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Abstract: We considered a vacuum polarization inside a galaxy in the eikonal approximation and
found that two possible types of polarization exist. The first type is described by the equation of state
p = ρ/3, similar to radiation. Using the conformally unimodular metric allows us to construct a non-
singular solution for this vacuum “substance” if a compact astrophysical object exists in the galaxy’s
center. As a result, a “dark” galactical halo appears that increases the rotation velocity of a test particle
as a function of the distance from a galactic center. The second type of vacuum polarization has a
more complicated equation of state. As a static physical effect, it produces the renormalization of the
gravitational constant, thus, causing no static halo. However, a non-stationary polarization of the
second type, resulting from an exponential increase (or decrease) of the galactic nuclei mass with
time in some hypothetical time-dependent process, produces a gravitational potential, appearing
similar to a dark matter halo.

Keywords: vacuum energy; dark matter; vacuum polarization; active galaxy nuclei

1. Introduction

Among the various issues of combining general relativity (GR) and quantum mechan-
ics, one encounters the problems of vacuum energy and black holes.

The first problem is to explain why enormous zero-point vacuum energy density
ρv ∼ k4

max (here kmax is the UV energy scale of quantum field theory associated with a hard
3-momentum cutoff of the order of the Planck mass Mp) does not influence a universe
expansion (e.g., see [1–3] and references herein). The second problem is associated with
the loss of unitarity and information inside of the black hole horizon (e.g., see [4,5] and
references therein), that prevents the definition of a pure quantum state.

On the other hand, the basis of GR is a notion of manifold [6], i.e., a metric space,
which could be covered by coordinate maps. When a concrete space–time possessing some
symmetry is considered, one aims to introduce a system of coordinates allowing maximal
covering of this particular manifold. For instance, the Schwarzschild solution only describes
the region outside the horizon, and one has to introduce the Kruskal coordinates to cover
the complete domain [7]. Nevertheless, one could admit an opposite view: restricting the
manifold by sewing all the black hole horizons by some coordinate transformation. This
approach is similar to a case when a man finds a hole in their trousers at the knee. In such a
case, he steps back a little from the hole border and then subtends it into a node with the
help of sewing.

It is allowed using the conformally unimodular (CUM) metric [8], where an ultra-compact
black hole-like astrophysical object appears as a non-singular ball named “eicheons” [9].
Besides, the vacuum energy problem could be partially solved in the CUM metric if one
builds a gravity theory admitting an arbitrary choice of the energy density level [8]. That
is possible because the equations for evolution of the HamiltonianH and the momentum
constraints P admit not only the trivial solution P = 0,H = 0, but also P = 0,H = const.
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The constant compensates for the main part of the vacuum energy density proportional
to the Planck mass in the fourth degree [8,10]. Residual energy density, remaining after
omitting the main part of the vacuum energy density, is some kind of dark energy and
results in a cosmological picture containing a period of linear evolution in cosmic time [10,11]
followed by late accelerated expansion.

Both dark energy and dark matter (DM) are unknown “substances” appearing in
modern cosmology and astrophysics [12–14]. DM appears not only on cosmological
scales but also on galaxy scales. The lowest scale at which there is evidence for DM is of
≈kpc [15,16]. Dark energy is associated with vacuum energy, whereas DM is expected to
be some kind of a non-baryonic matter weakly interacting with the known particles of the
standard model [17–19]. Nevertheless, there are attempts to explain the DM by a DM-like
behavior of vacuum energy [20], or a vacuum polarization induced by the gravitational
field. Heuristic models of vacuum polarization such as [21–25], which would demand
dipolar fluid [26], anti-gravitation [27] or hydrodynamical phenomena in a vacuum treated
as hypothetical (super-)fluid [28–30], are of interest.

The conventional renormalization procedure of the quantum field theory applied to
vacuum energy near a massive object [31–36] leads to the modification of the gravitational
potential only at small distances of the order of gravitational radius that are unobservable
with current technologies. That is, the renormalization excludes the manifestation of micro-
scale phenomena on the macro-scales (nevertheless, see [20]). This conclusion assumes
the general covariance of the mean vacuum value of stress–energy tensor < 0|Tµν|0 > on a
curved background. However, regarding the vacuum state |0 >, the invariant relatively
general transformation of coordinates does not exist [37]. That raises a question: is it
reasonable to demand the covariance of < 0|Tµν|0 > in the absence of invariant |0 >? If
invariance violation, which implies the existence of “æther”, takes place, then, similar to
condensed-matter physics, DM still could be treated as an emergent phenomenon produced
by vacuum polarization.

The outline of this paper is as follows: In Section 2, we argue the necessity of consider-
ing a vacuum polarization from a cosmological point of view and explain that the CUM
metric is needed to omit the main part of vacuum energy. Section 3 contains a perturbation
formalism in the CUM metric, which is required to introduce a vacuum polarization as
some media, i.e., “æther”. The eikonal approximation is used in Section 4 to obtain the
vacuum energy density and pressure of a quantum scalar field by summating the contri-
butions from the distorted virtual plane waves. The expression for a vacuum equation
of state is obtained. In Section 5, the F-type vacuum polarization, possessing a radiation
equation of state, is used in the Tolman–Volkov–Oppenheimer (TOV) equations for two
substances. This type of vacuum polarization results in a dark halo if eicheon is situated in
the galactic center. In Section 6, the Φ-type of vacuum polarization is considered. This type
of polarization leads to the renormalization of the gravitational constant in the stationary
case. However, it can contribute to the DM halo for the non-stationary processes. In the
Conclusion, we summarize the consequences of two types of vacuum polarization for
galaxies. In the Appendix A, we consider the static and empty universe to demonstrate an
example of an exact solution for the system of perturbations, taking into account the F-type
vacuum polarization.

2. A Spatially Uniform Universe in the CUM Metric
2.1. CUM Metric in the Five Vectors Theory of Gravity

We based our analysis on using the CUM metric, which is the foundation of the so-
called five vectors theory (FVT) [8]. In the course of this analysis, we will use the particular
cases of the CUM metric appropriate to the physics considered.

A general class of CUM metrics is defined as [8]

ds2 ≡ gµνdxµdxν = a2(1− ∂mPm)2dη2 − γij(dxi + Nidη)(dxj + N jdη), (1)
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where xµ = {η, x}, γij is a spatial metric, a = γ1/6 is a locally defined scale factor, and γ =
det γij, η is a conformal time connected with a cosmic time t through dt = a(η, x)dη. The
spatial part of the interval (1) looks as

dl2 ≡ γijdxidxj = a2(η, x)γ̃ijdxidxj, (2)

where γ̃ij = γij/a2 is a matrix with the unit determinant. The interval (1) is similar formally
to the ADM one [38], but the lapse function is taken in the form of a(1− ∂mPm), where Pm

is a three-dimensional vector, and ∂m is a conventional partial derivative. In the gravity
theory admitting arbitrary choice of the energy density level [8], there are the Lagrange
multipliers P, the shift function N, and three triads ea to parameterize the spatial metric
γij = ea

i ea
j . Such model was named the FVT of gravity [8]. In contrast to GR, where the

lapse and shift functions are arbitrary, the restrictions ∂n(∂mNm) = 0 and ∂n(∂mPm) = 0
arise in FVT. The Hamiltonian H and momentum Pi constraints in the particular gauge
Pi = 0, Ni = 0 obey the constraint evolution Equations [8]:

∂ηH = ∂i

(
γ̃ijPj

)
, (3)

∂ηPi =
1
3

∂iH, (4)

which admits adding some constant toH. In the FVT frame, it is not necessary thatH = 0,
but H = const is also allowed. The particular cases of the CUM metric corresponding to
the Bianchi I model and the spherically symmetric space–time were analyzed in [39,40].

2.2. Uniform, Isotropic and Flat Universe

Let us consider a particular case of (1)

ds2 = a(η)2(dη2 − dx2) (5)

corresponding to a spatially uniform, isotropic and flat universe, where the Friedmann
equations take the form [11,41,42]:

M−2
p e4αρ− 1

2
e2αα′2 = const, (6)

α′′ + α′2 = M−2
p e2α(ρ− 3p). (7)

Here α(η) = log a(η), the prime denotes the derivative with respect to the conformal

time. We use the system of units h̄ = c = 1 and the reduced Planck mass Mp =
√

3
4πG

(in physical units Mp =
√

3h̄c
4πG ). According to FVT [8], the first Friedmann Equation (6)

is satisfied up to some constant, and the main parts of the vacuum energy density and
pressure

ρv ≈ (Nboson − N f erm)
k4

max
16π2a4 , (8)

pv =
1
3

ρv (9)

do not contribute to the universe expansion because the constant in (6) compensates the
vacuum energy density, whereas there is no vacuum contribution in Equation (7) by virtue
of the equation of state (9).

Bosons and fermions contribute with opposite signs into a vacuum energy den-
sity (8) [43,44]. Here, we do not consider the supersymmetry hypotheses Nboson − N f erm
due to the absence of evidence for supersymmetric partners to date [45].

For the contributions of massive particles and condensates, we imply the Pauli sum
rules [44,46]. These rules are not fulfilled at this moment due to the incompleteness of the
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standard model of particle physics. Nevertheless, one may hope that they will be satisfied
after possible discoveries beyond the standard model.

Other contributors to the vacuum energy density are the terms depending on the
derivatives of the universe expansion rate [10,41,42,46]. They have the correct order of
magnitude ρv ∼ M2

p H2, where H is the Hubble constant, and explain the accelerated
expansion of the universe driven by the residual energy density and pressure [10,41,42,46]:

ρv =
a′2

2a6 M2
p(2 + Nsc)S0, pv =

M2
p(2 + Nsc)S0

a6

(
1
2

a′2 − 1
3

a′′a
)

, (10)

where S0 = k2
max

8π2 M2
p
. Equation (10) includes the number of minimally coupled scalar fields

Nsc plus two degrees of freedom of the gravitational waves [41]. The massless fermions
and photons do not contribute to (10) [41].

According to (10), the accelerated expansion of universe allows finding a value of the
momentum UV cut-off

kmax ≈
12Mp√
2 + Nsc

(11)

from the measured value of the universe deceleration parameter and other cosmological
observations [10,41]. It should be noted that the UV cut-off of the 3-momentums kmax in (8)
and hereafter also reflects the diffeomorphism symmetry violation1 (e.g., see [47–52] and
references herein).

3. Perturbations of a Uniform Background in the CUM Metric

In this section, the scalar perturbations2 of the CUM metric (1) are considered [53]:

ds2 = a(η, x)2

(
dη2 −

((
1 +

1
3

3

∑
m=1

∂2
mF(η, x)

)
δij − ∂i∂jF(η, x)

)
dxidxj

)
. (12)

Here the perturbations of the locally defined scale factor are expressed through a
gravitational potential Φ:

a(η, x) = eα(η,x) ≈ eα(η)(1 + Φ(η, x)). (13)

A stress–energy tensor can be written in the hydrodynamic approximation

Tµν = (p + ρ)uµuν − p gµν. (14)

The perturbations of the energy density ρ(η, x) = ρ(η) + δρ(η, x) and pressure
p(η, x) = p(η) + δp(η, x) are considered around spatially uniform values.

Let us introduce new variables

℘(η, x) = a4(η, x)ρ(η, x), (15)

Π(η, x) = a4(η, x)p(η, x) (16)

for reasons which will be explained below. The perturbations of (15), (16) around the uni-
form values can be written now as ℘(η, x) = e4α(η)ρ(η) + δ℘(η, x), Π(η, x) = e4α(η)p(η) +
δΠ(η, x). The 4-velocity u is represented in the form of

uµ = e−α(η){1,∇ v(η, x)
ρ(η) + p(η)

} ≈ {e−α(η)(1−Φ(η, x)), e3α(η)∇ v(η, x)
℘(η) + Π(η)

}, (17)

where v(η, x) is a scalar function. Expanding all perturbations into the Fourier series
δ℘(η, x) = ∑k δ℘k(η)eikx... etc. results in the equations for the perturbations:
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−6Φ′k + 6α′Φk + k2F′k +
18
M2

p
e−2α ∑

i
vki = 0, (18)

−18α′Φ′k − 6(k2 + 3α′2)Φk + k4Fk +
18
M2

p
e−2α ∑

i
δ℘ki = 0, (19)

−12Φk − 3(F′′k + 2α′F′k) + k2Fk = 0, (20)

−9(Φ′′k + 2α′Φ′k)− 9(2α′′ + 2α′2 + k2)Φk + k4Fk −
9

M2
p

e−2α

(
∑

i
3δΠki − δ℘ki

)
= 0, (21)

where the index i denoting the kind of substance has been introduced. It is remarkable
that, as a result of the choice of the variables (15)–(17), the unperturbed values ρ and
p do not appear in the system (18)–(21). This allows us to avoid the influence of the
large uniform energy density and pressure (8) and (9) on the evolution of perturbation.
Equations (18) and (19) are consequences of the Hamiltonian and momentum constraints,
while Equations (20) and (21) are equations of motion. For consistency of the constraints
with the equations of motion, every kind of fluid has to satisfy the continuity and Euler
equations:

α′(δ℘ki − 3δΠki)− (3Πi − ℘i)(Φ′k − 4Φkα′) + 4℘′iΦk − δ℘′ki + k2vki = 0, (22)

Φk(℘i − 3Πi) + δΠki + v′ki = 0. (23)

Equations (18)–(23) have the same form as in GR, but for the consistency of Hamilto-
nian and momentum constraints (18) and (19) with the equations of motions (20)–(23), it
is sufficient for the first Friedmann Equation (6) to be valid up to some constant. Namely,
for such consistency, it is necessary that the differentiation of constraints with the subse-
quent substitution of the second-time derivatives from the equations of motion (7), (20)–(23)
leads to identical equalities. This consistency is a feature of using the CUM metric, in par-
ticular, and the FVT theory, in general. In any other metrics different from CUM (that is,
in a frame of GR), the first Friedmann Equation (6) with the const = 0 in the right hand
side is needed for consistency of the constraints and the equations of motion.

4. Vacuum as a Medium: The Eikonal Approximation for Quantum Fields

Generally, a vacuum could also be considered as some fluid (e.g., see [28–30]),
i.e., “æther” [54], but with some stochastic properties along with its elastic ones [42,46,55].
Here we are interested in its elastic properties only. In Refs. [42,46], the speed of sound for
the scalar waves of vacuum polarization c2

s = p′v(η)
ρ′v(η)

was introduced, where pv and ρv are
given by (10). That is the only heuristic conjecture.

Here, the actual calculations of the vacuum density and pressure on the curved back-
ground are performed in the eikonal approximation. The last one has a very transparent
background. In the Minkowski’s space–time, the virtual plane waves penetrate space–
time and, to obtain a vacuum energy density, we must summarize the contributions of
every wave. In the curved space–time, it is necessary to summarize the contributions of
the distorted waves to obtain the spatially non-uniform energy density and pressure. It
should be mentioned that the eikonal approximation was successfully used in high energy
physics [56] and even in gravity [57], where the small-angle scattering amplitude of two
massive particles were calculated in all orders on gravitational constant G.

A massless scalar field in the external gravitational field obeys the equation

1√−g
∂µ

(√
−ggµν∂ν

)
φ = 0. (24)
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Using the gauge N = 0, P = 0 in (1) reduces the CUM metric to

ds2 = a2(dη2 − γ̃ijdxidxj), (25)

so that Equation (24) takes the form

φ′′ + 2
a′

a
φ′ − 1

a2 ∂i

(
a2γ̃ij∂j

)
φ = 0. (26)

This leads to

χ′′ − χ
a′′

a
− γ̃ij∂i∂jχ − ∂iγ̃

ij∂j χ +
χ

a

(
γ̃ij∂i∂ja + ∂ja∂iγ̃

ij
)
= 0 (27)

after the change of variables φ = χ/a. Further, in the terms of the metric perturbations Φ
and F, we come to

χ′′ − ∆χ + V̂χ = 0, (28)

where a “potential” operator V̂ has the form

V̂ = −α′′ − α′2 − 2α′Φ′ −Φ′′ + ∆Φ +
1
3

∆F ∆− ∂2F
∂xj∂xi

∂2

∂xj∂xi −
2
3
(∇(∆F)) ·∇ . (29)

A quantization of the scalar field in terms of creation and annihilation operators
implies [37]

χ̂(η, x) = ∑
k

uk(η, x)âk + u∗k(η, x)â+k , (30)

where the function uk satisfies Equation (27), and the orthogonality condition is [37]
∫
(uk∂ηu∗q − u∗k∂ηuq)d3x = iδkq. (31)

A solution of Equations (27) and (29) for the functions uk can be written in the eikonal
approximation

uk(η, x) =
1√
2k

exp(−iηk + ikx− iΘk(η, x)), (32)

which leads to the equation for the eikonal function

2kΘ′k +
(

2kmγ̃mj − i∂mγ̃mj
)

∂jΘk +
1
a
(
a′′ − γ̃ij∂i∂ja− ∂ja∂iγ̃

ij)+

ik j∂m h̃mj − kmk j h̃mj = 0, (33)

and, according to Equations (12) and (13), is written in the terms of the metric perturbations
Φ(η, x), F(η, x):

kΘ′k + k∇Θk(η, x) =
1
2

Vk, (34)

where

Vk(η, x) = −2α′Φ′ −Φ′′ + ∆Φ + kik j∂i∂jF−
k2

3
∆F. (35)

A solution of (34) can be obtained in the form

Θk(η, x) =
1
2k

∫ η

η0

Vk

(
τ, x +

k
k
(τ − η)

)
dτ, (36)
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where the lower integration limit η0 depends on the cosmological model. In particular, it
could be 0 or −∞. The mean value of the stress–energy tensor of a massless scalar field

T̂µν = ∂µ φ̂∂νφ̂− 1
2

gµνgαβ∂α φ̂∂βφ̂ (37)

can be averaged over the vacuum state and compared with the hydrodynamic expression
(14). This gives

δ℘(η, x) = e2α(η) < 0| φ̂
′2

2
+

(∇φ̂)2

2
|0 >≈ 1

2 ∑
k

α′Φ′

k
+ Θ′k −

k∇Θk
k

, (38)

δΠ(η, x) = e2α(η) < 0| φ̂
′2

2
− (∇φ̂)2

6
|0 >≈ 1

2 ∑
k

α′Φ′

k
+ Θ′k +

k∇Θk
3k

, (39)

∇v = −e2α(η) < 0|φ̂′∇φ̂|0 >≈∑
k

k Θ′k
k
−∇Θk −

α′∇Φ
k

, (40)

where only spatially non-uniform parts of the vacuum averages are implied in the second
equalities on the right-hand side of (38)–(40). The last depends on the metric perturbations
F(η, x) and Φ(η, x) contained in Equations (12) and (13). The final equalities in (38)–(40)
result from calculations in the eikonal approximation (32).

Considering the quantity δ℘(η, x) − 3δΠ(η, x) and using Equations (34) and (35),
result in

δ℘(η, x)− 3δΠ(η, x) = −∑
k

k∇Θk
k

+ Θ′k +
α′Φ′

k
=

−∑
k

1
2k

Vk +
α′Φ′

k
= ∑

k

1
2k

(
Φ′′ − ∆Φ− kik j∂i∂jF +

k2

3
∆F
)
=

Nsc

8π2 k2
max(Φ

′′ − ∆Φ), (41)

where summation has been changed by integration ∑k →
∫

d3k/(2π)3 and it is taken into

account that
∫

k<kmax
1
2k

(
kik j − k2

3 δij

)
d3k = 0. The number Nsc of the scalar fields minimally

coupled with gravity has been introduced as in (10).
In consequence of Equation (41), two types of spatially non-uniform vacuum polariza-

tion exist. Namely, the F-polarization has a radiation-type equation of state3

δΠvF(η, x) =
1
3

δ℘vF(η, x), (42)

whereas the Φ-polarization has an equation of state

δΠvΦ(η, x) =
1
3

δ℘vΦ(η, x)− Nsc

24π2 k2
max(Φ

′′ − ∆Φ). (43)

Both types of spatially non-uniform vacuum polarizations correspond to the uniform
component of (8), (9), whereas the uniform polarization given by (10) has no non-uniform
counterpart with an accuracy of our consideration, i.e., in the second order on derivatives.
It must be emphasized that it is easy to obtain the equation of state (9) for a spatially
uniform main part of the vacuum energy density, but it is not so trivial to do that for a
spatially non-uniform vacuum energy density.

In principle, the system (18)–(23), (42) and (43) is a fundamental system allowing
to consider a broad range of cosmological and astrophysical phenomena including CMB
and BAO. However, below, we restrict ourselves to a galactic DM, which scales from kpc
to Mpc.
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5. Galactic DM as a F-Vacuum Polarization

As it was shown in Section 4, the F-component of vacuum polarization has the equation
of state analogous to radiation (see Equation (9)). In this sense, it is similar to the uniform
part of vacuum energy density in Equation (8).

At the same time, it is difficult to determine the concrete value of the non-uniform
vacuum energy density because, according to (38), it contains an eikonal function Θk, which
is determined by the integral (36). For instance, one has Θk(η, r) = ∑q Θ̃k,q(η)eiqr and
from (35), (36) finds

Θ̃k,q(η) =
1
k

(
1
3

k2q2 − (qk)2
) ∫ η

η0

Fq(τ)eikq(τ−η)/kdτ. (44)

Calculation of the integral (44) requires one to know the full evolution history of Fq(τ).
It is simpler to use only the fact that the F-contribution to the vacuum polarization has the
equation of state

pvF = ρvF/3. (45)

The distributions of matter–energy density and potential are not determined for the
static case in the first order on perturbations (see Appendix A). However, it is possible to
consider a nonlinear heuristic model treating the F-vacuum as an abstract substance with
the above equation of state. The model consists of a core of some incompressible substance,
modeling a baryonic-like matter placed on the radiation background, i.e., the F-polarized
vacuum or “dark radiation”, which interacts with this core only gravitationally. Below, we
find a spherically symmetric solution for an incompressible substance with the constant
energy density ρ1 on the background of radiation density ρ2.

5.1. Equations in the CUM Metric

The CUM metric in the case of spherical symmetry acquires the form [9]

ds2 = a2(dη2 − γ̃ijdxidxj) = e2α
(

dη2 − e−2λ(dx)2 − (e4λ − e−2λ)(xdx)2/r2
)

, (46)

where r = |x|, a = exp α, and λ are functions of η, r. The matrix γ̃ij with the unit determi-
nant is expressed through λ(η, r). The interval (46) could be also rewritten in the spherical
coordinates:

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ (47)

to give
ds2 = e2α

(
dη2 − dr2e4λ − e−2λr2

(
dθ2 + sin2 θdφ2

))
. (48)

Restricting ourselves to static solutions, the equations for the functions α(r) and λ(r)
are written as [9]

H = e2α

(
− e2λ

6r2 + e−4λ

(
1

6r2 −
4
3

dα

dr
dλ

dr
+

1
6

(
dα

dr

)2
+

2
3r

dα

dr
+

1
3

d2α

dr2 +

7
6

(
dλ

dr

)2
− 5

3r
dλ

dr
− 1

3
d2λ

dr2

)
+

e2α

M2
p

∑
j

ρj(r)

)
= const, (49)

d2α

dr2 = −3e6λ

r2 +
3
r2 − 8

dα

dr
dλ

dr
+ 7
(

dα

dr

)2
+

10
r

dα

dr
+ 3
(

dλ

dr

)2
− 6

r
dλ

dr
+

3
e2α+4λ

M2
p

∑
j

ρj − 3pj, (50)
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d2λ

dr2 = −5e6λ

r2 +
5
r2 − 18

dα

dr
dλ

dr
+ 12

(
dα

dr

)2
+

18
r

dα

dr
+ 8
(

dλ

dr

)2
− 14

r
dλ

dr
+

6
e2α+4λ

M2
p

∑
j

ρj − 3pj, (51)

where Equation (49) is the Hamiltonian constraint, which could be rewritten in a form
containing no second derivatives using Equations (50) and (51):

H = e2α−4λ

2r2

(
−3r2

(
dα
dr

)2
+ 4r dα

dr

(
r dλ

dr − 1
)
−
(

r dλ
dr − 1

)2
+ e6λ

)
+ 3e4α

M2
p

∑j pj = const. (52)

Each kind of substance has to satisfy

d pj

dr
+ (pj + ρj)

dα

dr
= 0. (53)

A vacuum solution of Equations (49)–(51) corresponding to the point massive particle
was considered in [9] where an absence of evidence for a horizon was demonstrated. Let
us consider another solution, corresponding to the substance of a radiation-type filling all
the space. This particular solution is written as

α(r) = ln r− 1
6

ln 7, λ(r) =
1
6

ln 7, (54)

and, under (45), it follows from (53):

d
dr

(
ρe4α

)
= 0, ρ =

1
2

r−4 7−1/3, (55)

if we use (54) and (49) with const = 0 in the right hand side of Equation (49). Here, ρ
is measured in the terms of r−2

g M−2
p , and r is measured in the units of rg, which is not

a gravitational radius, but some arbitrary spatial scale. It should be noted that, for (45),
Equations (50) and (51) look similar to those for an empty space, whereas Equation (49)
could also be considered as that for an empty space, but with const 6= 0. Thus, in the
CUM metric of the FVT where the Hamiltonian constraint is satisfied up to some constant,
one could alternatively consider the F-vacuum polarization solution similar to that for an
empty space, but with some non-zero value of const in Equations (49) and (52).

Since the solution (55) is singular, it could be treated as unphysical. To obtain a realistic
model, one has to consider at least two substances: a compact object in the center consisting
of a substance with a constant energy density and a substance with the radiation equation
of state (42). We must emphasize the importance of such a dense kernel for obtaining
non-singular vacuum polarization of F-type.

5.2. Equations in the Schwarzschild-Type Metric

It is more convenient to begin a consideration from the Schwarzschild-type metric [58]

ds2 = B(R)dt2 − A(R)dR2 − R2dΩ, (56)

where Equations (54) and (55) correspond to the well-known solution [58]

ρ2(R) =
1

14R2 , (57)

obeying the TOV Equation [59,60] for a radiation fluid

ρ′2 = −3ρ2
(
m + 4πR3ρ2/3

)

πR
(

R− 3m
2π

) (58)
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in all the spatial region R ∈ (0, ∞), where m(R) is defined by

m′(R) = 4πR2ρ2. (59)

Again, ρ2 is measured in the terms of r−2
g M2

p, and R is measured in the units of rg.
The solutions (57) and (55) are singular at R = 0 and, thereby, non-physical. The situation
changes cardinally in the presence of a core consisting of incompressible matter. More
exactly, in the presence of incompressible matter of low density ρ1, the corresponding
solution remains singular. However, if ρ1 > 1

2
( 8

9
)
, a solid ball in the metric (48) looks

similar to a shell over rg in the metric (56) [9] that is shown in Figure 1a. Here, we again
imply the gravitational radius rg as a measure of the distances, but calculate it taking into
account only an incompressible matter. Such a matter occupies a region between Ri and
R f , where

R f =
3

√
R3

i +
1

2ρ1
(60)

in the units of rg. Here the energy density ρ1 is constant and measured in the terms of
r−2

g M2
p, where the gravitational radius is defined as rg = 3m1

2πM2
p

and m1 = 4
3 πρ1(R3

f − R3
i ).

A compact object of such a type arising in FVT is known as “eicheon” [9] and replaces a
black hole of GR. The appearance of eicheon in the center makes the solution (58) to be
non-singular because it allows for setting the finite boundary conditions for radiation.

Figure 1. (a) Schematic picture of an eicheon in the metric (56), taking into account a vacuum
polarization in the form of dark radiation; (b) an eicheon in the metric (48) looks similar to a solid
sphere with a “dark radiation” of the finite energy density in the center.

To explain this, let us consider two fluids in the metric (56) obeying the TOV equations:

p′1 = −3(p1 + ρ1)
(
m + 4πR3(p1 +

ρ2
3
))

4πR
(

R− 3m
2π

) , (61)

ρ′2 = −3ρ2
(
m + 4πR3(p1 +

ρ2
3
))

πR
(

R− 3m
2π

) , (62)

where the function m(R) satisfies

m′(R) = 4πR2(ρ1 + ρ2). (63)
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For ρ1 > 1
2
( 8

9
)
, the above equations hold for the internal range Ri < R < R f , where

Ri > rg, and the border of a region, occupied by ρ1, is defined through (60).
The pressure of incompressible fluid must turn to zero at the edge of the range filled

by matter R = R f , and it is a boundary condition for p1. Then, one could set an amount
of radiation at R = R f and solve the system of equations in a region of {Ri, R f } assuming
m(Ri) = 0. A solution allows determining m(R f ), and, using this value as an initial
condition, one should solve the equation for the radiation fluid (58) in an outer region of
{R f , ∞}. The metric obtained by solving the equations is [58]

1
B

dB
dR

= − 2
p1 + ρ1

dp1

dR
= − 2

p2 + ρ2

dp2

dR
, (64)

d
dR

(
R
A

)
= 1− 6 R2(ρ1 + ρ2). (65)

Comparing the metrics (46) and (56) leads to relation for the radial coordinates R and
r [9]

dR
dr

=
( r

R

)2 B3/2

A1/2 , (66)

where the dependencies B(R(r)) and A(R(r)) are implied. Equation (66) has to be in-
tegrated with the initial condition R(0) = Ri, which means that Ri in the metric (56)
corresponds to r = 0 in the metric (46). Knowing R(r) allows plotting ρ2(R) shown in
Figure 2a as the r– dependent function ρ2(R(r)) (Figure 2b).
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Figure 2. (a) ρ2–nergy density of the vacuum polarization in a form of “dark radiation” in the
coordinates R > Ri calculated for the eicheon parameters ρ1 = 7M2

pr−2
g , Ri = 1.001rg, R f = 1.024rg,

ρ2(R f ) = 0.002M2
pr−2

g . Red part of the curve corresponds to Ri < R < R f , i.e., lies inside an
eicheon. (b) ρ2 calculated in the coordinates r of the metric (48). Red part of the curve corresponds to
0 < r < r f .

Let us consider the motion of a test particle on a circular orbit in the metric (56).
The angular velocity on a circular orbit is calculated as [58]:

dφ

dt
=

√
1

2R
dB
dR

. (67)

A spatial interval followed by a particle along the circular orbit is given by dl = Rdφ =

R dφ
dt dt. To obtain the rotation velocity observed by an observer situated at rest near the

moving particle, one has to divide the spatial interval over the proper time
√

g00dt =
√

Bdt
of such an observer [61]:

vrot =
dl√
Bdt

=

√
R

2B
dB
dR

=

√
− R

p2 + ρ2

dp2

dR
=

1
2

√
− R

ρ2

dρ2

dR
. (68)

A qualitative example of the general form of the numerical solution for the rotation
velocity is shown in Figure 3. Although the shape of the curve resembles observational
data, the asymptotic of the rotation curve corresponds to vrot ∼ 1/

√
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Let us consider the motion of a test particle on a circular orbit in the metric (56).
The angular velocity on a circular orbit is calculated as [58]:

dφ

dt
=

√
1

2R
dB
dR

. (67)

A spatial interval followed by a particle along the circular orbit is given by dl = Rdφ =

R dφ
dt dt. To obtain the rotation velocity observed by an observer situated at rest near the

moving particle, one has to divide the spatial interval over the proper time
√

g00dt =
√

Bdt
of such an observer [61]:

vrot =
dl√
Bdt

=

√
R

2B
dB
dR

=

√
− R

p2 + ρ2

dp2

dR
=

1
2

√
− R

ρ2

dρ2

dR
. (68)

A qualitative example of the general form of the numerical solution for the rotation
velocity is shown in Figure 3. Although the shape of the curve resembles observational
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data, the asymptotic of the rotation curve corresponds to vrot ∼ 1/
√

2 ≈ 0.71. This very
large velocity (in units of speed of light) corresponds to asymptotic value ρ2 ∼ R−2 in (57),
whereas, in the reality, the rotation velocities of galaxies are vrot ∼ 100− 300 km/s ∼ 0.001.
To obtain smaller velocities, one has to diminish the density of radiation in the center of
eicheon, i.e., at r = 0 in the metric (48) or R = Ri in the metric (56). For central radiation
density of ρ2 = 4.6× 10−27 M2

pr−2
g = 9.6× 10−24 g/cm3, one has the rotation curve shown

in Figure 4. That is a pure “dark radiation” contribution without the galaxy bulge or disk.
It increases linearly with the distance and corresponds to the rising part of the general
curve shown in Figure 3. In the logarithmic scale, one could see (Figure 5) together the
contribution of the eicheon of the mass of 4.2× 106 M⊙ in the center of the Milky Way (the
left side of the curve) and the impact of the dark radiation (the right side of the curve),
whereas the effects of the galactic bulge and disk responsible for the intermediate region are
not taken into account. However, it is expected that bulge and disk attraction will influence
the F-type vacuum polarization in such a way that the curve in Figure 4 will be not pure
linear but slightly bent. We do not gain insight into such details because our goal is to
show that the F-type vacuum polarization could arise only around a “sewed” black hole,
i.e., around eicheon.

We emphasize that the presented consideration is heuristic because, although the
linear system for the perturbation and the eikonal approximation for vacuum polarization
seems reasonable, we use its results in the nonlinear TOV model. Another thing is that we
set the density of radiation (the F-type vacuum polarization) in the center of eicheon, i.e., at
r = 0, of R = Ri empirically but not calculate it from the first principles, i.e., we use only
the equation of state obtained from the calculations in the eikonal approximation.

2000 4000 6000 8000 10,000
R/rg0.0

0.2

0.4

0.6

0.8

1.0

vrot/c

Figure 3. The general form of a model rotational curve for the eicheon parameters specified in the
caption to Figure 2.
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10
12

2×1012 3×1012 4×1012
R/rg

0.0005

0.001

vrot/c

Figure 4. The rotational curve for the eicheon parameters ρ1 = 100M2
pr−2

g , Ri = 1.0001rg and
ρ2(R f ) = 4× 10−27 M2

pr−2
g , where rg is defined by an eicheon mass. In the physical units, ρ1 =

100 3c6

16πG3m2·
≈ 2.1× 105 g/cm3. The points and error bars correspond to the Milky Way rotational

curve from [62].

0.001 0.100 10 1000
R, kpc0

50

100

150

200

250

300

350

vrot, km/s

Figure 5. The rotational curve of eicheon with the mass of Sgr A∗ with taking into account the
vacuum polarization of F-type. The logarithmic scale is used and the points correspond to the Milky
Way rotational curve from [62]. The eicheon parameters are given in the caption to Figure 4.

6. Vacuum Polarization of Φ-Type

In Sections 3 and 4, the linear system of Equations (20)–(23) and (41) was deduced,
which describes the evolution of perturbation by taking into account vacuum polarization
(see Equation (41) and Appendix A for an example of an exact solution). Galaxy formation
is a complex nonlinear process that develops over cosmological time scales. Generally,
the linear system is insufficient to describe the galaxy evolution. However, one could
create a heuristic picture, setting an approximate profile of matter near the galaxy center,
and obtain a gravitational potential produced by vacuum polarization obeying the linear
equations. Below we will discuss that the observed galaxy halo could originate from a very
fast (compared to the cosmological times) change of the galactic nucleus mass. We will
neglect a cosmological evolution assuming α(η) = 0. This reduces the above system of the
equations to

−12Φq − 3F′′q + q2Fq = 0, (69)

−9Φ′′q − 9q2Φq + q4Fq +
9

M2
p

(
∑

i
δ℘ki − 3δΠqi

)
= 0. (70)

δ℘qv − 3δΠqv =
Nsc

8π2 k2
max(Φ

′′
q + q2Φq), (71)
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where the last equation holds for the vacuum polarization of Φ–type and is denoted by
i = v. Substituting Φq from Equation (69), and δ℘qv − 3δΠqv from Equation (71) into
Equation (70) gives the equation

3
(

kmax
2 − 8π2Mp

2
)(

3F′′′′q + 2q2F′′q
)
− q4Fq

(
3Nsckmax

2 + 8π2Mp
2
)
= 288π2δ℘q e f f (η), (72)

where an effective “density” of all the substances except vacuum is denoted as

δ℘q e f f (η) = ∑
i 6=v

δ℘ki − 3δΠqi. (73)

Equation (72) allows for developing a simple model: setting profile and time depen-
dencies of the quantity ℘q e f f (η) empirically determines the metric perturbation Fq and Φq
using (69).

Let us, for simplicity, take ℘q e f f (η) in the form of

℘q e f f (η) = m Z(q)eη/T , (74)

where m is a “mass” of the object at η = 0, Z(q) is a form-factor and T is some typical
time of the “mass” growth. The model implies some rapid processes such as accretion
occurring around the massive object, i.e., around the galaxy nucleus. Substitution of the
expression (74) into Equation (72) allows finding Fq(η) = F̃qeη/T , where

F̃q = − 288π2T4mZ(q)

3Nsckmax
2(q4T4 − 2q2T2 − 3) + 8π2Mp

2(q2T2 + 3)2 , (75)

and Equation (69) give Φq(η) = Φ̃qeη/T :

Φ̃q = − 24π2T2(q2T2 − 3
)
mZ(q)

3Nsckmax
2(q4T4 − 2q2T2 − 3) + 8π2Mp

2(q2T2 + 3)2 . (76)

At T → ∞, the corresponding static limit is

Φ̃q = − 24π2mZ(q)
(3Nsckmax

2 + 8π2Mp
2)q2

, (77)

which implies that the vacuum polarization leads to the renormalization (increasing) of the
Planck mass, i.e., decreasing the gravitational constant. In particular, using the value (11)
obtained from the cosmological observations [10] gives

M2
p ren =

(
1 +

54Nsc

π2(2 + Nsc)

)
M2

p, Gren = G/
(

1 +
54Nsc

π2(2 + Nsc)

)
. (78)

It seems that the vacuum polarization, in some sense, acts similar to antigravitation,
and the gravitational constant Gren appearing in Newton’s law has to differ from the
gravitational constant G in the Friedmann equations for a uniform universe. Although the
gravitational constant’s renormalization does not influence the cosmological balance of
the different kinds of matter expressed in the units of the critical density M2

pH2, it should
be taken into account for comparison with the directly measured (for instance, utilizing
luminosity) density. Numerically, Nsc = 2 gives Gren ≈ 0.27 G.

Invariant Potentials and Rotational Curves

Astrophysicists express the results of observations in terms of gauge-invariant quan-
tities, which are not dependent on a system of coordinates. The potentials Φ(η, x) and
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F(η, x) are not invariant relatively to the infinitesimal transformations of coordinates and
time of the following type

t = η + ξ1(η, x), r = x +∇ξ2(η, x), (79)

where ξ1(η, x) and ξ2(η, x) are some small functions. Usually, the potentials Φinv(η, x)
and Ψinv(η, x) are introduced [63–65] which are invariant relatively transformations (79).
The potentials correspond to the metric

ds2 = a2(η)
(
(1 + 2Φinv(η, x))dη2 − (1− 2Ψinv(η, x))δijdxidxj

)
(80)

and are expressed through Φ and F as

Φq inv(η) = Φq(η) +
a′(η)F′q(η) + a(η)F′′q (η)

2a(η)
= Φq +

Fq

2T2 , (81)

Ψq inv(η) = −
a′(η)F′q(η)

2a(η)
−Φq(η) +

1
6

q2Fq(η) = −Φq(η) +
1
6

q2Fq, (82)

where the final equalities at the right-hand side of (81), (82) hold for our case of a = const,
and Φ, F ∼ exp(η/T). Using (75), (76) gives

Φ̃q inv = − 24π2T2(q2T2 + 3
)
m Z(q)

3Nsc kmax
2(q4T4 − 2q2T2 − 3) + 8π2Mp

2(q2T2 + 3)2 , (83)

and Ψ̃q inv = Φ̃q inv. Thus, we obtained the Fourier transformation of the time-dependent
gravitational potential Φq inv = Φ̃q inveη/T , allowing us to define

Φinv(x, η) =
eη/T

(2π)3

∫
Φ̃q inv eiqxd3q. (84)

To obtain a concrete empirical formula, one has to set the form factor Z(q), for instance,
using the Gaussian profile δ℘̃e f f (x) = π−3/2m D−3 e−x2/D2

. The spatial dependence of
the potential (84) at the present time, i.e., η = 0, allows us to find the rotational velocity
dependence on the spatial coordinate

vrot(r) =

√
−r

dΦinv(r)
dr

. (85)

Here, the potential (84) is time-dependent, and actually, there are no pure rotational
curves because the radial velocities are present. Here, for an estimation, we discuss
only tangential velocity. The parameters m, D and Z(q) are adopted to produce a typical
rotational curve without an DM (blue curve in Figure 6), then vacuum polarization produces
a halo corresponding to black curve in Figure 6.

The rotational curve has some similarities with the conventional picture at Nsc = 2,
but in the conventional picture, the contribution of the galactic nucleus, bulge and disk
are taken into account. We include all these components into the Gaussian form factor of
galactic baryonic skeleton and call it “nucleus” in our oversimplified picture. Then, we
permit it to increase (or decrease) with time and obtain vacuum polarization caused by
this process.
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Figure 6. The lower blue curve corresponds to the contribution of a galactic nucleus of baryonic
matter, including specifically nucleus, bulge and disk. The upper black curve takes the vacuum
Φ-polarization into account. The form factor of a galaxy nuclei is taken as Z(q)− exp

(
−λq2), λ = 1,

the accretion rate is of T = 10, i.e., 10 kPc, which corresponds to 32,000 years. The number of the
minimally coupled scalar fields is of Nsc = 2, and k2

max = 8M2
pπ2 98

100 is assumed.

7. Conclusions

We have considered two types of vacuum polarization corresponding to the F- and
Φ-types of metric perturbations in the CUM frame.

The F-type of spatially non-uniform vacuum polarization has the radiation-type
equation of state. In the first order on perturbations, it is impossible to determine a form of
the static gravitational potential around an astrophysical object. In the frameworks of a
nonlinear heuristic model using the TOV equations for matter and radiation, it was found
that the solution, which is non-singular at r = 0, only arises if an eicheon is present in the
galaxy’s center. Eicheon is an analog of the black hole in GR and looks similar to an empty
“nut” in the Schwarzschild-type metric. From this point of view, we assume that DM, as a
vacuum polarization, arises only in the galaxies having an eicheon (i.e., a “black hole-like”
object) in the center. Namely, the eicheon conjecture allows us to convert a singular solution
for pure radiation into a non-singular physical one. Galaxies without an eicheon in the
center (e.g., diffuse galaxies) do not have a DM halo4.

Under the oversimplified assumption of an isolated galaxy, the dark halo, in terms of a
test particle’s rotation velocity, always increases with the distance from the galaxy’s center.
Decreasing the halo could occur only due to a violation of the galaxy’s isolation, i.e., at the
distance of ∼2 Mpc. It should be noted that the Andromeda galaxy is only 0.7 Mpc away.
Generally, the galaxies tend to form clusters. These evident facts urge the development of a
model of interacting galaxies with vacuum polarization.

For the Φ-type of vacuum polarization, the renormalization of the gravitational con-
stant (or Planck mass) has been found. This means that the gravitational constant found
in the Earth, the Solar System, and galaxy observations is not equal (approximately four
times less) to the gravitational constant used in cosmology to describe a spatially uniform
universe. This fact does not influence the balance of the different kinds of matter in cos-
mology if one measures them in M2

pH2. Nevertheless, it increases the directly counted
matter contribution fourfold, i.e., the luminous baryonic matter has to contribute 3.7-times
stronger into the cosmological Friedmann equations.

The second effect of the Φ-type polarization is the creation of the dark halo in the
non-stationary process. It is found that the time-dependent evolving mass of the galaxy
nuclei produces the gravitational potential of the dark halo-type. This point urges a more
careful observational investigation of the possible non-stationary origin of the dark halo.
However, the required time for the galaxy nuclei mass growth seems very short: ∼32,000
years. In such a situation, clarifying the physical status of the possible accretion of vacuum
energy and vacuum condensates discussed in [68–70] is very desirable. In particular, it
was shown in [68,69] that accretion of substance with the equation of state of p = −ρ (e.g.,
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Higgs or QCD condensates) decreases a black hole mass, while accretion of the ordinary
substance with radiation equation of state increases a black hole mass.

Investigations of these processes in the CUM metric with the applications to an eicheon
are waiting. However, one may suggest some scenarios of a galaxy center evolution.
Accretion by an eicheon could be more complicated than a traditional black hole. At some
stage, eicheon could accrete more “dark radiation”, increasing its mass, but at some stage,
it could accrete more condensates, decreasing its mass. One could associate this with the
fast processes with a typical time of ∼32,000 years. Both growth of the galaxy’s center
mass and its lowering produce a halo. Thus, a galaxy center is reminiscent of “Alice from
Wonderland” [71], which takes a bit of a mushroom from one side and rises, then takes a
bit from another side and shrinks. These processes can interlace in a galaxy center.

To summarize, it is possible to obtain an equation of the state of vacuum polarization,
which is some kind of “æther”. It is challenging to find the “amount” of æther because it
depends on the object’s entire history due to the nonlocality of the vacuum state on the
curved background. Here, we have adjusted this “amount” to astrophysical observations.
Thus, the obtained final results have, in some sense, a heuristic nature.
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Appendix A

We emphasize that the presented consideration is heuristic because, although the
linear system for the perturbation and the eikonal approximation for vacuum polarization
seem trustable, we use its results in the nonlinear TOV model. Another point is that we
empirically set the density of radiation (the vacuum polarization of F-type) in the center of
an eicheon, i.e., at r = 0, of R = Ri. That is, we do not calculate it from the first principles,
i.e., we use only the equation of state from the eikonal calculations.

Let us consider the system of Equations (18)–(23) for an empty space–time with the
vacuum polarization of F-type in the form of radiation fluid. For e4αρ = const, the constant
in Equation (6) can be chosen in such a way that there is no evolution of the scale factor,
i.e., α = 0 (a static universe).

For the substance obeying (45), Equations (23) and (22) are reduced to

−δ℘′q vF + q2vq vF = 0, (A1)

δΠq vF + v′q vF = 0, (A2)

and have the solution

δ℘q vF = c1 sin
qη√

3
+ c2 cos

qη√
3

, (A3)

vq vF =
c2 cos

(
ηq√

3

)
− c1 sin

(
ηq√

3

)

√
3q

. (A4)
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Let us also place into this universe some amount of a dust matter δ℘q m obeying
δΠq m = 0 and without a uniform component, i.e., Πm = 0, ℘m = 0. The complete solution
of the system (18)–(23) takes the form

δ℘q m(η) = −
1
36

q4Mp
2(c6η + c5), (A5)

vq m −
c6

36
q2Mp

2, (A6)

Fq(η) = c6η + c5 − 3q−4Mp
−2
(

sin
(

ηq√
3

)(
c4q2Mp

2 + 2
√

3c1ηq + 15c2

)
+

cos
(

ηq√
3

)(
q
(

c3qMp
2 − 2

√
3c2η

)
+ 15c1

))
, (A7)

Φq(η) =
q2

12
(c6η + c5)−

1
2M2

pq2

(
6 sin

(
ηq√

3

)(
c4Mp

2q2 + 2
√

3c1ηq + 9c2

)
+

cos
(

ηq√
3

)(
q
(

c3Mp
2q− 2

√
3c2η

)
+ 9c1

))
.(A8)

Then, in accordance with (38), the energy density for a F-vacuum polarization is
expressed approximately as

δ℘vF(η, x) =
1
2 ∑

k
−k∇Θk

k
+ Θ′k , (A9)

which gives

δ℘q vF(η) = −2πkmax
4
∫ η

−∞

((
9− 4q2(η − τ)2

)
sin(q(η − τ)) +

q(η − τ)
(

q2(η − τ)2 − 9
)

cos(q(η − τ))

)
Fq(τ)

3q(η − τ)4 dτ. (A10)

If we consider this equation as an additional equation to the system (18)–(23), we can
find that the constants c1, c2, c3, c4, c6 have to be zero and only c5 term is permitted because

∫ η

−∞

((
9− 4q2(η − τ)2) sin(q(η − τ)) + q(η − τ)

(
q2(η − τ)2 − 9

)
cos(q(η − τ))

)

3q(η − τ)4 dτ = 0.

Thus, the static gravitational potential

Φq =
q2c5(q)

12
(A11)

of arbitrary form (because c5 could be function of q) is permitted in the framework of a
linear system of the equations considered.

Notes
1 The CUM metric implies a preferred time foliation of space–time. Using the CUM metric per se does not predict some visible

effects in the Solar System and all satellite experiments if their results are expressed in a gauge invariant way. At the same
time, the use of the UV-cutoff at kmax implies the Lorentz invariance violation. In the local particle physics experiments, it leads
to effects of the order of ∼ ε/kmax ∼ ε/Mp, where ε is the typical energy of a particle, but certainly does not produce some
restrictions for Earth and satellite experiments. However, as it will be shown below, the consideration of vacuum physics using
CUM and kmax could produce observable effects in a galaxy scale.

2 We consider only scalar perturbations because the vector and tensor perturbations do not perturb the matter.
3 For instance, see a DM vacuum model with the equation of state “running” from radiation-type to dark energy-type [20].
4 The diffuse galaxy NGC1052-DF2 [66] seems to contain no DM, whereas another diffuse galaxy Dragonfly 44 is supposed to

contain a lot of DM [67]. However, for the last, we do not know for definite whether or not there is an eicheon in its center.
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