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Résumé. - Il semble généralement admis qu'il existe, en théorie quantique du rayonnement, une indétermination 
dans la séparation des effets respectifs des fluctuations du vide et de la réaction de rayonnement. Nous montrons 
ici que cette indétermination est levée si l'on impose aux vitesses de variation correspondantes d'être hermitiques 

. (condition nécessaire pour qu'elles soient interprétables physiquement). Cette procédure est généralisée au cas 
d'un petit système S interagissant avec un grand réservoir 4 et permet de séparer deux types de processus physiques, 
ceux où % fluctue et polarise S (effets des fluctuations du réservoir), ceux où c'est S qui polarise % (effets de la réac- 
tion de % sur s). Nous appliquons cette procédure au cas d'un électron atomique interagissant avec le champ 
de rayonnement et identifions ainsi les contributions des fluctuations du vide et de la réaction de rayonnement 
aux corrections radiatives et à l'émission spontanée. L'analyse des résultats obtenus nous permet de préciser les 
images physiques qui doivent être associées aux divers processus radiatifs. 

Abstract. - It is generally considered that there exists in quantum radiation theory an indetermination in the 
separation of the respective effects of vacuum fluctuations and radiation reaction. We show in this paper that such 
an indetermination can be removed by imposing to the corresponding rates of variation to be Hermitian (this 
is necessary if we want them to have a physical meaning). Such a procedure is generalized to the case of a small 
system S interacting with a large reservoir % and allows the separation of two types of physical processes, those 
where % fluctuates and polarizes S (effects of reservoir fluctuations), those where it is S which polarizes % (effects 
of self reaction). We apply this procedure to an atomic electron interacting with the radiation field and we then 
identify the contribution of vacuum fluctuations and self reaction to radiative corrections and spontaneous emis- 
sion of radiation. The analysis of the results obtained in this way allows us to specify the physical pictures which 
must be associated with the various radiative processes. 

1. Introduction - Understanding the physical 
mechanisms responsible for spontaneous emission 
of radiation by an excited atom, or for radiative 
corrections such as radiative line shifts, electron's 
self energy or magnetic moment ... is a very stimulating 
problem which has received a lot of attention [l, 21. 

The quantitative results for these corrections are 
of course well established. The physical interpreta- 
tions remain however more controversial. Two extreme 
points of view have been investigated. In the first 
one, the interaction of the electron with the quantum 
fluctuations of the vacuum field, the so-called « va- 
cuum fiuctuations », is considered as playing the 
central role. One tries to interpret spontaneous emis- 
sion as an emission « triggered » by vacuum fluctua- 
tions. ~ h e  most famous example of such an approach 
is the interpretation of the Lamb shift as being due to 

the averaging of the Coulomb potential of the nucleus 
by the electron vibrating in vacuum fluctuations [3]. 
One must not forget however that such a picture 
leads to the wrong sign for the electron's spin anomaly 
g - 2 : the vibration of the electron's spin in vacuum 
fluctuations does not increase the effective magnetic 
moment but reduces it [3, 41. In the second point of 
view, the basic physical mechanism is identified as the 
interaction of the electron with its own field, the so 
called « radiation reaction » although it would be 
proper to cal1 it the electromagnetic self interaction 
since it includes the interaction of the electron with 
its Coulomb field as well as with its radiation field [5- 
81. We will use in the following the shorter denomina- 
tion « self reaction » for this process. In such an appro- 
ach, one tries to interpret Q.E.D. radiative corrections 
along the same lines as the radiative damping and 
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the radiative shift of an oscillating classical dipole 
moment. We should note however that the vacuum 
field cannot be completely forgotten in the interpre- 
tation of finer details of spontaneous emission, such 
as fluorescence spectrum or intensity correlations, 
which are related to higher order correlation func- 
tions [9, 101. 

Actually, it is now generally accepted that vacuum 
fluctuations and self reaction are « two sides of the 
same quantum mechanical coin » [Il], and that their 
respective contributions to each physical process 
cannot be unambiguously determined [Il-141. Such 
an opinion is based on the following analysis, carried 
out in the Heisenberg picture which provides a very 
convenient theoretical framework since it leads, for 
the relevant dynamical variables, to equations of 
motion very similar to the corresponding classical 
ones The calculations [Il-141 can be summarized 
by the general scheme of figure 1. 

Heisenberg's equations -of motion for field and 
atomic variables are derived from the Hamiltonian 
of the combined atom + field system. The equation 
for the field looks like the equation of motion of an 

. harmonic oscillator driven by an atomic source term 
and is readily integrated This leads to an expression 
for the total field E which is a sum of two terms : 

The « free field » Er corresponds to the solution of the 
homogeneous field equation (without atomic source 
term), and coincides with the (( vacuum field » when 
no photons are initially present. The « source field » 
Es is the field generated by the atomic source (solution 
of the inhomogeneous field equation). Consider now 
the atomic equation The rate of variation, dG(t)/dt, 
of a given atomic observable G(t) appears to be 
proportional to the product of atomic and field 
operators, N(r) and E(t), taken at the same time : 

The final step of the calculation consists in inserting 
in (1.2) the solution (1.1) obtained for E(t), which 

 t tom +f ie ld  hamiltonian 1 

equation 

' Fig. 1. - Principle of the derivation of the atomic dynami- 
cal equation. 

leads to a dynamical equation for the atomic system 
(Fig. 1). The contributions of Er and Es to dG/dt 
can be interpreted as rates of variation : 

respectively due to vacuum fluctuations and self 
reaction This interpretation directly follows from 
the physical origin of Er and Es. The ambiguity men- 
tioned above for this separation comes from the fact 
that the two atomic and field operators N(t) and E(t) 
appearing in (1.2) comrnute [they commute at the 
initial time t = t,, when they act in different spaces, 
and the Hamiltonian evolution between t, and t 
preserves this commutation]. They can therefore be 
taken in any order, N(t) E(t) as in (1 .2), or E(t) N(t). 
However, E h )  and Es(t) do not commute separately 
with N(t), as their sum does. Consequently, N(t) Ef(t) 
and Ef(t) N(t) generally differ. The two rates of varia- 
tion (1 .3a) and (1 .3b) therefore depend on the initial 
order between the two comrnuting operators N(r) 
and E(t), the total rate (1 .2) being of course indepen- 
dent of this order. In particular, if the normal order 
has been chosen in (1.2) [with al1 field annihilation 
operators at right, al1 field creation operators at 
left], the contribution of vacuum fluctuations vanishes 
when the average is taken over the vacuum state of 
the field, and al1 radiative corrections appear to come 
from self reaction. Different orders taken in (1.2) 
would lead to different conclusions. Thus, it seems 
that the relative contributions of vacuum fluctuations 
and self reaction cannot be unambiguously identified. 

MOTIVATIONS OF THIS PAPER. - In this paper, we 
would like to present some arguments supporting 
the choice of a particular order in (1.2) leading, in 
Our opinion, to a physically well defined separation 
between the contributions of vacuum fluctuations 
and self reaction. We don't question of course the 
mathematical equivalence of al1 possible initial orders 
in (1 .2). Our argument rather concerns the physical 
interpretation of the two rates of variation appearing 
when (1 . l )  is inserted in (1 .2). If G is an atornic obser- 
vable (Hermitian operator), the two rates of variation 

d 
contributing to - G(t), which is also Hermitian, must 

dt 
be separately Hermitian, if we want them to have 
a physical meaning. Furthermore, the field and ato- 
mic operators appearing in the different rates of 
variation must also be Hermitian if we want to be 
able to analyse these rates in terms of well defined 
physical quantities. We show in this paper that these 
hermiticity requirements restrict the possible initial 
orders in (1 .2) to only one, the completely symmetrical 
order. 
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A second motivation of this paper is to point out 
that, with such a symmetrical order, a clear connec- 
tion can be made with a statistical mechanics point 
of view which appears to be in complete agreement 
with the usual physical pictures associated with 
vacuum fluctuations and self reaction. For example, 
the radiative corrections can be expressed as pro- 
ducts of correlation functions by linear susceptibilities. 
For the vacuum fluctuations part of these correc- 
tions, one gets the correlation function of the field 
multiplied by the linear susceptibility of the atom, 
which supports the picture of a fluctuating vacuum 
field polarizing the atomic system and interacting 
with this induced polarization, whereas for the self 
reaction part, the reverse result is obtained : product 
of the correlation function of the atomic system by 
the linear « susceptibility » of the field which corres- 
ponds to the picture of a fluctuating dipole moment 
« polarizing » the field, i.e. producing a field, and 
interacting with this field. 

ORGANIZATION OF THE PAPER. - In section 2 we 
introduce our notations and the basic concepts 
(vacuum field, source field, radiation reaction.. .) 
by applying the general theoretical scheme of figure 1 
to the derivation of the quantum generalization of 
the Abraham-Lorentz equation [17] describing the 
dynamics of an atomic electron interacting with a 
static potential and with the quantized radiation 
field. We discuss the physical content of this equa- 
tion and the difficulties associated with the quantum 

. nature of field variables. We explain also why it is 
necessary to extend the calculations of section 2 (deal- 
ing with the position r and the momentum p of the 
electron) to more general atomic observables G. 

The calculation of dG/dt, which is presented in 
section 3, raises the problem of the order between 
commuting observables, mentioned above in connec- 
tion with equation (1.2) (such a dificulty does not 
appear for r and p). We show how it is possible, by 
the physical considerations mentioned above, to 
single out the completely symmetrical order in (1.2). 
We then extend in section 4 the discussion to the 
more general case of a (( small system » S (playing the 
role of the atomic system) interacting with a « large 
reservoir » fi (playing the role of the electromagnetic 
field with its infinite number of degrees of freedom). 
The advantage of such a generalization is to provide 
a deeper insight in the problem. We point out in 

particular that the expressions giving 
. . 

and ( @)3r ), averaged in the vacuum state of the 

field and calculated to the first order in the fine struc- 
ture constant a, can be expressed in terms of simple 
statistical functions of the two interacting systems 
(correlation functions and linear susceptibilities). 
We discuss the mathematical structure of these 
expressions and their physical content. 

Finally, the general results of sections 3 and 4 are 
applied in section 5 to the physical discussion of the 
relative contributions of vacuum fluctuations and 
self reaction to the dynamics of an atomic electron. 
Two types of effects are considered : the shift of atomic 
energy-levels, described by the Hamiltonian part of 

((g)vf ) and ( ($), ), and the dissipative 

effects associated with the exchange of energy bet- 
ween the electron and the radiation field. 

2. The quantum form of the Abraham-Lorentz 
equation. - A few basic concepts are introduced in 
this section, by considering a very simple system form- 
ed by an electron bound near the origin by an external 
potential and interacting with the electromagnetic 
field. 

We first introduce the Hamiltonian of the combin- 
ed system « bound electron + electromagnetic field » 
(@ 2.1). We then establish, in the Heisenberg repre- 
sentation, the quantum dynamical equation for the 
electron (@ 2.2). This equation appears to be very 
similar . to the corresponding classical one, known 
as the Abraham-Lorentz equation. This close analogy 
is however misleading and we will try to explain the 
difficulties hidden in the quantum equation (@ 2.3). 

2.1 BASIC HAMILTONIAN IN COULOMB GAUGE. - 

2.1.1 Field variables. - The electric field is divided 
into two parts : the longitudinal field El ,  and the 
transverse field E,. The longitudinal field at point R 
is the instantaneous Coulomb field created by the elec- 
tron at this point. It is expressed as a function of the 
electron position operator r. 

The transverse field E,(R), the vector potential A(R) 
and the magnetic field B(R) are expanded in a set 
of transverse plane waves, normalized in a cube of 
volume L3 : 

with : 
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a,, and a,+, are the annihilation and creation operators 
for a photon with wave vector k and polarization E. 

The summation concems al1 the wave vectors k with 
components multiple of 2 KIL and, for a given k, 
two transverse orthogonal polarizations E, and .E,. 

In classical theory, expansions similar to (2.2) 
can be written, the operators a,, and al, k ing  replaced 
by c-numbers a d t )  and at;(t) which are actually 
« normal » variables for the field. 

In order to calculate the energy of the Coulomb 
field of the particle, it is also convenient to take the 
Fourier transform of the longitudinal field (2.1) 
(for a given value of r) : 

e eik.(R - r) 
E ~ ~ ( R )  = - 2 ~3 k + hc. (2.5) 

2.1 .2 Electron variables. - The electron motion 
is described by the position operator r and the conju- 
gate momentum p : 

The velocity operator, v, is given by : 

mv = p - eA(r) (2.7) 

where m is the electron mass. Note that v is not an 
electronic operator since it includes field variables 
through A(r). The electron is bound near the origin 
by an external static potential Vo(R). If spin is taken 
into account, the electron variables are supplemented 
by the spin operator S. Magnetic and spin effects 
will be briefly discussed in § 5.2.5. They are neglected 
elsewhere. 

2.1 . 3  The Hamiltonian. - In the non relativistic 
approximation, the Hamiltonian is the surn of five 
terms : the rest mass energy of the electron, its kinetic 
energy, its potential energy in Vo(R), the energy of 
the longitudinal field and the energy of the transverse 
fields : 

The energy of the longitudinal field appears to be a 
constant, representing the energy of the electrostatic 
field associated with the charge. This constant can 
be written as 

dm1 can be considered as a correction to the mecha- 
nical rest pass m of the electron. The same correction 
appears in classical theory. 

2.1.4 Introduction of a eut-off: - It is well known 
that divergences appear in the computation of 
various physical quantities (such as energy, momen- 
tum...) associated with a charged point particle 
interacting with the electromagnetic field. These 
divergences are due to the contribution of the modes 
with large wave vectors. In order to deal with finite 
expressions, we will consider only the coupling of 
the electron with modes k such that 

Ikl< k,. (2.10) 

This cut-off kM is chosen not too large so that the 
non relativistic approximation is correct for al1 the 
modes which are taken into account (ho, Q me2 
with o, = ck,). On the other hand, o, must be 
large compared to the characteristic resonance fre- 
quencies o0 of the bound electron. This gives two 
bounds for kM : 

It is well known that theories using such a cut-off 
are no longer relativistic invariant [15]. The modes 
selected by condition (2.10) are not the same in two 
different reference frames, because of the Doppler 
effect. It is possible to restore relativistic invariance, 
by using some more sophisticated cut-off proce- 
dures [16]. However, we are not concemed here 
with the relativistic aspects of radiative problems 
and we will ignore these dificulties. To summarize, 
al1 the sums over k appearing here after must be 
understood as limited by condition (2.10). The 
same restriction also applies to the expansion (2.5) 
of the longitudinal field. The energy of the longitu- 
dinal field is then finite and equal to 

e2 e2 k, 
dm, c2 = E =- (2.12) 

k 2 E0 L3 k2 4 K 2  Eo 

a 
which can be written as -ho,, where a is the fine 

K 

structure constant. 

2.1 .5 Electric dipole approximation. - We also 
suppose in this paper that the binding potential 
localizes the electron in a volume centred on the 
origin, with a linear dimension a much smaller than 
the wave-length of the modes interacting with the 
particle. (The cut-off kM introduced above is supposed 
to satisfy kM a Q 1.) Such an assumption which is 
justified for an atomic electron, allows us to neglect 
the spatial variation of the fields interacting with the 
electron. We will then replace the fields at the electron 
position E(r), A(r) by the fields at the origin E(O), A(0). 

The electric dipole approximation is not essential 
for the derivation of the results presented in this 
paper. But the calculations are much simpler and the 
physical conclusions remain unchanged ('). 

(') Corrections to the electric dipole approximation are 
of higher order in l/c. They have to be considered when 
relativistic corrections are included in the Hamiltonian 
(see for example [4]). 
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To summarize the previous discussion, we will use hereafter the following Hamiltonian : 

-- 
I ~ I x ~ M  

with 

2.2 DYNAMICS OF THE ELECTRON INTERACTING WITH 

THE ELECTROMAGNETIC FIELD. - 2.2.1 Principle of 
the calculation. -The rate of variation of election 
and field variables can be determined from the 
Hamiltonian (2.13). The corresponding two sets of 
equations are of course coupled ; the field evolution 
depends on the charge motion and, conversely, the 
electron experiences a force due to the field. 

The derivation of a dynamical equation for the 

electron from these two sets of coupled equations is 
well known [8, 13, 141 and follows the general scheme 
of figure 1. One first integrates the field equations 
in presence of the particle. The solution obtained 
for the field is then inserted in the electron equation. 
This leads to a quantum dynamical equation des- 
cribing the motion of the electron interacting with 
the free field as well as with its own field. 

2.2.2 The electromagnetic field in presence of the particle. - Since al1 field operators are expressed in 
terms of a, and a&, we start with the Heisenberg equation for a,(t) : 

i ie 
h,(t) = t; [H(t), ab()] = - iwo,(t) + -Ak ~*.n(t) 

mfi 
(2.15) 

where 

Equation (2.15) is then formally integrated and gives : 
' .  

The evolution of a,&) appears to be the superposition of a free evolution [first term of (2.17')] and a forced )) 
evolution driven by the motion of the charge [second term of (2.17)]. We finally insert (2.17) in the expansions 
(2.2) of the transverse field The contributions of the two terms of (2.17) correspond respectively to the free 
fields (A,, E,,) and to the source fields (A,, E,,). Actually, we need only for the following to know the fields 
for R = O (because of the electric dipole approximation). From (2.2) and (2.17), one easily derives (see appen- 
dix A for the details of the calculation) : 

with 

similarly 

t) = El@, t) + E,,(O, t) 
l 

with 
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2.2.3 The quantum Abraham-Lorentz equation. - The Heisenberg equations for the electron operators 
r and n are 

im 
mi(t) = - [H, r] = n(t) 

h 

The last term of the right member of equation (2.23) is smaller than the second one by a factor v/c [see Eq. (2.3)]. 
It will be neglected hereafter. On the other hand, we notice that E,(O, t) is not multiplied by any electronic 
operator so that the problem of order raised in the introduction does not appear here. Replacing in (2.23) 
the total transverse electric field by the sum (2.20) of the free field and the source field and using (2.22) to eli- 
minate n, one gets : 

This equation is very similar to the classical Abraham- 
Lorentz equation [17]. This is not surprising since 
the classical Hamiltonian is similar to (2.13). The. 
general scheme of figure 1 is valid for both quantum 
and classical theories, and the Hamilton-Jacobi equa- 
tions have the same structure as the quantum Hei- 
senberg ones. Since there is no problem of order, 
the physical interpretation of this equation is clear. 
Apart from the external potential Vo(r), two fields 
act on the electron : its own field and the free field. 
The coupling of the electron with its own field is 
described by two terms : the first one, proportional 
to f, correspond to a mass renormalization from rn 
to m + $dm, ('). The second one proportional 
to Y, is the quantum analogue of the force which 
produces the radiative damping of the classical 
particle. The last term of (2.24) describes the coupling 
of the electron with the free field, i.e. the field which 
would exist if the particle was not there. This free 
field may include an incident radiation field. Classi- 
cally, the description of the electron free motion is 
obtained by taking Elf(O, t) = O. In quantum mecha- 
nics on the contrary, El, is an operator. Although 
its average value can be zero (in the vacuum state 
for example), its quadratic average value is always 
strictly positive. The modifications of the electron 
dynamics originating from this term correspond to 
the effect of vacuum fluctuations. 

To surnmarize, it is possible to derive a quantum 
form of the Abraham-Lorentz equation. The self 
reaction terms appear in a natural and unambiguous 
way and are formally identical in quantum and 
classical theories. In the 'quantum equation, the 
term describing the interaction of the particle with 
- 

(') As in classical theory, the fact that the mass correc- 
tion in the Abraham-Lorentz equation and the mass correc- 
tion in the"rest mass energy (2. Y) differ by a factor $ is due 
to the lack of covariance of the cut-off procedure. 

the free field operator cannot be considered as a 
c-number equal to zero in the vacuum. We discuss 
now some consequences of the quantum nature of 
this last term. 

2.3 THE DIFFICULTIES OF THE QUANTUM DYNAMICAL 

EQUATION. - In its traditional form, the classical 
Abraham-Lorentz equation suffers from a well known 
defect : the existence of preacceleration and self 
accelerated solutions. The discussion of the same 
problem in quantum theory is undoubtly interest- 
ing [18]. We prefer here to focus on some more fun- 
damental difficulties inherent in the quantum forma- 
lism and which are hidden behind the forma1 analogy 
between the classical and the quantum dynamical 
equations. 

First, it is worth noting that equation (2.24) 
relates non cornmuting operators. This of course 
complicates the resolution of the equation, but is 
unavoidable in a quantum theory of the electron 
dynamics. 

Another difficulty lies in the fact that such an 
equation includes both particle and field operators, 
respectively r, p and E,. This problem does not 
appear in the classical treatment where the free 
field, taken equal to zero, does not contribute to the 
Abraham-Lorentz equation. In quantum mechanics, 
Er cannot be cancelled in the same way : physically, 
this means that the electron cannot escape the vacuum 
fluctuations. To estimate the two contributions of 
vacuum iluctuations and self reaction, we then have 
to integrate the quantum Abraham-Lorentz equation 
with a source term; this introduces further compli- 
cations. To avoid this problem, one may try to deal 
only with electron operators averaged over the state 
of the field. Suppose that the radiation field is in the 
vacuum state at the initial time to : Let ( S(t) ), be 
the average in this radiation state of the particle 
operator S(t). ( S(t) ), is still an operator, acting 
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only in the electron Hilbert space. The average of 
equation (2.24) gives : 

4 
m(Y),  = - (VVO(r)), - ~ 6 m ,  ( Y ) ,  + 

J 

2 e2 +-- (Y ) , .  (2.25) 
3 4 ns, c3 

We have used the fact that the average value of E, 
is zero in the vacuum state. It seems in this last equa- 
tion that vacuum fluctuations have disappeared and 
do not play any role in the evolution of ( r ),. Actually, 
the simplicity of equation (2.25) is misleading ; the 
averaged operators ( r ),, ( p ), do not have the 
same properties as the original operators r, p. For 
example, their commutation relations are not the 
canonical ones ([( r ),, ( p ),] f ih) and their evo- 
lution is not unitary. So, we are no longer able to 
draw a parallel between the classical Abraham- 
Lorentz equation and the evolution of ( r ), given 
by (2.25). 

Furthermore, al1 the dynamical aspects of the 
electron motion cannot be described only by the 
two operators ( r ), and ( p ),. The value of the 
product ( r.p ),, for example, cannot be calculated 
as a function of ( r ), and ( p ),. Similarly, equa- 
tion (2.25) is not a true differential equation since 
( VV,(r) ), cannot be expressed in terms of ( r ), 
and ( p ),. This equation Is then not « closed » : it 
links ( r ), and its derivatives to another operator 
( VV,(r) ), for which we have to find the evolution 
equation (the vacuum fluctuations will probably 
contribute to this equation, which proves that their 
disappearance in (2.25) was only superficial). 

The previous discussion clearly shows that we 
cannot avoid to study now the evolution of electron 
observables other than r and p and to ask about 
their rate of variation the same type of questions 
concerning the respective contributions of vacuum 
fluctuations and self reaction. This problem will be 
be dealt with in the next section. Note that the sim- 
plifications which occurred above for the evolution 
of r (no order problem in (2.24) and nullity of the 
vacuum average of E, in (2.25)) will not occur for 
the evolution of a general particle observable. 

There is a supplementary reason for studying the 
evolution of operators other than r and p. Very few 
experiments are dealing with the position or the 
momentum of an atomic electron. One rather mea- 
sures the population of an energy levei, the frequency 
or the damping of some atomic oscillations asso- 
ciated with off-diagonal elements of the density 
matrix. This suggests that operators such as 1 i ) ( i ( 
or 1 i ) ( j 1 (where 1 i ) and 1 j ) are eigenstates of 
the electron in the potential V,) are more directly 
connected to expriment than r and p. 

3. Identification of the contributions of vacuum 
fluctuations and self reaction to the rate of rariation 
of an arbitrary atomic observable. - In this section, 

JOURNN DE PHYSIQUE. - T. 43, EP I I ,  NO~MLIRR 1982 

we first evaluate the contributions of the various 
terms of the interaction Hamiltonian to the rate of 
variation, dG/dt, of an arbitrary atomic observable G 
(5 3.1). We then discuss the problem of order which 
arises when the total field appearing in this rate is 
split into its free part and its source part (5 3.2). 
We solve this problem by introducing hermiticity 
conditions associated with the requirement of phy- 
sical mèaning (R 3.3 and 3.4). Finally, we discuss 
the problem of the vacuum average of the various 
rates which requires a perturbative calculation (5 3.5). 

3.1 CONTRIBUTION OF THE VARIOUS TERMS OF THE 

INTERACTION HAMILTONIAN. - It will be convenient 
to divide the total Hamiltonian (2.13) into three 
parts, the Hamiltonian 

of the electron in the static potential V,(r), the Hamil- 
tonian 

of the transverse radiation field, and the Harniltonian 

of the electron-field coupling, characterized by the 
electric charge e and including the energy of the 
longitudinal field of the electron (2.12). 

The rate of variation of an atomic observable G 
can then be written as 

We discuss now the contributions of the three terms 
of V to the second cornmutator (to order 2 in e). 

(i) The last term of V is a c-number which com- 
mutes with G and which therefore does not produce 
any dynamical evolution. This term corresponds to 
an overall displacement of electronic energy levels 
which we have already interpreted in section 2 as 
due to the contribution dm, c2 of the Coulomb field 
of the electron to the electron rest mass energy. 
This effect must obviously be associated with self 
reaction since it originates from the longitudinal field 
created by the electron itself. The same situation 
exists in classical theory. 

(ii) The second term of V does not depend on 
atomic variables and thus cornmutes with G. It has 
no dynamical consequences. It nevertheless contri- 
butes to the total energy. Let us calculate its average, 
value. Since we limit the calculation to order 2 in e, 
we can replace A(0) by the free field A,(O). The term 
then becomes independent of the atomic state and 
can be interpreted as an overall shift of the electron 

107 
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energy levels. The value of this shift for the vacuum 
state of the field is given by 

This shift can be interpreted as a new contribution, 
dm2 cZ, to the electron rest mass energy. It is propor- 
tional to the vacuum average of the square of the 
free field and thus is clearly a vacuum fluctuation 
effect, the interpretation of which is well known [19] : 
it is the kinetic energy associated with the electron 
vibrations produced by the vacuum fluctuations of 
the electric field. 

(iii) Finally, only the first term of (3.3) contributes 
to the dynamical evolution of G. The corresponding 
term of (3.4) can be written as 

ie 

($) = - - [p.A(O), G] = eN. A(0) (3.6) 
coupling 

hm 

where N is an atomic operator given by 

i 
lu = - - [p, G] . 

hm 

If G coincides with p or r, N is equal to O or to a 
constant and (3.6) reduces to O or to A(0). We find 
again that the evolution of r and p is very simple. 

Finally, combining (3.4) and (3.6) and reintro- 
ducing the time explicitly in the operators, we get 

3.2 THE PROBLEM OF ORDER. - In expression (3.8), 
we splif as in section 2, the field A(0, t) in two parts, 
A,(O, t) representing the free field and A,(O, t) repre- 
senting the source field. If the atomic operator N(t) 
does not reduce to O or to a constant (as it is the 
case for r and p), we are immediately faced with the 
problem of order mentioned in the introduction. 
Since N(t) and A(0, t) commute, we can start in 
equation (3.8) with any order 

More generally, we can write the last term of (3.8) as 

elN(t). A(0, t) + e(l - 1) A(0, t). N(t) (3.9) 

with 1, arbitrary. Replacing A by A, + A, leads to 

( )  coupling = ( )  + ( )  sr (3 10) 

where the two rates 

[ (g)vf = eAN(t). Af(O, t) + e(1 - 1,) Af(O, t). N(t) 

depend on 1, since A, and A, do not commute sepa- 
rately with N(t). 

1, k i n g  arbitrary, the splitting (3.10) of the total 
rate is not uniquely defined [l 1 - 131. 

3.3 PHYSICAL INTERPRETATION AND HERMITICITY 

CONDITIONS. - In order to remove this indetermina- 
tion, we introduce now some simple physical consi- 
derations. 

Suppose that G is a physical observable, repre- 
sented by a Hermitian operator. The rate of varia- 
tion of G due to the coupling is also a Hermitian 
operator [this clearly appears on (3.8) since N(t) 
and A(0, t) are commuting Hermitian operators]. 
Our purpose is to split this rate of variation in two 
rates, involving A, and A, respectively, and having 
separately a well defined physical interpretation in 
terms of vacuum fluctuations and self reaction. 
This interpretation requires that (3.11) and (3.12) 
should have separately a physical meaning, and 
consequently should be separately Hermitian. This 
condition determines 1, which must be equal to 112. 
Thus', the splitting of dGldt is unique and given by 

This could have been obtained by choosing the 
completely symmetrical order in (3.9). 

3.4 GENERALIZATION TO MORE COMPLICATED SITUA- 

n o N s .  - It may happen that the total rate of 
variation of G does not appear as simple as in (3.6), 
i.e. as the product of an atomic observable by a 
field observable. For example, if we had not made 
the electric dipole approximation, the electron posi- 
tion operator r would appear in A. Another example 
is the appearance of non Hermitian operators in 
(3.6) when the total field A is decomposed into its 
positive and negative frequency components which 
are not Hermitian. We extend now the tprevious 
treatment to these more complex situations. 

We first note that, in the most general case, the 
total rate of variation of a physical observable G 
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(due to the coupling with the field) can always be 
written as 

where the Ai are field operators and the Ni atomic 
operators which commute, but which are not neces- 
sarily Hermitian. For example, in simple models 
dealing with two-level atoms and using the rotating 
wave approximation », the coupling Hamiltonian is 
taken of the form 

where D +  and D- are the raising and lowering 
components of the dipole moment operator, and 
E(+)  and E(-) the positive and negative frequency 
components of the field [20]. 

In such a case, we get 

( )  = E ( + ) F t + E ( - ) F -  (3.17) 
couplmg 

with . 
1 

F t  = j=[G,D*] (3.18) 

(3 .17) has a structure simrlar to (3.1 5). 
G being Hermitian, the right side of (3.15) is of 

course also Hermitian, but since the atomic and field 
operators commute, it could be written as well as 

or any combination of these forms. When Ai is replac- 
ed by A,, + A,, it is easy to see that the hermiticity 

condition imposed on [$)vf and ($)sr is no longer 

suficient for removiGg the indète&ination. For 
exarnple, 

C i (Air Ni + Ni+ Ai:) and C i (Ni Air + Ai: Ni+) 

are two Hermitian rates of variation which could be 
attributed to vacuum fluctuations and which generally 
do not coincide since A, and Ai do not commute 
with Ni and Ni+. For the simple mode1 considered 
above [see (3.16) and (3.17)] these two rates res- 
pectively correspond to the anti normal and normal 
orders. So, when the Ai and the Ni are not Hermitian, 
we must introduce a new requirement. 

Coming back to the expression (3.15) of the total 
rate, we first re-express this rate in terms of physically 
well defined atomic and field quantities, i.e. in terms 
of Hertnitian operators. The physical justification 
for such a transformation is that we want to be able 
to analyse the total physical rate in terms of physical 
quantities. For example, it would be difficult to ela- 
borate a physical picture from an expression involving 
only the positive frequency part of the field which 
is not observable. Introducing the real and the ima- 
ginary part of the various operators appearing in 
(3.19, and using the fact that field and atomic opera- 
tors commute, we transform (3.15) into the strictly 
equivalent expression 

( )  couplmg =eE(A<:Ai+)(Ni+N, ' )+eE i i ( A i  (NiIiNr). (3.19) 

But now the total rate appears as a sum of products of observables of the field by observables of the particle as 
in (3.6) and the procedure of the previous section can be applied to each of these products and singles out the 
completely symmetric order 

Ai + Ai+ 

(g) couplmg =efT:[(  
) ( ~ i + ~ i + ) + ( ~ i + ~ i + )  ? : "91 + 

when A, is replaced by A, + Ais in (3.19). 

To summarize the previous discussion, a unique (ii) Before replacing A, by A, + A,, the total rate 
well defined order is singled out by the following two must be expressed in terms of physical field and parti- 
conditions. cle quantities. 

t 

(i) The two rates (:)vf and muSt have 3.5 VACUUM AVERAGE OF TW VARIOUS RATES. - 
To progrex further, we m u t  now take the average 

separately a physical meaning. of the two rates (3.13) and (3.14) over the vacuum 
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state of the field. The calculation of such an average 
is not trivial (as it was the case in the previous section 
for r and p). This is due to the presence of products 
of field and atomic operators in the right side of the 
equations. For example, when we average the product 
eA,(O, t).N(t), we must not forget that these two 
operators are correlated since the atomic operator 
N(t) depends on the free field which has perturbed 
its evolution from the initial time to to t. Consequently, 
before taking the vacuum average, we have first to 
calculate, to a given order in e, N(t) as a function of 
unperturbed (free) atomic and field operators. Since 
we Iimit Our calculation to order 2 in e (i.e. to order 1 
in the fine structure constant a), we must solve the 
Heisenberg equation for N(t) up to order e [e already 
appears in(3.13) and A, is of order eO]. When we insert 
the perturbative expansion of N(t), which contains 
zero or one field operator taken at a time t '  such that 
to c t '  < t, in the product Af(O, t).N(t), and when 
we take the vacuum average, we get « one-time ave- 
rages » ( O ( A,(t) 1 O ) which are equal to zero, and 
« two-time averages » such as 

(with i, j = x, y, z), i.e. vacuum averages of products 
of two cornponents of free field operators taken at 
two different tiqes. Similar considerations can be 
made about the other products of (3.13) and (3.14). 

Actually, such perturbative calculations are not 
specific of our choice of the syrnmetrical order in (3.9) 
and they can be found in other papers where other 
choices are investigated [Il,  131. Rather than duplicat- 
ing these calculations, we prefer in the next section 
to reconsider Our problem of the separation between 
vacuum fluctuations and self reaction from a more 
general point of view where one asks the same type 
of questions for a small system S (generalizing the 
atom) interacting with a large reservoir % (generaliz- 
ing the field). The extension of the previous treat- 
ment to this more generaI situation is straightfor- 
ward. It leads to mathematical expressions which, 
because of their generality, have a more transparent 
structure. In particular, since we don't use, in the 
intermediate steps of the calculation, simplifications 
specific to a particular choice of S and 3, we find that 
some important statistical functions of S and % 
appear explicitly in the final expressions and this 
provides a deeper physical insight in the problem. 

4. Extension of the prenom treatment to a system 
8 interacting with a large resewoir 8. - 4.1 INTRO- 
DUCTION-OUTLINE OF THE CALCULATION. - It i~ well 
known that spontaneous emission, and al1 associated 
effects such as radiative corrections or radiative 
damping, can be considered as a problem which can 
be studied in the general framework of the quantum 
theory of relaxation in the motional narrowing limit 
[21, 221. Such a theory deals with .the damping and 
energy shifts of a small system S coupled to a large 

reservoir %. Large means that % has many degrees 
of freedom so that the correlation time t, of the obser- 
vables of % is very short, allowing a perturbative 
treatment of the effect of the S-% coupling during a 
time t,. For spontaneous emission, the atom plays 
the role of S, the vacuum field, with its infinite number 
of modes, plays the role of 4 and the correlation 
t h e  of vacuum fluctuations is short enough for 
having the motional narrowing condition well ful- 
filled. 

This point of view suggests that we can extend to 
any S-% system the same type of questions we have 
asked about the atom-field system. 1s it possible to 
undestand the evolution of S as being due to the effect 
of the reservoir fluctuations acting upon S, or should 
we invoke a kind of self reaction, S perturbing % which 
reacts back on S ? 1s it possible to make a clear and 
unambiguous separation between the contributions 
of these two effects ? 

The extension of the treatment of section 3 to this 
more general case is straightforward. We first note 
that, although most presentations of the quantum 
theory of relaxation use the Schrodinger picture (one 
derives a master equation for the reduced density 
operator of S), we have to work here in the Heisen- 
berg picture. Actually, the Heisenberg picture is also 
used in the derivation of the « Langevin-Mori » equa- 
tions describing the evolution of the observables of S 
as being driven by a « Langevin force » (having a zero 
reservoir average) and a « friction force » (producing 
not only a damping but also a shift of energy levels) 
[21, 23, 241. Our probIem here is to identify in the 
(( friction force » the contribution of reservoir fluctua- 
tions and self reaction. Following the general scheme 
of figure 1, we starf with the Hamiltonian of the S-% 
system 

H = H s + H R + V  (4.1) 

where 

V  = - C R i S i  
i 

(4.2) 

is the interaction Hamiltonian, and Ri and Si are 
Hermitian observables of % and S [we can always 
suppose that V has been put in this form, eventually 
after a transformation analogous to the one changing 
(3.15) into (3.19)]. We then write the Heisenberg 
equation for the reservoir observable Ri appearing 
in (4.2). The solution of this equation can be written 
as the sum of a free unperturbed part Rif (solution 
to order O in V), and of a « source part » Ris due to 
the presence of S (solution to order 1 and higher in V) 

Expression (4.3) is finally inserted in the last term of 
the Heisenberg equation for an arbitrary system obser- 
vable G 
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in order to indentiîj the contribution of reservoir 
fluctuations and self reaction The problem of order 
between the commuting observables Ri and 

- 1 
N .  = - [G, Si] 

' ih 

in the last term of (4.4) arises in the same way as in 
section 3 and is solved by the same physical consi- 
derations which impose the completely symmetric 
order. We thus get 

It remains to perform the average of (g) and 
1 f 

in the reservoir state (reservoir average). 

As explained in 5 3.5, this requires a perturbative 
calculation leading, to order 2 in V, to two time opera- 
tor averages which can be expressed in terms of 
correlation functions and linear susceptibilities. This 
is precisely where the advantage of working with 
a general S-R system appears. As already explained 
in 5 3.5, the intermediate' steps of the calculation 
remain general. For example, when we solve pertur- 
batively the Heisenberg equation for Ri, we get for 
the source part, R i ,  a perturbative expansion where, 
at the lowest order, the linear susceptibility of the 
reservoir appears. In the particular case of the atom 
field system, the calculation of the source field has 
been done exactly and the result expressed in terms 
of atomic operators and time derivatives of these 
operators (see equation (2.21)). In such an intermediate 
calculation, the fact that the susceptibility of the 
electromagnetic field is involved remains hidden, an4  
thus this important function does not appear expli- 

citly in the final result for 

In order not to increase too much the length of this 
paper, we will not give here the detailed calculations - - 

of ( (:)~ ) and-( 
) following the general 

scheme outlined abovè. These calculations will be 
presented in a forthcoming paper [25], together with 
a discussion of the various approximations used in the 
derivation. We iust give in this section the results of 

culated up to order 2 in V, the reservoir only appears 
in the final result through two statistical functions. 

The first one 

is the symmetric correlation function of the two free 
reservoir observables Rif and Rj,. The average is 
taken over the initial state of the reservoir which is 
supposed to be stationary, so that C r )  only depends 
on r. CiF)(t) is a real function of t which describes 
the dynamics of the fluctuations of Rif and Rjf in the 
reservoir state. 

The second statistical function, 

where 0(t) is the Heaviside function, is the linear sus- 
ceptibility of the reservoir. It generally depends on the 
reservok state. zi7)(t) is also a real function of t, 
which describes the linear response of the averaged 
observable ( Rif(t) ), when the reservoir is acted 
upon by a perturbation proportional to Rjp Note 
that both C and z have a classical limit (if it the case 
for R) : this is obvious for C, and for X, the commu- 
tator divided by ih becomes the Poisson bracket. 

Sirnilar functions can of course be introduced for 
the small system S in an energy level 1 a ), with energy 
E,. We will note them 

i 
z!?.")(.r) = h - ( a 1 [Sif(t), Sjf(t - t)] 1 a ) e(t) (4.10) 

where the upper indices (S, a) mean that S is in ( a ), 
and where the lower index f on Sif and Sjf means that 
these operators are unperturbed system operators 
evolving only under the effect of H, (as for Rif and Rif 
which evolve only under the effect of HR). 

Finally, we will note c!F)(o), X(iiR)(o), c:(iS.')(o), 
X!y'(o) the Fourier transforms of (4.7), (4.8), (4.9), 
(4. IO), the Fourier transform f(o) of f (t) being 
defined by 

these calculations wgich will be useful for the discus- + 00 

sion of section 5. We f'irst give (§ 4.2) the expression f ( ~ ) e - ' ~ ' d r .  (4.11) 

of the correlation functions and linear susceptibilities 
in terms of which we then discuss the structure of the 
terms describing the effect of reservoir fluctuations 4 .3  STRUCTURE OF THE RESULTS DESCRIBING THE . 
(5 4.3). and self reaction (9 4.4). EFFECT OF RESERVOIR FLUCTUATIONS. - The first ' 

important result concerning the reservoir averaged 

4.2 CORRELATION FUNCTIONS AND LINEAR SUSCEP- rate of variation 
TIBILITIES [26]. - When the reservoir average is cal- 

is that only C$)(r) 
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appears in its expression, and not x{~)(T). Furthermore, 
the corresponding relaxation equations have exactly 
the same structure as the ones which would be obtain- 
ed if the resemoir observables Ri were replaced in the 
interaction Hamiltonian (4.2) by fluctuating c-num- 
bers ri(t) having the same correlation functions 
C ~ ( T )  

ri(t) rj(t - T) = C?)(T) . (4.12) 

We conclude that, with Our choice of the symrnetric 
order in (4.6), the effect of resemoir fluctuations is the 
same as the one of a classical random field having the 
same symmetric correlation function as the quantum 
one. 

We show also in reference [25] that the average rate 

O variation ( ( )  ) a n  a ( , 
R 

can be decomposed into a Hamiltonian part and a 
non Hamiltonian part. The ~amiltonian part des- 
cribes (in the so-called secular approximation) a shift 
of the energy levels of S due to the S-R coupling. The 
non Hamiltonian part describes, among other things, 
the exchange of energy between S and R. 

. The shift, (6Ea),,, of the level 1 a ) of S due to reser: 
voir fluctuations is found to be 

Such a result has a very simple structure and a very 
clear physical meaning (Fig. 2a). One can consider 
that the fluctuations of 9 characterized by C?)(T), 
polarize S which responds to this perturbation in a 
way characterized by XiS'a)(~). The interaction of the 
fluctuations of 3, with the polarization to which they 
give rise in S has a non zero value because of the corre- 
lations which exist between the fluctuations of R 
and the induced polarization in S. The factor 112 
in (4.13) is even somewhat similar to the factor 112 
appearing in the polarization energy of a dielectric. 
Finally, it is shown in [25] (by parity arguments) that 
only the reactive part of X:?"'(T) contributes to the 

Reservoir Sys tem 

Fig. 2 - Physical pictures for the effect of resewoir fluc- 
tuations and self reaction. a) Resewoir fluctuations : the 
reservoir fluctuates and interacts with the polarization 
induced in the small system. b) Self reaction : the small 

' 
system hctuates and polarizes the resewoir which reacts 
back on the small system. 

integral (4.13). To summarize this discussion, we can 
Say that the energy shift (6Ea),, can be interpreted 
as resulting from the polarization of S by the fluctua- 
tions of R. 

We now turn to the discussion of the non Hamil- 

tonian part of (($)rf ) . A very suggestive result 
R 

concerns the absoiPtion of energy by S when S is in 

1 a ). The effect is described by ( (G is 
R.a , - -  . - - . ~ ~  

replaced by Hs and the average is taken over both the 
state of the resemoir and the state 1 a ) of 8). One finds 

This result is identical with the one which would be 
obtained if a classical random perturbation with a 
spectral power density CF)(o) was acting upon S 

(see reference [27], 8 124 ; see also [28]). The term inside 
the brackets is actually the dissipative part of the 
susceptibility of S at frequency o. This dissipative 
part is multiplied by the spectral power density of the 
perturbation produced by R. Here again we get a 
result in agreement with the picture of S responding 
to the fluctuations of R. 

4.4 STRUCTURE OF THE TERMS DESCRlBlNG THE 

EFFECT OF SELF REACTION.-AS expected, the resemoir 

appears in ( @)sr ) only through the linear suscep- 
R 

bility X{y)(~). Thus, it appears that R is now polarized . . .. 

by S. We can interpret the rate of variation 
( e ) s r ) R  

as being due to the reaction back on S of the bolariza- 
tion of R by S (Fig. 2b). 

As in the previous section (4.3), it will be interesting 
now to discuss the shift (6Ea),, of 1 a ) due to self 
reaction. This shift is found to be 

The same comments can be made as for (4.13), the 
roles of S and R being interchanged. Here also, only 
the reactive part of XjjR)(~) contributes to (4.15). 

Finally, we can study the equation corresponding 
to (4.14) for self reaction 

* 

d o  (?~jS+")(o) io[i:q)* (o) - $)(o)] . 

(4.16) 
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Here also the same comments can be made, the roles 
of S and R being interchanged. Note however the 
difference of sign between (4.14) and (4.16). This is 
due to the fact that (4.14) describes a transfer of 
energy from R to S (gain for S), whereas (4.16) des- 
cribes a transfer from S to R (loss for S). Actually 
(4.14) can also describe a loss for S, and (4.16) a gain, 
if there are adequate population inversions in S for 
(4.14), in R for (4.16), responsible for an amplifying 
behaviour of the susceptibility (instead of a dissi- 
pative one). 

It must be emphasized that al1 the results derived 
in this section follow from the choice of the symmetric 
order in the total rate dG/dt before replacing Ri by 
Rif + Ris. They can be al1 interpreted in terms of two 
simple physical pictures : R fluctuates and polarizes S, 
S fluctuates and polarizes R. The clear physical struc- 
ture of the results which have k e n  obtained in this 
way, and the coherence of the physical interpretation 
can be considered as a confirmation a posteriori of 
the pertinence of the method of separation we propose 
in this paper. The priviliged character of the sym- 
metric order for physical interpretation is thus 
confirrged. 

Remark. - The previous treatment allows an easy 
and clear discussion of the consequences of the fluc- 
tuation dissipation theorem [26]. Note first that this 
theorem holds only for systems in thermal equilibriurn 
(populations of the various levels varying according 
to the Boltzmann factor corresponding to a given 
temperature). The above treatment is more general 
and is valid for an arbitrary stationary state of the 
reservoir (the energy levels may have any population). 
For a reservoir at thermal equilibrium which is the 
case of the electromagnetic field vacuum, the fluctua- 
tion dissipation theorem states that the correlation 
function cr'(o) is proportional to the dissipative 
part of the corresponding reservoir susceptibility. 
Thus, in this case, one could formally replace in (4.13) 
and (4.14) the correlation function of the reservoir 
by the dissipative part of the reservoir susceptibility 

and. make the reservoir fluctuations to apparently 
disappear from formulae (4.13) and (4.14). But it is 
also clear that, after such a forma1 transformation, 
these two expressions have lost their physical meaning 
since they appear as the product of two susceptibilities. 

5. Physical discussion Contributions of vacuum 
fluctuations and self reaction to the radiative correc- 
tions and radiative damping of an atomic electron - 
We now come back to our initial problem concerning 
the respective contributions of vacuum fluctuations 
and self reaction for an atomic electron. 

We have given in the previous section very simple 
and general expressions for important physical effects 
such as the shifts of the energy levels of S, or the energy 
exchanges between S and R, these expressions involv- 
ing only correlation functions or linear susceptibilities 
of S and R. 

What we have to do now is to calculate first these 
correlation functions and linear susceptibilities in 
the case where S is an atom and R the vacuum elec- 
tromagnetic field (5 5.1). We will then be able, using 
(4.13), (4.14), (4.19, (4.16), to discuss the respective 
contributions of vacuum fluctuations and self reaction 
to the radiative corrections for an atomic electron 
(5 5.2) and the rate of exchange of energy between 
the atom and the field (5 5.3). 

5.1 CORRELATION FUNCTIONS AND LINEAR SUSCEP- 

TIBILITIES FOR THE VACUUM FIELD AND FOR AN ATOMIC 

ELECTRON. - Comparing (4.2) and the first term of 
(3.3) (which is the only one to produce a dynamical 
evolution of atomic observables, see 5 3. l), we get, 
for the atom field problem 

with i = x, y. z. 

According to (4.7) and (4.8), the relevant statistical 
functions for the field are : 

where ( O ) is the vacuum state of the field and the index f means a free evolution for the operators. The calcula- 
tion of these two functions is straightforward and given in the Appendix B. One gets : 
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The Fourier transforms of (5.4) and (5.5) are also useful : 

Because of the cut-off (2.10) expressions (5.6) and (5.7) hold only for 1 w 1 < w,, C and f king  equal to zero 
elsewhere. It follows that the 8 and 8' functions in (5.5) have actually a width l/w,. 

Remarks : (i) The linear susceptibility of the field relates the linear response of the field, at point O and at 
t h e  t, to the perturbation associated with the motion of the electron at earlier times. This response is nothing 
but the source field produced by the electron (and calculated to lowest order in e). Going back to the precise 
definition of 2  [26], and using (5.9,  we get for the « linear response » ( O 1 Ai(t) 1 O ) : 

which coincides, to order 1 in e, with the expression given in (2.19b) for the source field. This clearly shows that, 
in the derivation of (2.19b), we have implicitly calculated the susceptibility of the field. Rather than using this 
intermediate result, we have preferred in sections 4 and 5 to keep general expressions such as (4.13), (4.14), 
(4.19, (4.16), which have a clear physical meaning, and to specib the values of C and 2  for the field only in these 
final expressions. 

(ii) The free field comrnutator of (5.3) is a c-number ([a, a+]  = l), proportional to h [see expression (2.3) 
of Ak]. It follows that the linear susceptibility x ( ~ )  of the field is independent of the state of the field, and indepen- 
dent of h. Therefore the classical and quantum linear susceptibilities coincide. Since the source field is directly 
related to x ( ~ )  (see previous remark), it'has the same expression in both classical and quantum theories, and this 
explains why self reaction forces are formally identical in classical and quantum Abraham-Lorentz equations. 

We consider now the atomic statistical functions. Their calculation is also straightforward. Using (5.1) in 
(4.9) and (4. IO), replacingpif(t) by ematm pi e-mmtm and introducing some closure relations, we get : 

where hoab = Ea - E,,. 
The Fourier transforms of (5.9) and (5.10) are : 

where 5 means principal part. 
The first line of (5.12), which contains only principal parts, is the reactive part 2' of the susceptibility, whe- 

reas the second line, which contains only 8-functions, is the dissipative part i ~ "  [26-271. 

5.2 RADIATIVE CORRECTIONS FOR AN ATOMlC ELECTRON. - 5.2.1 Cuicuiations of (6Ea),, and (w),,. - 

We can now use the results of the previous section (5.1) for evaluating the two integrals appearing in the expres- 
, sions (4.13) and (4.15) giving the energy shifts of the atomic level a respectively due to vacuum fluctuations 

and self reaction. We must not forget to add dm2 c2 to (8Ea),, and dm1 c2 to (6Ea),, where dm2 c2 and dm1 c2 
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are given by (3.5) and (2.12) and represent overall energy shifts respectively due to vacuum fluctuations and 
self reaction (see 3.1). 

Using (4.19, (5.5) and (5.9), we first calculate : 

which gives : 

4 dm 
( 6 ~ ~ ) ~ ~  = dm, c2 - - 3 2 m ( U  1 & 1 a ) .  

For (dE,),,, we first use the Parseval-Plancherel identity 

II The integral over o is then performed. Using (5.6) and (5.12), we get for (5.15) : 

+ m 

dr C]:)(r) ~!?~)(r) = e2 2 , I I < ~ I P I ~ > ~ ~ ~ ~  d"1"1{5( 
l 

)} 24 7t2 cg m c b 
-'"Y 

" + "ab - "ab 

- - - e2 "M 

2 3 x " a b ( < a l ~ I b ) ) ~ ~ o g -  
67t2c0m c b I "ab I ' 

I (Terrns in 1 /ou have been neglected in (5 .16).) 
As in similar calculations [29], we introduce an average atomic frequency iG defined by : 

The summation over b in (5.17) can then be easily done : 

Finally, one gets for (6Ea),, : 

e2 h 
(dEa)v, = 

Wu , Log = ( a 1 AVo(r) 1 a ) + dm, c2 . 
127t2 corn c O 

It is important to note that, in the derivation of 
(5.14) and (5.19), we have not used approximations 
such as the two-level approximation, or the rotating 
wave approximation. The energy level shifts are due 
to virtual transitions involving non resonant couplings. 
Consequently, a correct derivation of these shifts 
must take into account al1 atomic States and both 
positive and negative frequency components of the 
field. 

5.2.2- Main effec~ of self reaction : modifcgtion of 
kinetic energy due to a mass renormalization. - The 

first terrn of (5.14) has already been interpreted as 
the increase of the rest mass energy of the electron 
due to its Coulomb field. The last term can be consi- 
dered as the first order correction to the average 
kinetic energy of the electron when m is replaced by 
m + 4 dm,/3 : 
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The electron is surrounded by its Coulomb field, 
and when onè pushes the electron, one has also to 
push its Coulomb field (electromagnetic mass). 

The mass corrections appearing in the two terms 
of (5.14) are not the same. This discrepancy is due 
to the non covariant cut-off (see discussion of 9 2.1 .4), 
and also exists in classical theory. 

Finally, it must be noted that, since the 2sl12 
and 2plI2 states of hydrogen have the same average 
kinetic energy, a mass correction produces equal shifts 
for the two levels and cannot remove their degeneracy. 
Self reaction alone cannot therefore explain the Lamb- 
shift. 

5.2.3 Main effect of vacuum fluctuations : modi- 
fication of potential energy. - The first term of (5.19) 
coincides with the standard non relativistic expression 
for the Lamb-shift [29]. It appears as a correction 
to the potential Vo(r) which becomes Vo(r) + dVo(r) 
where 

If Vo(r) is the Coulomb potential of a nucleus 
located at the origin, AVo(r) is proportional to d(r), 
and therefore only s states are shifted by such a 
correction, which explains in particular how the 
degeneracy between 2sl12 and 2pl12 can be removed. 

Welton has pointed out [3] that a correction of 
the same type as (5.21) would be obtained, if the 
electron was submitted to a fluctuating classical field, 
with frequencies large compared to the atomic fre- 
quencies. The electron, vibrating in such a fluctuating 
field, averages the external static potential over a 
finite volume. If the spectràl density of this random 
perturbation is identified with the one of vacuum 
fluctuations, one gets for the coefficient of AVo(r) 
the same value as in (5.21), G king  simply replaced 
by a low frequency cut-off. Welton's analysis esta- 
blishes a connection between Lamb-shifts of atornic 
levels and vacuum fluctuations and provides a clear 
and simple physical picture. 

Our choice of the symmetric order in (3.9) ascribes 
corrections such as (5.21) to vacuum fluctuations 
and entirely legitimates Welton's interpretation for 
the Lamb-shift. 

We have already seen (9 3.1 . ii) that vacuum fluc- 
tuations are also responsible for a correction dm2 to 
the electron mass (last term of (5.19)). 

Remurks : (i) It may appear surprising that Our 
calculation doesn't give any correction to the kinetic 
energy associated with the mass correction dm2 due 
to vacuum fluctuations. One would expect to find, 
as in the previous section, a term of the order of 

Actually, coming back to the expressions (2.12) 
and (3.5) of dm, and dm,, and introducing the fine 
structure constant a = e2/4 ncO hc, one can write 

Therefore, it clearly appears that dm2/m is of higher 
order in l/c than dm,/m. This explains why the 
correction to the kinetic energy associated with dm2 
is not given by Our calculation which is limited to 
the lowest order in 1 /c. The basic Hamiltonian (2.13) 
does not contain any relativistic correction. A more 
precise calculation including in the Hamiltonian 
relativistic corrections up to order l/c2 [4] (and 
using an effective Hamiltonian method for evaluating 
radiative corrections) actually gives the expected 
correction (5 .22). 

(ii) The present calculation (as well as the one of 
reference [4]) does not include of course any multi- 
particle effect (virtual pair creation). It is well 
known [19] that many particle effects reduce the 
divergence of the electron self-energy (dm, + dm2) c2, 
with respect to the cut-off w,. Instead of having a 
linear and quadratic divergence (see (5.23)), one 
gets a logarithmic one. Also, new correction terms, 
associated with vacuum polarization effects, appear. 

5.2.4 Classical versus quantum efjêcts. - A strik- 
ing difference can be pointed out between the contri- 
butions of self reaction and vacuum fluctuations to 
radiative corrections : h does not appear in (dE,),, 
[see (5.14) and the expression (2.12) of dm,], whereas 
h does appear in both terms of (dE,),, [see (5.19) 
and the expression (3.5) of dm,]. 

The fact that self reaction corrections are purely 
classical (independent of h) is not surprising. We 
have already explained (see remark (ii) of section 5.1) 
why self reaction terms are identical in both classical 
and quantum theories. 

On the other hand, vacuum fluctuation correc- 
tions have an essentially quantum nature since they 
are due to the non zero mean square value of the 
fields in the vacuum, which is a pure quantum effect. 
It must be noted however that, once the correlation 
function of vacuum fluctuations is computed from 
the quantum theory of radiation, their effect on the 
atom (to the lowest order in a) may be evaluated 
semi-classically, since we have shown in 9 4.3 that 
resemoir fluctuations have the same effect (to the 
lowest order) as a classical random field having the 
same correlation function. This explains why pure 
quantum effects, such as those produced by the 
vacuum fluctuations of the quantized radiation field, 
can be calculated as if a classical random field, &th 
a power spectral density equal to hw/2 per mode, 
was acting upon the atom [30]. 
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To summarize, Our choice of the symmetric order 
in (3.9) leads to self reaction corrections which are 
strictly equivalent to the corresponding classical ones, 
whereas vacuum fluctuations appear to be respon- 
sible for pure quantum effects which can be however 
computed semi-classically, once the correlation func- 
tion of vacuum fluctuations is given. 

5.2.5 Spin and magnetic effects. Interpretation of 
the spin anomaly g - 2. - In this section, we take 
into account the spin S of the electron and the cor- 
responding magnetic moment 

Even in the absence of any external static magnetic 
field Bo, M, interacts with the magnetic field B of 
the transverse radiation field. We should add to the 
interaction Hamiltonian V given in (3.3) a term. 

describing such a coupling. This would introduce in 
the firial expressions of radiative corrections new 
correlation functions and new linear susceptibilities 
involving two components of B, or one component 
of B and one component of A. Since an extra l/c 
factor appears in the expansion of B in plane waves 
[see expression (2.3)], we conclude that the new 
radiative corrections associated with (5.25) would 
be at least one order in l/c higher than those calcu- 
lated previously, and which, according to (5.13) 
and (5.19) are in e2/c3 (or a/mc2). If we restrict Our 
calculations to the lowest order in l/c, as we do in 
the non relativistic approach used in this paper, we 
can therefore ignore the magnetic couplings of the 
spin with the radiation field and neglect (5.25) (7. 

The same argument does not ap ly of course to 
the interaction of S with an externa f' static magnetic 
field Bo deriving from the static vector potential A, : 

We must add to the atomic Harniltonian H, a new 
term describing the interaction of M, with the static 
magnetic field Bo at the electron position 

We must also replace the electron momentum p by : 

To sumrnarize, if, at the lowest order in l/c, i.e. at 

(3) If we would like to go to higher orders in l/c, we should 
include 'relativistic corrections in the Hamiltonian and 
retardation effects. 

order e2/c3, we want to include spin and magnetic 
effects, we must use : 

instead of (3. l), and replace p by no in the first term 
of (3.3) : 

What are the corresponding changes in (dE,),, 
and (dE,),, ? Since the field operators remain unchang- 
ed in (5.30), we still use (5.4) and (5.5) for C(R) and X(R). 
On the other hand, we must change p into no in the 
expressions (5.9) and (5.10) of and fS). 

Consider first the modifications occurring for 
(dE,),,. The only change in (5.14) is that we have 
ni12 m instead of p2/2 m. Since ni12 m has the phy- 
sical meaning of a kinetic energy in presence of the 
static vector potential A,, we conclude that the main 
effect of self reaction is, as before, to change the mass 
appeaung in the kinetic energy 

It must be emphasized that, at this order in l/c, the 
mass renormalization due to self reaction does not 
affect the last term of (5.29). The mass m which 
appears in the spin magnetic moment eS/m remains 
unchanged. We don't get any term of the form 

We will come back later on this important point, 
when discussing the origin of the spin anomaly g - 2. 

We now discuss the modifications for (dE,),,. The 
calculations are very similar to those of 8 5.2.1, the 
only difference being that, in the double commutatqr 
of (5.18), we must use the new expression (5.29) of 
H, and replace p by no. We have therefore to calculate : 

If we suppose that B,(r) is homogeneous (indepen- 
dent of r) and if we keep only terms linear in Bo, 
expression (5.33) reduces to (5.18). Thus, for homo- 
geneous weak static magnetic- fields, vacuum fluc- 
tuations do not introduce any new radiative correc- 
tion related to spin and magnetic effects. 

We have now at Our disposa1 al1 what is needed 
for discussing the contribution of self reaction and 
vacuum fluctuations to the electron dynamics in 
presence of a weak homogeneous static magnetic 
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field. Combining the previous results, the corrected 
atomic Hamiltonian (including radiative corrections) 
can be written : 

~6 e 

2(m + dm,) 
+ Vo(r) + dVo(r) - - m S.Bo(r) 

where corrections including dm, are due to self reac- 
tion and dVo(r) to vacuum fluctuations. 

The spin magnetic moment appearing in the last 
term of (5.34) can be written as : 

In terms of the bare » (uncorrected) mass, the g 
factor of the electron spin is 2. But, the mass which 
is measured experirnentally, in deflection experiments, 
is the renormalized mass, i.e. the mass which appears 
in the corrected kinetic energy 

fluctuations of the magnetic field B(0) of the radia- 
tion field which exert a fluctuating torque on M,, 
producing an angular vibration of the spin and, 
consequently, a decrease of the effective magnetic 
moment. This is the equivalent of Welton's picture 
for g - 2 which would produce a negative spin ano- 
maly if this was the only mechanism. We understand 
now the failure of such a picture. For g - 2, the 
predominant physical mechanism is self reaction 
which slows down the motion of the electric charge. 

5.3 RATE OF EXCHANGE OF ENERGY BETWEEN THE 

ELECTRON AND THE RADIATION FIELD. - 5.3.1 Contri- 
bution of self reaction. - We start from (4.16) and 
we use the expressions (5.7) of zR and (5.11) of CS. 
Because of the 6 function appearing in (5.1 l), the 
integral over o is readily done, and we get for the 
rate of energy loss due to self reaction by the electron 
in state a 

so that, if we reexpress M, in terms of E, we have 
from (5.35) 

with 

So, it clearly appears that the positive sign of g -2 
is due to the fact that self reaction corrects only to 
lowest order the kinetic energy and not the magnetic 
coupling between S and Bo. The motion of the. charge 
is slowed down but not the precession of the spin. 
This is easy to understand. In the non relativistic 
limit we are considering in this paper, electric effects 
predominate over magnetic ones and self reaction is 
stronger for a charge than for a magnetic moment. 
We therefore arrive at the same conclusions as other 
treatments [4, 311. 

If the calculation was pushed to higher orders 
in l/c, as in [4], we would get corrections to the spin 
magnetic moment, especially those due to the vacuum 

Now, we write (4) 

Finally, by using (5.40) and the closure relation 
over 6, we transform (5.39) into : 

Such a result is extremely simple and exactly coin- 
cides with what is found in classical radiation theory. 
The rate of radiation of electromagnetic energy is 
proportional to the square of the amleration of the 
radiating charge, the proportionality coefficient being 
just the one appearing in (5.41). We note also that, 
if self reaction was alone, the atomic ground state 
would not be stable, since the square of the accele- 
ration has a non zero average value in such a state. 

5.3.2 Contribution of vacuum fluctuations. - We now use (4.14) and the expressions (5.6) of and 
(5.12) of fS). This gives 

(4) The atomic operators appearing in X(a are free atomic operators. This is why their time derivative is giyen by the 
commutator with H,  (and not with the total Hamiltonian H). 
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Using (5. a), and distinguishing the terms ma, > O (E, > Eb) and the terms ma, < O (E, < Eb), we get : 

2 eZ x ( a l i ' I b ) . ( b ( f  l a )  - x ( a l i ' l b ) . ( b l i ' l a )  ( " ' a I  ( % ) v f I o ' a )  = 7 -jn%. { b b 
Eb > E. Eb < E. 

The first line describes an absorption of energy by the electron which jumps from a to a higher state b, 
whereas the second line describes an emission of energy by jumps to lower States. This is in agreement with 
the picture of a random field inducing in the atomic system both downwards and upwards transitions. 

Now, coming back to (5.41), we can reintroduce the closure relation over b between i' and i', which gives : 

(5 44) 

~ d d i n i  (5.43) and (5.44), we get for the total rate of energy loss by the electron in state a 

This satisfactory result means that the electron in 
the vacuum can only loose energy by cascading down- 
wards to lower energy levels. In particular, the ground 
state is stable since it is the lowest state. 

The previous discussion clearly shows that the 
ground state cannot be stable in absence of vacuum 
fluctuations which exactly balance the energy loss 
due to self reaction [28]. In other words, if self reaction 
was alone, the ground state would collapse and the 
atomic commutation relation [x,p] = ih would not 
hold. Such a collapse is prevented by vacuum fluc- 
tuations which actually originate from the quantum 
nature of the field, i.e. from the commutation rela- 
tion [a, a'] = 1. We have here an illustration of a 
very general principle of quantum mechanics. When 
two isolated systems interact (here the atom and the 
field), treating one of them quantum mechanically 
and the other one semi-classically leads to inconsis- 
tencies [32]. The field commutation relations are 
necessary for preseming the atomic ones and vice 
versa. 

Such a procedure is very general and can be extended 
to the case of a small system S interacting with a 
large resemoir R. The results of the calculation can 
be expressed (5) in terms of simple statistical func- 
tions of the two interacting systems, leading to simple 
physical pictures : R fluctuates and polarizes S 
(resemoir fluctuations effects); S fluctuates and pola- 
rizes R (self reaction effects). 

When applied to the case of an atomic electron 
interacting with tlie vacuum field, such a procedure 
gives results in complete agreement with the usual 
pictures associated with vacuum fluctuations and 
self reaction. Al1 self reaction effects, which are inde- 
pendent of h, are strictly identical to those derived 
from classical radiation theory. Al1 vacuum fluctua- 
tion effects, which are proportional to h, can be 
interpreted by considering the vibration of the elec- 
tron induced by a random field having a spectral 
power density equal to hw/2 per mode. 

6. Conclusion - We have removed the apparent 
indetermination in the ~eparation of vacuum flue- (5) ~t ,,,t b, kept in rnind that the calculatiom have 
tuations and self reaction by imposing t0 the cor- limited to order 2 in the coupling constant At higher 
responding rates of variation to have a well-defined orders, cross terms would appear between reservoir fluc- 

physical meaning (hermiticity requirements). tuations and self reaction. - 
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A@x A : Cakulaîion of îhe source fields *,(O, t) ansi Edo ,  t). - Equations (2 .h)  and (2.26) give 
the expressions of A and E, in terms of the creation and annihilation operators : 

(A. la) 

(A. 16) 

Inserting (2.17) into these two equations, one gets the expression of A,(O, t) and E,,(O, t) : 

We now permute the summation over k, E and the integration on t', the angular summation is easily performed 
and we get : 

e 
A,(O, t) = - J dt' n(tf) q,(t - tl) 

3 neO c3 m to 

(A. 3a) 

e 
E,,(O, t) = J dt' n(tl) 6M(t - t') 

3 neO c3 m 
(A. 3b) 

where the function 6,(r) is given by 

This function 6,(r) is syrnmetric, centred on r = 0, has a width equal to l/wM and satisfies the equation 

Equations (A. 3a) and (A. 36) can be written, by putting r = t - t' and taking t, equal to - a : 

(A. 6a) 

Using an integration by partq.one gets 

+ m 
e e 

%(O, t) = &,(O) - 
3 ne, c3 m j, dr i ( t  - r) 6,(r) 

3 ne, c3 m 
(A. 7a) 

(A. 76) 

The characteristic times for the evolution of x(t) are very long compared to the width 11% of 6Ar) [see 
. Eq. (2.1 l)]. We can therefore rep!ace in (A. 7a) and (A. 7b) X(t - r) and X(t - r) by i(t) and X(t). The remaining 
, integral of 6,(r) from r = O to r = a is equal to 112, as a consequence of the symmetry of 6,(r). One finally 

gets ' 

'Z 
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(A. 8a) 

(A. 86) 

~ (A. 8a) and (A. 86) are nothing but (2.196) and (2.21 6) using the expression of am, given in equation (2.12). 

Appendix B : Correlation f d o n  and linear susceptiblüty of the field - The correlation function of the 
field is given [cf. Eq. (5.2)] : 

~ where the operator Af(O, t) is the free vector potential. Using its expansion in plane waves, one gets 
l 

1 
= - C jt2 E .  ~ ( e - " ~  + elm). 

2 ,  
k i J  

Replacing the sum by an integral and using the expression (2.3) of je, one gets 

Y This can also be written : . 

The linear susceptibility is calculated in the same way. Starting from 

one gets 

In this paper, the susceptibility of the field always appears in expressions such as 

where @(T) is a function concerning the smail system 8. The characteristic times of evolution of are then 
much larger than 1 /a, so that one can proceed in the same way as for (A. 64. Using an integration by parts, 
one finds that 

where S here acts on ihe slowly varying functions A!)(?) as a tme delta function. 
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