer with this intrinsic spin,

they see the entire Universe rotating around their iner-
tial frame as they move in a straight line relative to their
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basis. But from an external frame, the particle with spin
will move on a curved trajectory under the influence of a
fictitious cosmological Coriolis force (the momentum vec-
tor of the particle rotates without an external force being
applied as a result of the precession of the inertial frame).
This effect could be related to the Dark Matter effects
observed in galaxy rotation curves. If when the galaxies
formed, the rotation of the gases was high enough, they
could have gained enough of this spin such that as the
stars that subsequently formed from the gas migrated
out from the center, they would experience this Corio-
lis acceleration and maintain an orbit about the galactic
center with greater tangential velocity than expected. At
the present time, however, this is mere conjecture and
would require further study to verify.
The path of light should also be affected by the angular

term of the metric. When light is gravitationally lensed,
its momentum vector changes direction, so from the per-
spective of the light, the Universe has rotated around it.
We can see the precise behaviour of lensed light by look-
ing at the geodesic equation for angular motion [1] (we
will examine the case for planar rotation where θ = π

2 ).

d2θ

dλ2
= −2

r

dθ

dλ

dr

dλ
(32)

For light, we will use λ = r. If we consider light lensed by
a galaxy, as the light passes the galaxy at some coordinate
time r0, it will have some angular velocity θ̇0 and initial
angle θ0 as it leaves the galaxy. It is currently assumed
that the light then continues along a straight line as it
leaves the gravitational field, but as we shall see, this is
not the case. The θ0 would be the angle caused only by
the gravitational lensing, without any additional effects
from the cosmological model (i.e. the angle we would
expect when only taking into account the mass of the
galaxy). Given these initial conditions, the solution to
Equation 32 is:

θ(r) = θ0 + θ̇0r0

(

1− r0
r

)

(33)

During expansion, both the bracketed expression and
θ̇0 will always be negative (because dr is negative and
r0 > r) such that the second term is always positive.
Therefore, during expansion, the observed lensing angle
will be increased by the amount θ̇0r0

(

1− r0
r

)

as a result
of this effect (where r is the coordinate time at which the
light is observed). Furthermore, since dΩ

dr for the light in-

creases over time, the dt
dr will correspondingly decrease as

well and the result of this is that the increase in lensing
angle over time will also result in a redshift of the light
relative to unlensed light.
We see that the ’excess angle’ is dependant on the lens-

ing rate θ̇0. So if we consider two cases where in one
case, the light is gently lensed over a large distance/time
by some angle θ0 and in the other case, light is lensed
by a more dense mass the same θ0, the lensing rate θ̇0
would be higher in the second case relative to the first. So
even though the pure gravitational lensing angle θ0 would

be the same in both cases, the observed angle would be
greater in the second case because the lensing rate θ̇0
would be greater in that case.
Note that Equation 32 would also apply to the preces-

sion of the inertial frames of the stars in the galaxies.

VI. THE SCALE FACTOR

Expressions for the proper time interval along lines of
constant t and Ω and the proper distance interval along
hyperbolas of constant r and Ω from Equation 20 are:

ds

dt
= ±

√

u− r

r
= ±a (34)

dτ

dr
= ±

√

r

u− r
= ±1

a
(35)

And the coordinate speed of light is given by:
(

dt

dr

)

light

= ± r

u− r
= ± 1

a2
(36)

Where a is the scale factor (because t is the spatial coordi-
nate and r is the time coordinate and therefore Equation
34 describes how the proper distance between two points
separated by coordinate distance dt evolves over time).
First we should notice that none of the three equations
depend on the t coordinate. This is good because the t
coordinate marks the position of other galaxies relative
to ours. Since all galaxies are freefalling in time iner-
tially, the particular position of any one galaxy should
not matter. The proper temporal velocity, proper dis-
tance, and coordinate speed of light only depend on the
cosmological time r.
A plot of the scale factor vs. r (with u = 1) is given in

Figure 8 below:

FIG. 8. Scale Factor vs. r for u = 1

VII. THE CO-MOVING OBSERVER

Let us take a co-moving observer somewhere in the
Universe we label as t = 0 as the origin of an inertial ref-
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erence frame. We can draw a line through the center of
the reference frame that extends infinitely in both direc-
tions radially outward. This line will correspond to fixed
angular coordinates (Ω). There are infinitely many such
lines, but since we have an isotropic, spherically symmet-
ric Universe, we only need to analyze this model along
one of these lines, and the result will be the same for any
line.
We must determine the paths of co-moving observers

(dt = dΩ = 0) in the spacetime. For this we need the
geodesic equations for the internal Schwarzschild metric
[1] given in Equation 20. In these equations u represents
a time constant (in Figure 1, the value of u is 1). The
following equations are the geodesic equations of the in-
ternal metric for t and r (0 ≤ r ≤ u) for dΩ = 0:

d2t

dτ2
=

u

r(u− r)

dr

dτ

dt

dτ
(37)

d2r

dτ2
=

u

2r2
(38)

Looking at points 0 < r < u, then by inspection of Equa-
tion 37 it is clear that an inertial observer at rest at t will
remain at rest at t ( d2t

dτ2 = 0 if dt
dτ = 0).

Let us next demonstrate how the internal metric fits
with existing cosmological data and calculate various cos-
mological parameters using that data.

VIII. CALCULATION OF COSMOLOGICAL

PARAMETERS

In order to compare this model to cosmological data,
we must solve for u and find our current position in time
(r0) in the model. Reference [4] gives us transition red-
shift values ranging from zt = 0.337 to zt = 0.89, depend-
ing on the model used. We can use the expression for the
scale factor in Equation 34 to get the expression for cos-
mological redshift from some emitter at r measured by
an observer at r0 [1]:

1 + z =
a0
a

=

√

r(u− r0)

r0(u− r)
(39)

Furthermore, the deceleration parameter is given by:

q =
äa

ȧ2
=

4r

u
− 3 (40)

By setting Equation 40 equal to zero, we find that the
scale factor at the transition from decelerating to accel-
erating expansion at is:

at =

√

4

3
− 1 =

1√
3

(41)

Using Equations 39, 41, and the transition redshift es-
timate, we can get an expression for the present scale

factor:

a0 = at(1 + zt) =
1 + zt√

3
(42)

Next, we find expressions for u and our current radius r0
by noting that the Universe has been found to be roughly
13.8 billion years old. Therefore, we can set αr0 ≡ u −
r0 = 13.8 and use Equations 34 and 42 to obtain the
following for u and r0:

r0 =
u− r0
a20

=
αr0

a20
=

3αr0

(1 + zt)2
(43)

u = r0 + αr0 = αr0

(

3

(1 + zt)2
+ 1

)

(44)

Next we compute the CMB scale factor (aCMB) and co-
ordinate time (rCMB) in this model where the redshift
of the CMB (zCMB) is currently measured to be 1100:

aCMB =
a0

1 + zCMB
(45)

rCMB =
u

1 + a2CMB

(46)

We can next derive the Hubble parameter equation using
the scale factor. The Hubble parameter is given by (in
units of (Gy)−1):

H =
ȧ

a
=

u

2r(u− r)
(47)

Table I below gives the values of u, r0, H0, a0, q0, aCMB ,
rCMB , and qCMB given the upper and lower bounds of
zt from [4] as well as the average of the upper and lower
bound values and assuming αr0 = 13.8. All times are in
Gy and H0 is in (km/s)/Mpc.

zt αr0 u r0 H0 a0 q0 aCMB rCMB qCMB

0.337 13.8 37.0 23.2 56.6 0.77 -0.49 0.0007 36.95 0.99
0.614 13.8 29.7 15.9 66.2 0.93 -0.86 0.0008 29.65 0.99
0.89 13.8 25.4 11.6 77.6 1.09 -1.17 0.0010 25.35 0.99

TABLE I. Limiting Cosmological Parameter Values Based on
zt Measurement and a 13.8 Gy Age of the Universe

From the results in Table I, we see that the true tran-
sition redshift is likely between 0.614 and 0.89 given the
fact that the current value of the Hubble constant is
known to be in that range. Thus, more accurate mea-
surements of the transition redshift are needed to increase
the confidence of this model, though we do see that it is
able to reproduce measured results.
Table II has the proper times from r = u to the current

time as well as the CMB for stationary, inertial observers
(dt = rdΩ = 0) by integrating Equation 20. The column
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τtot gives the time from r = u to r = 0. The expression
for τtot turns out to be quite simple:

τtot =
π

2
u (48)

In Table II below, the column τremain gives the time be-
tween r = r0 and r = 0.

zt αr0 τ0 τtot τremain τCMB

0.337 13.8 42.2 58.1 15.9 8.6
0.614 13.8 37.1 46.7 9.6 2.4
0.89 13.8 33.7 39.9 6.2 2.3

TABLE II. Limiting Proper Times Based on zt Measurements
and an age of 13.8 Gy for the Universe (Time is in Gy)

Note that the proper time τ0 of the current age of the
Universe is actually much larger than the coordinate time
u − r0. And even though we are presently only about
halfway through the “coordinate life” of the Universe (ac-
cording to Table I), the amount of proper time remaining
is actually much less than the amount of proper time that
has already passed (according to Table II). This provides
a measurable prediction from the model: as telescopes
such as the JWST peer farther into the past with greater
accuracy, we should expect to find stars, galaxies, and
structures that are much older than expected because of
the increased amount of proper time available for such
things to form in the early Universe. Hints of this has
already been found with the star HD 140283, whose age
is estimated to be nearly the age of the Universe itself
[5].
Next we would like to use the u and r0 values found to

create an envelope on a Hubble diagram to compare to
measured supernova and quasar data. First we need to
find r as a function of redshift. We can do this by solving
for r in Equation 39:

r =
u(1 + z)2

a20 + (1 + z)2
(49)

We can derive the expression for t vs. r along a null
geodesic where the geodesic ends at the current time r0
and t = 0 by setting dτ = rdΩ = 0 in Equation 20 and
integrating:

t =

∫ r

r0

r

u− r
dr = u ln

(

u− r0
u− r

)

+ r0 − r (50)

Next we substitute Equation 49 into Equation 50 to get
coordinate distance in terms of redshift:

t = r0+u

[

ln

(

a20 + (1 + z)2

1 + a20

)

− (1 + z)2

a20 + (1 + z)2

]

(51)

We need to convert the distance from Equation 51 to the
distance modulus, µ, which is defined as:

µ = 5 log10

(

DL

10

)

(52)

Where DL in Equation 52 is the luminosity distance. Lu-
minosity distance is inversely proportional to brightness
B via the relationship:

B ∝ 1

D2
L

(53)

The brightness is affected by two things. First, the spa-
tial expansion will effectively increase the distance be-
tween two objects at fixed co-moving distance from each
other. This will reduce the brightness by a factor of
(1+z)2 (because the distance in Equation 53 is squared).
But there is also a brightening effect caused by the ac-
celeration in the time dimension. We define ν ≡ dτ

dr = 1
a

as the temporal velocity of the inertial observer at some
r and the speed of light at that r as νc ≡ dt

dr = 1
a2 . The

ratio of these velocities gives us:

νc
ν

=
dt

dr

dr

dτ
=
dt

dτ
=

a

a2
=

1

a
(54)

Equation 54 tells us how far a photon travels over a given
period of time measured by the inertial observer’s clock.
So we see that as light travels from the emitter to the
receiver, this speed decreases. This decrease in the speed
from emitter to receiver will result in an increased photon
density at the receiver relative to the emitter, increasing
the brightness. Therefore, this effect will increase the
brightness by a factor of:

a0
a

= 1 + z (55)

This effect is not accounted for in the current relativistic
cosmological models and therefore gives a second predic-
tion that light from the distant Universe should appear
brighter than expected.
Taking these brightness effects into account, the total

brightness will be reduced by an overall factor of 1 + z
relative to the case of an emitter and receiver at rest
relative to each other in flat spacetime. Equation 53 in
terms of co-moving distance t and redshift z becomes:

B ∝ 1 + z

(t(1 + z))2
→ B ∝ 1

t2(1 + z)
(56)

Giving the luminosity distance as a function of co-moving
distance t and redshift z:

DL = t
√
1 + z (57)

Which gives us the final expression for the distance mod-
ulus as a function of co-moving distance and redshift:

µ = 5 log10

(

t
√
1 + z

10

)

(58)

A plot of distance modulus vs. redshift is shown in Figure
9 below plotted over data obtained from the Supernova
Cosmology Project [6]. Curves calculated from all three
values of zt in Table I are plotted, giving an envelope for
the model’s prediction of the true Hubble diagram.
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FIG. 9. Distance Modulus vs. Redshift Plotted with Super-
nova Measurements

Note that the middle curve corresponds to zt = 0.614
and the lower curve corresponds to zt = 0.89. The super-
nova data is better fit by a curve between these values.
The curve halfway between (with zt = 0.75) gives us
H0 = 71.6, a0 = 1.0, q0 = −1.0, u = 27.3, and r0 = 13.5.

In [7], the authors analyze a large sample of quasar
data to obtain distance moduli at higher redshifts than is
possible with supernova data. Figure 10 shows the same
predicted envelope from Figure 9 for the Hubble diagram
plotted out to higher redshifts with the quasar data from
[7] also shown with error bars. The black diamonds in the
figure are the 18 high-luminosity XMM-Newton quasar
points described in [7].

FIG. 10. Distance Modulus vs. Redshift Plotted with Quasar
Measurements

Finally, by subtracting r0 from Equation 49 we can
calculate the lookback time for a given redshift. Figure
11 shows the lookback time vs. redshift for the three
transition redshifts.

FIG. 11. Lookback Time vs. Redshift

IX. UNDERSTANDING COSMOLOGICAL

MOTION: A THOUGHT EXPERIMENT

A very important fact about the internal metric is that
it is not centered in space, which is consistent with the
cosmological principle. The angular term of the metric,
which has a center in time at all space, must be thought
of differently than we usually think of spherical metrics
centered in space as was discussed in section V. We can
always put ourselves at the center of space t = 0 and
if we pick an arbitrary direction at some fixed time r,
the t dimension is a linear (not radial) dimension that
extends infinitely in front of us in that direction as well
as infinitely behind us in the opposite direction. So even
though we are not centered in time in the metric, we can
always model ourselves as being at the center of space.
Understanding this is very important for visualizing what
the Universe looks like when we move cosmological dis-
tances.
Imagine a Universe full of Dark Stars (for reasons that

will be made apparent later, we will use the term ’Dark
Stars’ instead of ’Black Holes’), each one with a particle
moving in the star’s gravitational potential in arbitrary
ways. We will focus in on one such system. Let’s sur-
round our Dark Star and particle system with a larger
sphere containing both of them (call it a Cosmosphere)
centered on the Dark Star and large enough that the path
of the particle always remains inside it. The orientation
of the system is locked to the Cosmosphere so that if the
Cosmosphere moves or rotates, the system as a whole
moves and rotates with it.
We already know that Equation 1 describes the path

of the particle relative to the Dark Star and the r′ and
Ω′ coordinates are measured relative to the Dark Star.
But the time coordinates of Equations 1 and 20 must be
related because we must be able to synchronize the times
in both metrics. So we therefore need first to define the
cosmological time.
The CMB shines on the Cosmosphere, and the tem-

perature monopole of that light is directly related to the
cosmological time r and therefore local time t′. When the
temperature monopole is zero, we are at r = t′ = 0. So
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the monopole temperature of the CMB gives us a mea-
sure of cosmological time.
We’ve already discussed the cosmological angular mo-

tion dΩ
dτ as the Thomas Precession of the reference frame

relative to the CMB. The magnitude of this spin may
also be correlated to the observed CMB quadrupole. So
this leaves us with cosmological linear motion dt

dτ . We

can figure out our cosmological velocity dt
dτ by observing

the magnitude and orientation of the temperature dipole
cast on the Cosmosphere from the CMB. If the system
is moving through t, one side of the sphere will be more
blue than the monopole and the polar opposite side will
be more red than the monopole. The Dark Star, which
is at rest relative to the Cosmosphere can figure out how
fast and in which cosmological direction the Cosmosphere
is moving in by observing the magnitude of the dipole as
well as the orientation of it.
So when an observer moves linearly in t, half the sky

will be blueshifted and the other half will be redshifted
and the circle perpendicular to the dipole direction will
have no red or blueshift. For simplicity, let’s assume all
galaxies are co-moving. If we are also co-moving and we
look at a set of galaxies surrounding us at a fixed r > r0,
these galaxies will be equally redhisfted in our frame as
time goes on. If we then move in t in some direction, what
we would see is that we move closer to the galaxies in the
blueshifted portion of the sky and away from the galaxies
in the redshifted portion of the sky. How much closer or
farther away we move from a particular galaxy depends
on the magnitude of the red or blueshift in the direction
the galaxy sits in the sky. So if we shift our position
by moving in t in some direction, when we later come
to rest the galaixes that originally sat on a shell equally
distant in space and time from us will now each appear at
different distances and times from us depending on our
direction of travel. Figure 12 shows our pure motion in t
on the Kruskal coordinate chart.

FIG. 12. Depiction of Linear Cosmological Motion

Time moves upward in this diagram, so we start at
t = 0 and see two galaxies in each direction equidistant in
both space and time from us connected by equal length
null geodesics (dashed lines). The galaxies we see are
assumed to be co-moving in this example. Then we move
in t along some direction as we fall through time. The
diagram shows us how our view of the galaxies along our
direction of motion changes due to this motion. When we

are at some r < r0 later, we no longer see the two galaxies
equidistant in time and space from us. We see the galaxy
we moved toward at a closer distance in both space and
time to us than we did at the beginning. Conversely, we
see the galaxy we moved away from at a greater distance
in both space and time than we did originally (though we
still see a future version of the galaxy relative to when
we saw it at the beginning). But we can always define
our position as t = 0 and we can do this by shifting the 3
points depicting the end of the motion in Figure 12 along
hyperbolas of constant r by the amount t we moved. In
this depiction, we would remain at t = 0 and the galaxies
would be the things moving in our reference frame (i.e.
we would hyperbolically rotate the galaxies). It would
look like one galaxy is moving toward us while the other
is moving away.
If we were to imagine that we are revolving around

some point in space in a circle and defined our t coor-
dinate as 0 in the Kruskal diagrams for the entire mo-
tion, the worldlines of the galaxies in all directions would
be sine waves along their lines of constant t with the
phase of a given wave being a function of direction. In
other words, the entire Universe would appear to wob-
ble around us (which manifests itself as the CMB dipole
sweeping across the CMB). Note that dt ̸= 0 on a circu-
lar path since t is a hyperbolic angle, not a radius. Very
importantly though, the angle we sweep as we go around
that circle is not the angle in the metric. As has been
discussed, the actual angle that would go into the met-
ric would be much smaller than the angle of revolution
around the point. It would be the result of the Thomas
Precession caused by the angular motion. If we consider
constant circular motion in the context of Figure 6, it
would be described as constant motion along ∂t while
the plane rotates around ∂φ at the rate of the Thomas
precession of the reference frame.
In Figure 13, we show a visualization of a circular orbit

to help illustrate the role of the t and Ω coordinates along
a curved path (sequential parts of the cycle are numbered
in ascending order).

FIG. 13. Visualization of Circular Orbit

At the left side of the figure, we are at the start of the
orbit where the large circle represents a set of galaxies
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equidistant from the orbiter at that point. The smaller
dashed circle represents the orbit and the arrow repre-
sents the direction of motion of the orbiter at a given
moment. As we move left to right, we show the orbiter
as fixed with the space moving beneath it. What is being
shown here is that the best way to view the orbit is to
imagine the entire space moving beneath the orbiter (the
orbit and distant galaxies are fixed together and the orbit
is moved beneath the orbiter). The small bold cross-hairs
attached to the observer represent the orientation of the
orbiter’s reference frame. As we look left to right on the
figure, we see these cross-hairs rotating slightly and this
rotation represents the dΩ of the orbiter such that as the
orbiter returns to its initial position at the far right, the
cross-hairs are rotated relative to the far left of the figure.
Finally, it is important to emphasize the dt is a hyper-

bolic angle, not a traditional arc length or radius. So if
we imagine travelling around a t x t square, we would
do a hyperbolic rotation through angle t in one direc-
tion, then another hyperbolic rotation through angle t
in a perpendicular direction, and so on until we return
to the initial position. In the case of a circular or gen-
eral curved orbit, we just do the limiting process of this
where we apply continuous hyperbolic rotations through
infinitesimal angles dt in continuously varying directions.
This is why a circular orbit does not have a constant t
(and therefore, we still see a CMB dipole while moving
in a circular orbit).

X. THE ANTI-UNIVERSE

Figure 14 shows the full Schwarzschild metric in
Kruskal-Szekeres coordinates. The diagram can be split
in two along the diagonal where in the top right half,
forward time points up in both the internal and exter-
nal regions while in the bottom right half, forward in
time points down. The direction of positive space is also
swapped when looking at the upper and lower halves.
For the external metric, the radius increases to the right
in the upper half and to the left in the lower half. For the
internal metric, the spatial t coordinate goes from −∞
to +∞ from left to right in the upper half and from right
to left in the lower half.

FIG. 14. Universe and Anti-Universe

We can therefore conjecture that the diagram is de-
scribing both a Universe expanding up from the center
and an anti-Universe expanding down from the center,
each one moving toward a singularity. We expect that
the anti-Universe is made of mostly anti-matter because
the directions of both time and space are reversed rela-
tive to each other and therefore we expect the particles
of the second Universe to have opposite charges relative
to the first. This interpretation provides a resolution to
the question of why we only tend to see matter in our
Universe. It is because the equivalent amount of anti-
matter is moving away from us as a mirror Universe in
the opposite direction of time. The lower hyperboloid
sheet in Figure 7 therefore represents a 2D slice of the
Anit-Universe at a given time.
Thus, the pair of Universes (or ’Duoverse’) satisfies

CPT symmetry and the Kruskal coordinates T and X in
Figure 14 represent cardinal directions of space and time.
We could think of Hawking evaporation in reverse as

describing the creation of the Duoverse where we start
with an infinitely hot point-like horizon that ejects an
infinite number of particles into the Universe and a com-
plimentary set of anti-particles into the anti-Universe. In
the next instant it expands to an infinite horizon at abso-
lute zero in the frame of the particles that were created.

XI. NEWTONIAN ANALOG AND THE

CURVATURE SINGULARITY

This entire system is the temporal equivalent of two
masses initially moving apart from one another until they
reach a maximum separation distance u. At that point
they will start falling toward each other again due to
mutual gravitational attraction. When they meet at their
common center, they annihilate, creating new pairs of
matter/antimatter particles and begin moving away from
each other again, as if they’ve bounced off each other.
It is equivalent to the exchange of potential and kinetic
Energy, but in the time dimension.
Now consider the Newtonian example of a ball in a

gravitational field rising to a maximum height h and then
falling back to the ground. dh

dt will be positive on the way
up, negative on the way down and zero at max height.
But this also means that dt

dh will be infinite at the max-
imum height because dh = 0 there. We might think
that when comparing this to the present case, t→ τ and
h→ r, but this is incorrect. We know that r is our time
coordinate and τ is the distance along the geodesic, so
h → τ and t → r. So from Equation 35, we see that,
just like in the Newtonian example, dτ

dr = 0 and dr
dτ = ∞

at the singularity because in this case dτ = 0 at the
turnaround.
We can show this more explicitly for a co-moving

frame. Equation 25 has constant t in this case, and we
can define the velocity of the frame in T as:

VT =
dT

dr
= ± re

r

2u

2u
3

2

√
u− r

cosh

(

t

2u

)

(59)
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We take the negative solution for region II of the Kruskal-
Szekeres chart since T increases when r decreases there.
We can see that this velocity is −∞ when r = u and zero
when r = 0. So the velocity is zero at the singularity. If
we take the derivative of this velocity we get:

d2T

dr2
=
dVT
dr

= − e
r

2u (2u2 − r2)

4u5/2(u− r)3/2
cosh

(

t

2u

)

(60)

Since dr is negative, this tells us that dVT will be positive
from r = u to r = 0. But VT is negative and therefore,
the acceleration of the worldline is opposite to the ve-
locity, causing it to decelerate in T and therefore the
acceleration vector would point toward T = X = 0. We
can also see that this acceleration is non-zero at the sin-
gularity. So if VT is 0 at r = 0 and the derivative of VT
is non-zero and pointed toward T = X = 0 at r = 0,
then this means that after approaching the singularity
from r > 0 the worldline stops moving in increasing T
at the singularity and begins to move in the direction
of decreasing T . When the worldline then starts falling
back toward T = X = 0, VT is still negative, but dr is
now positive. Thus dVT will be negative, meaning the
worldline accelerates toward T = X = 0.
Therefore, the curvature singularity represents a

turnaround point for the geodesics where co-moving ref-
erence frames switch from moving in the positive direc-
tion of time to moving in the negative direction of time.

XII. CONDENSATION AND EVAPORATION

We will now describe in detail the physical meaning
behind the ’Expansion’ and ’Collapse’ phases of the Uni-
verse. Looking at Equation 37, we see that the u

r(u−r)

term is always positive. During the expansion phase, dr
dτ

is negative and therefore d2t
dτ will always be in the op-

posite direction of dt
dτ . Therefore, this tells thus that

the peculiar velocities of cosmological objects will be re-
duced over time when no forces act upon them. Equa-
tion 37 describes an inertial force acting on all objects,
slowing them down during the expansion phase. If the
Universe is far from r = u and r = 0, it only has no-
ticeable effects at very large time scales and velocities
(because u

r(u−r) = 2H is very small for human veloc-

ity and time scales. For instance, currently H ≈ 71.6
km/s/Mpc so converting that to 1/s gives a value on the
order of ∼ 10−18). During collapse, dr

dτ is positive and
now the acceleration acts in the direction of motion of
the object and therefore increases its velocity over time
in that phase.
So we can view the expansion phase as a condensa-

tion of the Universe. The Universe starts out as a hot
plasma after the annihilation event, after which it cools
and motion of the particles slow down. At the beginning
of expansion, the deceleration is large (infinite at r = u
allowing null geodesics to become timelike), then for a
long period the deceleration is small, and on approach to

the signularity it once again goes to infinity. For just a
moment at the singularity, all motion stops completely.
The particles stop completely at the singularity because

u
r(u−r) ,

dr
dτ and therefore d2t

dτ become infinite there putting

an infinite inertial drag force on all objects. This is true
even for objects with a proper acceleration. So the ex-
pansion counter-intuitively effectively stabilizes gravita-
tional structures more and more as time moves forward,
promoting this condensation.
Likewise, the collapse phase can be viewed as an evap-

oration. After condensation, the Universe begins the col-
lapse phase. As the Universe emerges from the singu-
larity, the inertial force that now tends to accelerate is
extremely large (falling from infinity at the singularity),
but the dt

dτ of everything is zero, so there is no initial
acceleration at the very beginning of collapse. But any
perturbation to a particle’s state of rest will induce an
inertial acceleration in the direction of motion. There-
fore, particles will naturally gain momentum over time
and the Universe will heat up as gravitationally bound
structures begin to break down and the Universe tends
back toward a state of hot plasma as it approaches the
annihilation event. Once again u

r(u−r) ,
dr
dτ and therefore

d2t
dτ become infinite at the annihilation event, sending all
particles toward light-like geodesics as though they effec-
tively lose all their mass.
Now let us consider this from the perspective of the

external metric. Consider a star that has collapsed to
form a Black Hole. As will be demonstrated, the star
can never actually form an event horizon, but we can
imagine that the star is massive enough that it becomes
a ’Dark Star’.
The Schwarzschild metric depicted in Figure 1 de-

scribes an ’eternal’ Dark Star. But we could also say
that it describes a Dark Star from the beginning of the
Universe to the end of the Universe, with the beginning
of the Universe being marked by the t′ = −∞ line and
the end being the t′ = ∞ line. The Schwarzschild metric
is asymptotically Minkowskian, so it does not truly rep-
resent the spacetime around a real spherically symmetric
mass since the background Universe has been observed
to be non-Minkowskian, but we can use this metric along
with what has been determined from Equation 37 to ap-
proximate the expected trajectory for a freefalling object
in the field of a Dark Star over the expansion and col-

lapse phases of the Universe. The path dr′

dt′ of an object
in freefall in the field of a Dark Star as seen by a distant
observer is given by [8]:

dr′

dt′
= ±

(

r′ − rs
r′

)

√

r′0(r
′

o − r′)

r′(r′0 − rs)
(61)

Where r′0 is the radius at which the object begins falling
from rest and rs is the Schwarzschild radius. The fo-
cus here is not on the equation itself, which is a well-
known solution, but at the ± in front of it that comes
from taking the square root. We first note that dt′
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in the external metric is the proper time interval of
an observer at infinity. In the cosmological case, this
interval is the proper time of the co-moving observer
dt′ = dτco−moving = ± 1

adr. Therefore, we can modify
Equation 61 as follows:

dr′ = ±1

a
dr

(

r′ − rs
r′

)

√

r′0(r
′

o − r′)

r′(r′0 − rs)
(62)

For an observer falling in the external metric from some
t′ < 0, dt′ is always positive. But we know that dr is
negative during expansion and positive during collapse.
Therefore, if we take the positive root of Equation 62, we
see that during expansion dr′ will be negative (because
dr is negative) and during collapse dr′ will be positive.
We assert that the time at which the Universe changes
from expansion to collapse is at t′ = 0 and therefore the
expansion occurs in the t′ < 0 region and collapse occurs
in the t′ > 0 region.
So during collapse, freefalling objects are ejected sym-

metrically out of the gravitational field of the object rel-
ative to expansion. We also note that at t′ = r = 0,
a → ∞ and therefore dr′ = 0. So we can say that as
an object approaches t′ = 0, its worldline must become
tangent to the r′ hyperbola closest to it. And as collapse
begins, it will smoothly and symmetrically curve in the
opposite direction. Furthermore it should be noted that
since the expansion phase takes place in the t′ < 0 re-
gion, an event horizon can never form because that would
require faster than light motion to achieve.
An approximate example of a real geodesic for an ob-

ject in freefall in such a gravitational field is shown by the
dark black line in Figure 15 through both the expansion
and collapse phases of the Universe.

FIG. 15. Schwarzschild Freefall in Expanding and Collapsing
Spacetime

The conclusion we can draw from this is as follows.
During expansion, the background of the Universe glows
with decreasing temperature and brightness over time
via the CMB as gravitational structures stabilize and
galaxies form. During this phase, some stars will col-
lapse to form Dark Stars that we presently think of as
Black Holes. By the time we reach the singularity, the
Universe will be fully condensed and inert. At the sin-
gularity, light from the CMB will be infinitely redshifted
such that it is no longer detectable and the background

Universe becomes black (because a0 in Equation 39 be-
comes infinite there). The observer will see a completely
dark Universe at the singularity and over time, the Dark
Stars will begin to glow like candles lighting up the dark-
ness as the geodesics of the particles that were falling
toward their centers during expansion reverse and now
move outward (unabsorbed light will also be reflected
back outward during collapse). Shadow becomes flame.
These former ”Black Holes” effectively become ”White
Holes”, with matter radiating from them, seemingly out
of the vacuum, even though the radiation is coming from
matter that had accumulated in that region during ex-
pansion. As the collapse proceeds, these White Holes will
grow brighter and shrink as the matter and energy mak-
ing them up escapes to the external Universe at higher
and higher energies due to the increasing inertial acceler-
ation from Equation 37. The Universe effectively evapo-
rates as all gravitational structures break down. By the
end of collapse, the Universe has returned to a state of
increasingly dense plasma until it collides with the anti-
Universe at the annihilation horizon.

We can summarize as follows: We know from Equa-
tion 37 that the worldlines of all matter become null at
the end of collapse, so by symmetry, they will begin the
expansion as null geodesics as well at r = u. They enter
the singularity parallel to the t coordinate per Equation
37 at the end of expansion. The geodesics then begin
to move from r = 0 to increasing r during the collapse
(interpretation of the infinite curvature is given in sec-
tion XI), accelerating inertially over time per Equation
37. Observers are inertially accelerated to become null
geodesics as they approach the annihilation event at the
end of collapse per Equation 37.

Note that if the Universe collapses over the same mani-
fold on which it expanded, this would suggest we live in a
’presentist’ Universe as opposed to a ’block’ Universe be-
cause if that were not true, the collapsing matter would
collide with the expanding matter.

XIII. TOTAL PROPER TIME

The proper time in Equation 1 implicitly assumes the
local gravitational field is in a co-moving cosmological
frame. This is because t′ must be a function of cos-
mological time r. In fact, we know that as r′ → ∞
the proper time interval of the co-moving observer dτ
has to be equal to the t′ interval, we can choose dt′ to
be dt′ = dτco−moving. But there is no reference to the
spacelike t and Ω cosmological dimensions in the internal
metric. If the source of the gravitational field has cos-
mological motion, the true proper time will be reduced
relative to Equation 1 due to time dilation effects. The
total proper time interval is found by multiplying dτ ′ by
the ratio of dτ

dr for the actual cosmological motion of the



19

field source and dτ
dr of a co-moving frame:

dτtot = dτ ′
dτ

dr

(

dr

dτ

)

co−moving

(63)

Which becomes:

dτtot = dτ ′

√

1−
(

a2
dt

dr

)2

−
(

ar
dΩ

dr

)2

(64)

Recognizing that 1
a2 is the linear cosmological speed of

light (Equation 36), we can define dt
dr ≡ v and the cos-

mological linear speed of light 1
a2 ≡ vc. We also define

the angular speed dΩ
dr ≡ ω and the cosmological angular

null geodesic as 1
ar = ωc (by solving for dΩ

dr in Equation
20 with dτ = dt = 0), then we can write Equation 64 as:

dτtot = dτ ′

√

1−
(

v

vc

)2

−
(

ω

ωc

)2

(65)

If we multiply ω
ωc

by r
r , and recognize that

(

v
vc

)2

+
(

rω
rωc

)2

≡ V 2 is the total cosmological velocity (because

rω is the tangential velocity which is perpendicular to the
linear velocity), then we recover the Minkowski form of
the length contraction equation where the speed of light
varies over cosmological time:

dτtot = dτ ′
√

1− V 2 (66)

This is telling us that the worldlines in metrics such as
the external Schwarzschild metric are contracted by the
system’s cosmological motion. So we see that the cos-
mological model is essentially a collection of systems de-
scribed by metrics like the external Schwarzschild metric
in a hyperbolic background that is a quasi-Minkowski
metric with a time dependant speed of light.
In order for Equation 65 to be real, the quantity under

the square root must be positive and therefore

v ≤ vc

√

1−
(

ω

ωc

)2

(67)

And so we see that the upper speed limit of an object de-
pends on its spin. In other words if and object is spinning
about the time dimension while moving in a straight line,
its maximum speed will be reduced per Equation 67. It’s
as though this spin has increased the mass of the particle,
and perhaps even gives mass to a massless particle. The
mass would be related to the precession of the inertial
frame about the time axis.

XIV. ’SPAGHETTIFICATION’, AND A SELF

PORTRAIT OF THE UNIVERSE

We will now take a closer look at what actually hap-
pens at the singularity in the cosmological context. When

approaching the singularity, the dΩ term vanishes and
proper distances go to infinity. This is often referred
to as ’spaghettification’. In the conventional context of
falling into a Black Hole, this is interpreted as an ob-
server approaching the singularity getting both infinitely
stretched and squeezed and then they just cease to exist
at the singularity. But when we interpret the internal
metric as the cosmological solution, we find that the true
nature of the metric behavior at the singularity is in fact
much more mundane, yet incredibly revealing.
Let us now consider the singularity. The light cone

opening angle ψ at a given cosmological time is given by:

ψ = 2 tan−1

(

dt

dr light

)

= 2 tan−1

(

1

a2

)

(68)

Figure 16 shows the light cone angle ψ as function of
r as we move along the r axis with decreasing r during
expansion, through the singularity, and then in increasing
r during collapse.

FIG. 16. Local light cone angles over time

We begin expansion at the left side of the diagram
where the light cone is totally open (ψ = π), because
Equation 36 goes to ∞ there. As we move through time,
the angle closes until at the singularity, light no longer
travels through t (ψ = 0), which is why Equation 36 goes
to zero there. At the singularity, light no longer travels
through space and everything becomes spacelike. But
also recall that motion has stopped at this point and all
light is infinitely redshifted, so there isn’t really a phys-
ical stretch happening, its only that adjacent points in
space are unable to communicate with each other at that
instant. Then as we pass the singularity and continue
moving now with increasing r during collapse, the light
cone will start opening in a symmetric way to how it
closed during expansion.
Therefore, space is not expanding the way we cur-

rently think about it in terms of a stretching of space.
What is changing is how quickly different points in space
are able to communicate with each other. The image of
space itself compressing to a point or ripping itself apart
is misleading. At the beginning of expansion, we have
a normal 3D space of particles that can communicate
instantly with all other particles regardless of distance
because the speed of light is infinite there. This com-
munication speed drops as expansion proceeds and local
gravitational structures are able to form. When reaching
the singularity where the scale factor is infinite, space is
not ripped apart but rather the light cone angles have
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closed completely such that adjacent regions of space are unable to communicate with each other which manifests
as infinite proper distances.
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