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1 Introduction

The Standard Model (SM) has been one of the most successful theory with its predictions in

remarkable agreement with the experimental data. Yet the SM leaves many open questions

to be answered. Discovery of neutrino oscillations has decisively proved the existence of

neutrino masses.1 This is in glaring contradiction with SM which only features massless

neutrinos.

Left-Right Symmetric Model (LRSM) is the simplest extension of the SM with modified

electroweak gauge group: SU(2)L ⊗ SU(2)R ⊗ U(1)B−L [1–4]. It features heavy Majorana

right-handed neutrinos and can naturally explain the small masses of left-handed neutri-

nos through see-saw mechanism [5–9]. It explains the asymmetric chiral structure of SM

through restoration of parity symmetry at high energies.

An important problem with the SM is the stability of the scalar Higgs potential at

high-energies. The condition for stability of the scalar potential in the SM is the positivity

of the Higgs quartic coupling λh. However, renormalization group equation (RGE) analysis

1The lightest neutrino may still be massless.
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shows that λh becomes negative at a scale of around 1010 GeV for experimentally measured

value of the Higgs mass [10]. Thus, the potential in the SM is unbounded from below around

this scale and makes the theory unstable. This motivates us to ensure the stability of the

scalar Higgs potential in LRSM as a candidate theory for physics beyond the SM.

Scalar sector of LRSM features an SU(2) bi-doublet, left and right-handed weak isospin

triplets. Such an extended scalar sector leads to a complicated form of the potential which

contains 17 free parameters (3 negative mass squares and 14 scalar quartic couplings).

Analytical study of vacuum stability and desired minimum for the entire scalar potential

is an arduous task. There has been some work in this direction [11, 12] but the results only

hold for a small parameter space with most of the quartic couplings set to zero. Moreover,

just ensuring vacuum stability does not yield the desirable vacuum expectation values

(VEVs) to ensure correct spontaneous symmetry breaking to SM [12]. In this work, we

have derived most general conditions sufficient2 to obtain the correct symmetry breaking

and ensure vacuum stability of the LRSM. As we show later, it is necessary to obtain

conditions for vacuum stability of the general scalar potential before requiring the correct

VEV alignment at the minimum. The procedure outlined here for finding conditions for

correct symmetry breaking is general in nature and can be applied to different theories

with varied forms of the scalar sector.

This work is organised as follows. In section 2, concepts of copositivity and gauge

orbit spaces are presented in context of vacuum stability. In section 3, we review the

model details of LRSM. In section 4, we derive the necessary and sufficient conditions

for the boundedness of scalar potential of the LRSM. In section 5, we derive conditions

sufficient for scalar parameters to lead to spontaneous symmetry breaking (SSB) to the

correct global minimum. In section 6, we compare the results from numerical minimization

of the potential with those from the derived conditions. In section 7, we present an exam-

ple study to use these conditions and other theoretical constraints (unitarity, scalar mass

spectrum, perturbativity) on the quartic couplings to study the stability of the vacuum

at high energies and agreement with current experimental limits on scalar mass spectrum.

Finally, we conclude in section 8.

2 Boundedness

For the stability of the vacuum state, the potential should be bounded in all field directions.

In the large-field limit, terms with dimension d < 4 can be ignored as they are negligible

in comparison to the quartic terms (denoted by V4(φi)) in the potential. Thus, requiring

V4(φi) > 0 as field values φi →∞ is a strong condition for boundedness. This criterion is

termed as Bounded From Below (BFB) condition.

For obtaining conditions for vacuum stability of a scalar potential using BFB crite-

rion, concepts of copositivity criteria and gauge orbit spaces can help greatly simplify the

analysis.

2We have set only few of the couplings(α2, βi’s) to zero.

– 2 –



J
H
E
P
1
2
(
2
0
1
9
)
1
3
7

2.1 Copositivity criteria

Given a condition of the form:

ax2 + bx+ c > 0 (2.1)

where x ∈ R, the conditions for it to be positive-definite are very well known. If x ∈ R+,

then the requirement that eq. (2.1) holds is termed as copositivity. The conditions for

copositivity are given below:

a > 0, c > 0, b+ 2
√
ac > 0

The quartic part of the vacuum potential is bounded from below if it satisfies the

copositivity conditions. The criteria of copositivity has been applied to numerous models

in literature to obtain vacuum stability conditions [11, 13–15]. The difficulty to solve

these conditions based solely on copositive criteria is a formidable task. Usually it involves

checking copositivity in all n-field directions to obtain an exhaustive list of conditions for

vacuum stability.

In sections 4.1 and 4.2, copositive criteria is used in conjunction with suitable

parametrization of gauge orbit parameters to yield results easily. In the coupled case

(section 4.3), when mixed field terms are present,3 we observe that exact values of minima

are required and copositivity isn’t helpful as it yields results only upto a multiplicative

constant.

2.2 Gauge orbit spaces

Due to the gauge freedom of the theory, different values of the fields can lead to same value

of the potential. These field values connected through gauge transformations collectively

form a gauge orbit. Minimization of the Higgs potentials in orbit spaces has been exten-

sively studied in context of grand unified theories in the 1980’s [16–21]. Here, we present

the method of orbit spaces for the two higgs fields case [16]. This is an extension of the

one-field treatment as presented in refs. [14, 16].

Consider the scalar potential of a theory with two higgs fields φ and π charged under

non-abelian gauge groups G and G′ respectively, with the following form:

V (φ, π) = −µ21(φ∗iφi)− µ22(π∗i πi) + λ1(φ
∗
iφi)

2 + λ2fijklφ
∗
iφjφ

∗
kφl + · · · (2.2)

+ ρ1(π
∗
i πi)

2 + ρ2gijklπ
∗
i πjπ

∗
kπl + · · ·

+ α1(φ
∗
iφi)(π

∗
jπj) + · · · (other terms coupling (φ, π))

where V (φ, π) remains invariant under the action of the group elements of G and G′. Field

φ(π) (with components denoted by φi(πi)) live in the representation R(R′) of group G(G′).

The group elements of G rotate a field into other field values on the same orbit space.

It can be shown that all the fields ψi on the orbit respect the same group, called the little

group. If their action on the fields is unitary, the norm of the field value φ∗iφi is preserved.

This similarly holds for field π. Several different orbits respect the same group and form a

3I.e α’s 6= 0.
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set. The set of these orbits is called the stratum of the little group. Thus, we need to find

the gauge orbit that minimizes the potential.

The dimensionless ratios of invariants called orbit space parameters specifies a strata

as follows:

An(φ̂) =
fijklφ

∗
iφjφ

∗
kφl

(φ∗iφi)
2

Bn(π̂) =
gijklπ

∗
i πjπ

∗
kπl

(π∗jπj)
2

Similarly, for coupled terms Cn(φ̂, π̂) can be defined but normalized by φ∗iφiπ
∗
jπj . Orbit

space parameters greatly reduce the number of parameters and contain all the directional

information required for the minimization. Defining orbit space parameters for eq. (2.2),

V (φ, π) = −µ21|φ|2 − µ22|π|2 + |φ|4(λ1 + λ2A1(φ̂) + λ3A2(φ̂) + · · · )
+ |π|4(ρ1 + ρ2B1(π̂) + ρ3B2(π̂) + · · · )

+ |φ|2|π|2(α1 + α2C1(φ̂, π̂) + · · · )

≡ −µ21|φ|2 − µ22|π|2 + |φ|4A(λ, φ̂) + |π|4B(ρ, π̂) + |φ|2|π|2C(α, φ̂, π̂) (2.3)

where

|φ|2 = φ∗iφi, |π|2 = π∗i πi, φ̂ =
φ

|φ|
, π̂ =

π

|π|
A(λ, φ̂) = λ1 + λ2A1(φ̂) + λ3A2(φ̂) + · · ·
B(ρ, π̂) = ρ1 + ρ2B1(π̂) + ρ3B2(π̂) + · · ·

C(α, φ̂, π̂) = α1 + α2C1(φ̂, π̂) + · · ·

Note that we have assumed terms like |φ|3|π| and |φ||π|3 to be absent from the expression

for V (φ, π). This is particularly true if the higgs potential is invariant under a reflection

symmetry for φ and π. Requiring boundedness and applying copositivity criterion, we get

the following conditions for the stability of the potential,

|φ|4A(λ, φ̂) + |π|4B(ρ, π̂) + |φ|2|π|2C(α, φ̂, π̂) > 0 ∀A(λ, φ̂), B(ρ, π̂), C(α, φ̂, π̂)

=⇒ A > 0, B > 0, C + 2
√
AB > 0 (2.4)

Treatment in ref. [16] assumes the monotonicity of the orbit space parameters in the po-

tential and thus minimization of these parameters are not required. Our treatment for the

left-right model differs here due to the presence of non-linearity in orbit space parameters.

It should be noted that eq. (2.4) must also be minimized over all orbit space parameters.

We also study the VEV structure of the scalar fields in the theory. Thus, minimizing V

w.r.t. to |φ| and |π| yields,

∂V

∂|φ|
= 2|φ|

(
−µ21 + 2|φ|2A+ |π|2C

)
= 0

∂V

∂|π|
= 2|π|

(
−µ22 + 2|π|2B + |φ|2C

)
= 0

Since, field value should be non-zero, the minimum occurs at:

|φ0|2 =
2Bµ21 − Cµ22
4AB − C2

|π0|2 =
2Aµ22 − Cµ21
4AB − C2

(2.5)
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Using second derivative analysis for φ and π, it can be proved that field values in eq. (2.5)

leads to a minimum of the potential if and only if following conditions are satisfied.

2Bµ21 − Cµ22 > 0 (2.6)

2Aµ22 − Cµ21 > 0 (2.7)

4AB − C2 > 0 (2.8)

Plugging obtained field values at the minimum in eq. (2.3), we get

V0(φ) = −Bµ
4
1 − Cµ21µ22 +Aµ42

4AB − C2
(2.9)

It can be shown using conditions obtained above that this minimum is guaranteed to be

the global minimum of the potential.

3 Left-right symmetric model

Left-Right Symmetric model (LRSM) is a gauge extension of the Standard Model (SM),

which restores parity symmetry at high-energies [1–3]. It treats left and right handed

chiralities of fermions equally prior to spontaneous symmetry breaking. It features heavy

right-handed Majorana neutrinos, and thus explains small masses of left-handed neutrinos

via the see-saw mechanism [5–7]. The extended gauge group for this model: SU(3)C ⊗
SU(2)L ⊗ SU(2)R ⊗ U(1)B−L. The particle content and their irreducible representations

under the gauge group is given in table 1. The spontaneous symmetry breaking (SSB) of

LRSM proceeds in two steps. First, the electrically neutral component of ∆R acquires a

VEV vR and breaks the gauge group from SU(2)R ⊗U(1)B−L to U(1)Y . Finally, the VEV

of bidoublet Φ breaks the symmetry down to U(1)Q [22, 23]. The VEV structure of the

scalar fields is

Φ =
1√
2

(
κ1 0

0 κ2e
iθ2

)
, ∆L =

1√
2

(
0 0

vLe
iθL 0

)
, ∆R =

1√
2

(
0 0

vR 0

)
(3.1)

Note that only the neutral components acquire VEV so that U(1)EM does not break. Using

the gauge transformations, two of the phases in κ1 and vR have been rotated away. It is

required that the VEV’s respect the following hierarchy for correct phenomenology:

vL � κ1,2 � vR

The electric charge formula takes the form:

Q = T3L + T3R +
B − L

2

where T3X , X = (L,R) is the third generator of the group SU(2)X and B − L is the

baryon minus lepton number, the charge for group U(1)B−L [24, 25]. The most general

– 5 –
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SU(3)C SU(2)L SU(2)R U(1)B−L

QL ≡

(
uL

dL

)
3 2 1 1

3

QR ≡

(
uR

dR

)
3 1 2 1

3

ψL ≡

(
νL

eL

)
1 2 1 −1

ψR ≡

(
N

eR

)
1 1 2 −1

Φ =

(
φ01 φ+2

φ−1 φ02

)
1 2 2 0

∆L =

 1√
2
∆+
L ∆++

L

∆0
L − 1√

2
∆+
L

 1 3 1 2

∆R =

 1√
2
∆+
R ∆++

R

∆0
R − 1√

2
∆+
R

 1 1 3 2

Table 1. Particle content of left-right symmetric model based on the gauge group SU(3)C ⊗
SU(2)L ⊗ SU(2)R ⊗U(1)B−L.

renormalizable scalar potential for LRSM contains 17 independent terms [12, 23]:

V =−µ21Tr[Φ†Φ]−µ22
(

Tr[Φ̃Φ†]+Tr[Φ̃†Φ]
)
−µ23

(
Tr[∆L∆†L]+Tr[∆R∆†R]

)
+λ1Tr[Φ†Φ]2

+λ2

(
Tr[Φ̃Φ†]2+Tr[Φ̃†Φ]2

)
+λ3Tr[Φ̃Φ†]Tr[Φ̃†Φ]+λ4Tr[Φ†Φ]

(
Tr[Φ̃Φ†]+Tr[Φ̃†Φ]

)
+ρ1

(
Tr[∆L∆†L]2+Tr[∆R∆†R]2

)
+ρ2

(
Tr[∆L∆L]Tr[∆†L∆†L]+Tr[∆R∆R]Tr[∆†R∆†R]

)
+ρ3Tr[∆L∆†L]Tr[∆R∆†R]+ρ4

(
Tr[∆L∆L]Tr[∆†R∆†R]+Tr[∆†L∆†L]Tr[∆R∆R]

)
(3.2)

+α1Tr[Φ†Φ]
(

Tr[∆L∆†L]+Tr[∆R∆†R])+α3(Tr[ΦΦ†∆L∆†L]+Tr[Φ†Φ∆R∆†R]
)

+α2

(
Tr[∆L∆†L]Tr[Φ̃Φ†]+Tr[∆R∆†R]Tr[Φ̃†Φ]+H.c.

)
+β1

(
Tr[Φ∆RΦ†∆†L]+Tr[Φ†∆LΦ∆†R]

)
+β2

(
Tr[Φ̃∆RΦ†∆†L]+Tr[Φ̃†∆LΦ∆†R]

)
+β3

(
Tr[Φ∆RΦ̃†∆†L]+Tr[Φ†∆LΦ̃∆†R]

)
where all couplings are assumed real. Here, Φ̃ = σ2Φ

∗σ2, where σ2 is the 2nd Pauli matrix.

Φ̃ transforms the same way as Φ does.

Assume that after the SSB, the vacuum state of the potential is stable and has the

form of VEV structure eq. (3.1). We can then minimize the potential w.r.t. the VEV

– 6 –
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parameters,
∂V

∂κ1
=
∂V

∂κ2
=
∂V

∂θ2
=
∂V

∂vL
=
∂V

∂θL
=

∂V

∂vR
= 0

This yields a set of 6 equations which can be solved to yield the famous VEV see-saw

relation [12].

β1 cos (θ2 − θL)κ2κ1 + β2κ
2
1 cos θL + β3 cos (2θ2 − θL)κ22 = (2ρ1 − ρ3) vLvR (3.3)

Note if β1,2,3 = 0 and since phenomenologically vR 6= 0, this implies vL = 0.

4 Vacuum stability

Quartic terms containing only the scalar bidoublet Higgs field constitutes the λ sector and

those containing only left and right-handed triplet Higgs fields constitutes the ρ sector.

It should be noted that mixing terms (i.e. involving α’s and β’s) complicate the analysis

for boundedness. We first look at bidoublet and triplets part of the potential separately

to understand the procedure of minimization and useful parametrization to obtain BFB

conditions. We then analyze the BFB condition for the potential in presence of non-zero

quartic terms that couple bidoublet and triplet fields together in section 4.3.

4.1 Bidoublet Φ: λ sector

As the potential should be bounded in all field directions, we first choose to find conditions

for λ sector containing the bidoublet Φ. Considering only the quartic part, we require

V λ
4 = λ1Tr[Φ†Φ]2 + λ2

(
Tr[Φ̃Φ†]2 + Tr[Φ̃†Φ]2

)
+ λ3Tr[Φ̃Φ†]Tr[Φ̃†Φ] (4.1)

+ λ4Tr[Φ†Φ]
(

Tr[Φ̃Φ†] + Tr[Φ̃†Φ]
)
> 0 ∀Φ

To obtain the conditions to be BFB, we parametrize V λ
4 as follows:

Tr[Φ†Φ] ≡ r2

Tr[Φ̃Φ†]/Tr[Φ†Φ] ≡ ξeiω

Tr[Φ̃†Φ]/Tr[Φ†Φ] ≡ ξe−iω

where r > 0, ξ ∈ [0, 1] and ω ∈ [0, 2π]. Quartic field terms present in the potential are

normalized with the norm of the bidoublet Φ as discussed in section 2.2. The complex

product Tr[Φ̃Φ†]/Tr[Φ†Φ] between two unit spinors will be a complex number and hence

has been parametrized accordingly. This approach to parametrization has been earlier used

for obtaining boundedness criteria in two-Higgs-doublet Model [26, 27] and doublet-triplet-

Higgs Model [28].

Substituting above in eq. (4.1),

V λ
4 = r4

(
λ1 + 2λ2ξ

2 cos 2ω + λ3ξ
2 + 2λ4 ξ cosω

)
≡ r4f(λ, ξ, ω) (4.2)

– 7 –
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We know from the extremum value theorem, the minimum of V λ
4 must exist in/on the closed

boundary defined by the disk. Furthermore, it should either exist inside the bounded region

or on the boundary. We first minimize V λ
4 inside the boundary w.r.t. ξ and ω.

fξ =
∂f

∂ξ
= 4λ2ξ cos 2ω + 2λ3ξ + 2λ4 cosω = 0

fω =
∂f

∂ω
= −4λ2ξ

2 sin 2ω − 2λ4 ξ sinω = −2ξ sinω(4λ2ξ cosω + λ4) = 0

Here, we denote ∂f
∂x as fx and continue using this notation for conciseness. Solving the

above two equations simultaneously, we get three critical points. Only the first two critical

points are valid solutions of these pair of equations.

fω = 0 =⇒ ξ = 0, sinω = 0 or cosω = − λ4
4λ2ξ

Case 1: ξ = 0.

fξ = 2λ4 cosω = 0

=⇒ cosω = 0

Using this ξ and cosω in (4.2), we obtain the trivial condition for boundedness

λ1 > 0 (4.3)

Case 2: sinω = 0. Notice, sinω = 0 =⇒ cosω = ±1. From eq. (4.2), we notice this

minimum value of cosω depends on the sign on λ4.

cosω = −sgn(λ4)

Here, sgn(x) is the signum function. Thus, the relevant equation for minimum can be

written as:

fξ = 4λ2ξ + 2λ3ξ − 2|λ4| = 0

=⇒ ξ =
|λ4|

2λ2 + λ3

Inserting these values in f requiring V λ
4 > 0, we get

λ1 + (2λ2 + λ3)

(
|λ4|

2λ2 + λ3

)2

− 2|λ4|
|λ4|

2λ2 + λ3
> 0

Thus, we get second condition as requirement:

λ1 −
λ24

2λ2 + λ3
> 0 ⇐= 2λ2 + λ3 > |λ4| (4.4)

Case 3: cosω = − λ4

4λ2ξ
.

4λ2ξ

(
2

(
λ4

4λ2ξ

)2

− 1

)
+ 2λ3ξ − 2λ4

(
λ4

4λ2ξ

)
= −2λ3ξ = 0

The solution for above is ξ = 0 but cosω is not defined for this value. Thus, this is not a

valid solution.

– 8 –
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Now, we try to minimize f on the boundary w.r.t. to ω by setting ξ = 1.

fω = −4λ2 sin 2ω − 2λ4 sinω = −2 sinω(4λ2 cosω + λ4) = 0

Case 4. ξ = 1, sinω = 0.

=⇒ cosω = −sgn(λ4), cos 2ω = 1

Using this we have the condition,

λ1 + λ3 + 2(λ2 − |λ4|) > 0 (4.5)

Case 5: ξ = 1, cosω = − λ4

4λ2
.

λ1 + 2λ2

(
2

(
λ4
4λ2

)2

− 1

)
+ λ3 − 2λ4

(
λ4

4λ2ξ

)
> 0

The final condition can be written as:

λ1 + λ3 − 2λ2 −
λ24
4λ2

> 0 ⇐=

∣∣∣∣ λ44λ2

∣∣∣∣ < 1 (4.6)

Thus, equations (4.3), (4.4), (4.5) and (4.6) collectively form the required bounded

from below (BFB) conditions for λ sector.

Now, we’ll remark on the behaviour of these conditions to understand their charac-

teristics in the plots. The condition with the minimum value dominates the boundedness

of the potential. All conditions dominate in different regions of the parameter space and

controls the boundedness of the potential. For instance, the condition from inside the

boundary eq. (4.4) dominates over other conditions if 2λ2 + λ3 > |λ4| is satisfied. It can

also be shown that eq. (4.6) dominates when λ2 > 0 otherwise eq. (4.5) is valid.

4.2 Triplets ∆L and ∆R: ρ sector

The quartic part of the potential with ρi’s is:

V ρ
4 = ρ1

(
Tr[∆L∆†L]2+Tr[∆R∆†R]2

)
+ρ2

(
Tr[∆L∆L]Tr[∆†L∆†L]+Tr[∆R∆R]Tr[∆†R∆†R]

)
+ρ3Tr[∆L∆†L]Tr[∆R∆†R]+ρ4

(
Tr[∆L∆L]Tr[∆†R∆†R]+Tr[∆†L∆†L]Tr[∆R∆R]

)
(4.7)

To obtain the conditions for BFB, we parametrize V ρ
4 similar to section 4.1:

Tr[∆L∆†L] + Tr[∆R∆†R] ≡ r2

Tr[∆L∆†L] ≡ r2 sin2 γ

Tr[∆R∆†R] ≡ r2 cos2 γ

Tr[∆L∆L]/Tr[∆L∆†L] ≡ η1eiθ1

Tr[∆†L∆†L]/Tr[∆L∆†L] ≡ η1e−iθ1

Tr[∆R∆R]/Tr[∆R∆†R] ≡ η2eiθ2

Tr[∆†R∆†R]/Tr[∆R∆†R] ≡ η2e−iθ2

– 9 –
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where r > 0, γ ∈ [0, π2 ], η1, η2 ∈ [0, 1] and θ1, θ2 ∈ [0, 2π]. Substituting above in eq. (4.7),

V ρ
4 = r4(ρ1

(
cos4 γ + sin4 γ

)
+ ρ2

(
η21 sin4 γ + η22 cos4 γ

)
+ ρ3 cos2 γ sin2 γ + 2ρ4η1η2 cos(θ1 − θ2) cos2 γ sin2 γ) ≡ g(ρ, γ, η1,2, θ1,2) (4.8)

For minimum w.r.t. to θ1, θ2 and taking in account sign of ρ4, this can be rewritten as:

V ρ
4 =

r4

(1 + tan2 γ)2
(
tan4 γ ( ρ1 + ρ2η

2
1

)
+ tan2 γ (ρ3 − 2|ρ4|η1η2) + ρ1 + ρ2η

2
2

)
Requiring the above expression to be positive for all values of tan γ can be translated to

V ρ
4 being copositive for variable tan2 γ. Thus, we have following requirements for V ρ

4 to be

bounded from below:

ρ1 + ρ2η
2
1 > 0 (4.9)

ρ1 + ρ2η
2
2 > 0 (4.10)

G(ρ, η1,2) ≡ ρ3 − 2|ρ4|η1η2 + 2
√

(ρ1 + ρ2η21)(ρ1 + ρ2η22) > 0 (4.11)

in regions η1, η2 ∈ [0, 1].

Eq. (4.9) is equivalent to (4.10) as they are uncoupled in the constraint variable.

Minimum value for the expression occurs at the endpoint as its monotonic in the quantity

η2i , which ranges from [0, 1]. Plugging the end points of the range of η2i ,

ρ1 > 0 (4.12)

ρ1 + ρ2 > 0 (4.13)

We can first minimize G inside the boundary of square formed by η1 and η2. By minimizing

the condition w.r.t. to η’s,

Gη1 ≡ 2η1ρ2

√
(ρ1 + ρ2η22)√
(ρ1 + ρ2η21)

− 2η2|ρ4| = 0

Gη2 ≡ 2η2ρ2

√
(ρ1 + ρ2η21)√
(ρ1 + ρ2η22)

− 2η1|ρ4| = 0

Solving the above two equations, we get

(η1, η2) = (0, 0)

Plugging it back in G,

ρ3 + 2ρ1 > 0 (4.14)

For minimizing G on the boundary, we set η1 = η2 = 1. We obtain the condition

ρ3 − 2|ρ4|+ 2(ρ1 + ρ2) > 0 (4.15)

It can be proved that condition obtained by setting η1 = 0, η2 = 1 or vice-versa, always

lies between the above two conditions and need not be checked for boundedness. Thus,

conditions (4.12), (4.13), (4.14) and (4.15) collectively form the required conditions for

BFB ρ sector.
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4.3 Dreaded coupled case: α1,3 6= 0

This section outlines the procedure to find boundedness in presence of terms that couple

the bidoublet and the triplet Higgs fields. For VEV see-saw relation to work naturally,

we assume βi = 0 [29]. This would imply vL = 0 and a non-zero vR. Also α2 does not

explicitly appears in the expressions for scalar mass spectrum. This gives us the freedom

to set it to 0 for our analysis [30]. Thus, only α1 and α3 are assumed to be non-zero as

they contribute to the scalar masses and have lower bounds on them from experimental

constraints. The quartic part of the potential is given below:

V4 =λ1Tr[Φ†Φ]2+λ2

(
Tr[Φ̃Φ†]2+Tr[Φ̃†Φ]2

)
+λ3Tr[Φ̃Φ†]Tr[Φ̃†Φ]+λ4Tr[Φ†Φ]

(
Tr[Φ̃Φ†]+Tr[Φ̃†Φ]

)
+ρ1

(
Tr[∆L∆†L]2+Tr[∆R∆†R]2

)
+ρ2

(
Tr[∆L∆L]Tr[∆†L∆†L]+Tr[∆R∆R]Tr[∆†R∆†R]

)
+ρ3Tr[∆L∆†L]Tr[∆R∆†R]+ρ4

(
Tr[∆L∆L]Tr[∆†R∆†R]+Tr[∆†L∆†L]Tr[∆R∆R]

)
+α1Tr[Φ†Φ]

(
Tr[∆L∆†L]+Tr[∆R∆†R]

)
+α3

(
Tr[ΦΦ†∆L∆†L]+Tr[Φ†Φ∆R∆†R]

)
(4.16)

The parametrization in this case follows similarly as before. This has 3 different field

directions and therefore can be parametrized on a sphere.

Tr[Φ†Φ] + Tr[∆L∆†L] + Tr[∆R∆†R] ≡ r2

Tr[Φ†Φ] ≡ r2 cos2 θ

Tr[∆L∆†L] ≡ r2 sin2 γ sin2 θ

Tr[∆R∆†R] ≡ r2 cos2 γ sin2 θ

Tr[Φ̃Φ†]/Tr[Φ†Φ] ≡ ξeiω

Tr[Φ̃†Φ]/Tr[Φ†Φ] ≡ ξe−iω

Tr[∆L∆L]/Tr[∆L∆†L] ≡ η1eiθ1

Tr[∆†L∆†L]/Tr[∆L∆†L] ≡ η1e−iθ1

Tr[∆R∆R]/Tr[∆R∆†R] ≡ η2eiθ2

Tr[∆†R∆†R]/Tr[∆R∆†R] ≡ η2e−iθ2

Tr[ΦΦ†∆L∆†L]/Tr[Φ†Φ]Tr[∆L∆†L] ≡ ζ1
Tr[Φ†Φ∆R∆†R]/Tr[Φ†Φ]Tr[∆R∆†R] ≡ ζ2

with r > 0, |ξ| ≤ 1, θ ∈ [0, π2 ], γ ∈ [0, π2 ], η1, η2 ∈ [0, 1], θ1, θ2 ∈ [0, 2π].

Naively, it might be expected that ζ1, ζ2 ∈ [0, 1] [31]. However, as can be seen from

the scatter plot in figure 1, ζi depends on ξi and ηi. In fact, it can be shown that value of

ζi is bounded from above and below given by,

1

2

(
1−

√
1− ξ2

√
1− η2i

)
≤ ζi ≤

1

2

(
1 +

√
1− ξ2

√
1− η2i

)
(4.17)

where i ∈ {1, 2}, |ξ| ≤ 1 and ηi ∈ [0, 1]. As can be seen in figure 1, the dependence of ζi on

ξ and ηi depicted in the scatter plot is captured exactly in eq. (4.17).
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Figure 1. Dependence of gauge orbit variable ζi on ξ and ηi. (Left) Scatter plot of ζ with respect

to ξ and η. (Right) Plot of ζ as a function of ξ and η given in eq. (4.17).

Substituting the above defined gauge orbit variables in eq. (4.16),

V4 = r4 cos4 θ
(
λ1 + 2λ2ξ

2 cos 2ω + λ3ξ
2 + 2λ4 ξ cosω

)
+ r4 sin4 θ

(
ρ1
(
cos4 γ + sin4 γ

)
+ ρ2

(
η21 sin4 γ + η22 cos4 γ

)
+ ρ3 cos2 γ sin2 γ + 2ρ4η1η2 cos(θ1 − θ2) cos2 γ sin2 γ

)
+
(
α1 + α3(ζ1 cos2 γ + ζ2 sin2 γ)

)
r4 cos2 θ sin2 θ

≡ r4
(
cos4 θf(λ, ξ, ω) + sin4 θg(ρ, γ, η1,2, θ1,2) + h(α, γ, ζ1,2) cos2 θ sin2 θ

)
(4.18)

From copositivity criteria, it implies:

f(λ, ξ, ω) > 0

g(ρ, γ, η1,2, θ1,2) > 0

h(α, γ, ζ1,2) + 2
√
f(λ, ξ, ω) g(ρ, γ, η1,2, θ1,2) > 0

These conditions should hold for all values of (ξ, ω, γ, η1,2, θ1,2, ζ1,2). First two conditions

are (4.2) and (4.8), evaluated in previous sections. For 2nd and 3rd condition, minimum

of θ1,2 can again be absorbed in the sign of λ4.

α1 + α3(ζ1 cos2 γ + ζ2 sin2 γ) +
√
f(λ, ξ, ω) g(ρ, γ, η1,2) > 0 (4.19)

where f and g can be written as:

f ≡ λ1 + 2λ2ξ
2 cos 2ω + λ3ξ

2 + 2λ4 ξ cosω

g ≡ 1

(1 + tan2 γ)2
(
tan4 γ ( ρ1 + ρ2η

2
2

)
+ tan2 γ (ρ3 − 2|ρ4|η1η2) + ρ1 + ρ2η

2
1

)
(4.20)

We now turn to symmetries to simplify further and reduce minimizing variables. We first

try to minimize condition g(ρ, γ, η1,2) again but using symmetry arguments as an example.

Note that g is symmetric under the following operation:

cos γ ↔ sin γ, η1 ↔ η2
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Thus, the minimum occurs at cos γ = sin γ and η1 = η2, which yields:

g ≡ ρ3 + 2ρ1 + 2(ρ2 − |ρ4|)η21
4

Plugging in the endpoints for η1, we obtain two conditions:

g =

{
ρ3 + 2ρ1

4
,
ρ3 + 2ρ1 + 2(ρ2 − |ρ4|)

4

}
Previously, we minimized the condition for cos γ = sin γ i.e. tan γ = 1. Now, we will

minimize g for the endpoint, tan γ = 0. Using the symmetry operations used above, it can

be shown that minimizing the condition for other endpoint tan γ =∞ is equivalent to case

for tan γ = 0. For this case, condition takes the form:

g ≡ ρ1 + 2ρ2η
2
1

Again plugging in the endpoints for η1, we obtain two conditions. We obtain a total of 4

conditions for minimizing g, which exactly matches the conditions derived in section 4.2.

g :

{
ρ1, ρ1 + ρ2,

ρ3 + 2ρ1
4

,
ρ3 − 2|ρ4|+ 2(ρ1 + ρ2)

4

}
(4.21)

Note that the 3rd condition is symmetric under the following operation:

ζ1 ↔ ζ2, cos γ ↔ sin γ, η1 ↔ η2

Thus, the function takes its minimum value inside the gauge orbit space when:

ζ1 = ζ2, cos γ = sin γ, η1 = η2

Using the above symmetry arguments, the form of the 3rd condition is:

α1 + α3ζ1 +
√
f(λ, ξ, ω) (ρ3 + 2ρ1 + 2(ρ2 − |ρ4|)η21) > 0 (4.22)

For this case, the condition is monotonic in ζ1 & η21 and are trivially minimized at endpoints

of their range. This implies for α3 < 0, the most constraining condition corresponds to

ζ1 = ζmax
1 and ζ1 = ζmin

i for α3 > 0.

ζmax
i =

1

2

(
1 +

√
1− ξ2

√
1− η2i

)
, ζmin

i =
1

2

(
1−

√
1− ξ2

√
1− η2i

)
The minimum of f has been evaluated in a previous section. This also yields corresponding

value of ξ and η1 that determines the value of ζmax
i and ζmin

i . This yields a set of 10 different

conditions.

Consider an example for above discussion. Let us assume f(λ, ξ, ω) minimizes for

ξ = |λ4|
2λ2+λ3

and η1 = 0, then ζ1 is given by:

=⇒ ζ1 =
1

2

1±

√
1−

(
|λ4|

2λ2 + λ3

)2


then the required inequality to be checked for vacuum stability becomes:

α1 +
α3

2

(
1±

√
1− λ24

(2λ2 + λ3)2

)
+

√(
λ1 −

λ24
2λ2 + λ3

)
(ρ3 + 2ρ1) > 0
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We also need to minimize the 3rd condition for the edge surface of tan γ. For the case

tan γ = 0, 3rd condition takes the form:

α1 + α3ζ1 + 2
√
f(λ, ξ, ω) (ρ1 + ρ2η21) > 0

The above condition can be minimized similarly as in case of tan γ = 1, yielding a total of

another 10 conditions.

Thus, minimizing the 3rd condition yields a set of 20 inequalities to be checked. We

have finally derived all conditions required for the vacuum stability of the LRSM. The

complete set of these necessary and sufficient conditions are collected below:

Analytic conditions for vacuum stability in LRSM

f > 0 :



λ1(
λ1 −

λ24
2λ2+λ3

)
⇐= 2λ2 + λ3 > |λ4|

(λ1 + λ3 + 2(λ2 − |λ4|))(
λ1 + λ3 − 2λ2 −

λ24
4λ2

)
⇐= |4λ2| > |λ4|

g > 0 :

{
ρ1, ρ1 + ρ2,

ρ3 + 2ρ1
4

,
ρ3 − 2|ρ4|+ 2(ρ1 + ρ2)

4

}
(4.23)

α1 + 2
√
λ1ρ1 > 0

α1 + α3 + 2
√
λ1ρ1 > 0

α1 +
α3

2
+ 2
√
λ1(ρ1 + ρ2) > 0

α1 +
√
λ1(ρ3 + 2ρ1) > 0

α1 + α3 +
√
λ1(ρ3 + 2ρ1) > 0

α1 +
α3

2
+
√
λ1(ρ3 − 2|ρ4|+ 2(ρ1 + ρ2)) > 0

α1 +
α3

2

(
1±

√
1− λ24

(2λ2 + λ3)2

)
+ 2

√(
λ1 −

λ24
2λ2 + λ3

)
ρ1 > 0

α1 +
α3

2
+ 2

√(
λ1 −

λ24
2λ2 + λ3

)
(ρ1 + ρ2) > 0

α1 +
α3

2

(
1±

√
1− λ24

(2λ2 + λ3)2

)
+

√(
λ1 −

λ24
2λ2 + λ3

)
(ρ3 + 2ρ1) > 0

α1 +
α3

2
+

√(
λ1 −

λ24
2λ2 + λ3

)
(ρ3 − 2|ρ4|+ 2(ρ1 + ρ2)) > 0

α1 +
α3

2
+ 2

√(
λ1 + λ3 − 2λ2 −

λ24
4λ2

)
Min(g) > 0

α1 +
α3

2
+ 2
√

(λ1 + λ3 + 2(λ2 − |λ4|)) Min(g) > 0

For using these conditions, we first ensure f and g should be strictly positive at all minima.

For some conditions in f , we have the following structure p ⇐= q. This implies condition

p only needs to be checked if and only if condition q is true. We then check rest of the

conditions based on minimum value of f and g.
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5 Symmetry breaking and desirable vacuum

A BFB potential does not necessarily leads to correct symmetry breaking yielding the

correct ground state of the Higgs potential. Recently, some useful conditions (though not

necessary) for a good vacuum in the left-right model were derived for a limited parameter

space in [12]. Gauge-independent criteria to obtain a good vacuum was also proposed.

〈Φ〉 6= 0

det〈∆R〉 = det〈∆L〉 = 0

〈∆R〉 6= 〈∆L〉

The first condition leads to non-zero expectation for Higgs VEV in the Standard Model.

The second condition is required for U(1)em not to be broken. The third condition is

required for broken parity at low energies. Although reference [12] specifies 4 conditions for

a good vacuum but effectively only 3 conditions are required. As their condition 〈∆R〉 6= 0

or 〈∆L〉 6= 0 for good vacuum is contained in 〈∆R〉 6= 〈∆L〉.
In this section, we derive some useful conditions for scalar potential to exhibit correct

spontaneous symmetry breaking (SSB) and specify the gauge-independent criteria for cor-

rect vacuum in more general form. Using the VEV structure of the scalar fields eq. (3.1)

in the general scalar potential eq. (3.2),

V = −
(
κ21 + κ22

)
2

µ21 − 2κ1κ2µ
2
2 cos(θ2)− µ23

(
v2L + v2R

)
+

(
κ21 + κ22

)2
4

λ1 (5.1)

+ 2κ21κ
2
2λ2 cos(2θ2) + κ1κ2

(
κ21 + κ22

)
λ4 cos(θ2) + κ21κ

2
2λ3

+ ρ1
(
v4L + v4R

)
+ ρ3v

2
Lv

2
R

+ α1

(
κ21 + κ22

)
2

(
v2L + v2R

)
+ α3

κ22
2

(
v2L + v2R

)
For boundedness, the quartic part of the potential can be written as:

V4 ≡ r4
(
fSSB(λ, ξ, ω) cos4 θ + gSSB(ρ, γ, θ1,2) sin4 θ + hSSB(α, γ, ζ1,2) cos2 θ sin2 θ

)
(5.2)

where parametrizing variables are defined in accordance with section 4.3. To obtain nec-

essary and sufficient conditions for correct symmetry breaking, the minimum from the

potential VSSB should be deeper than the one obtained from the general potential. Using

eq. (2.9), the required condition can be written as:

− gµ41 − hµ21µ22 + fµ42
4fg − h2

> −gSSBµ
4
1 − hSSBµ21µ22 + fSSBµ

4
2

4fSSB gSSB − h2SSB
(5.3)

The above relation needs to be minimized for the entire gauge orbit parameter space. Due

to the non-linearity of the orbit variables, this is not analytically tractable.

The important observation in this work is that the conditions sufficient for a general

potential to lead to a good vacuum after SSB can be obtained by requiring VEV aligned

scalar potential to dominate the general scalar potential i.e. V ≥ VSSB. This is a stronger

condition than eq. (5.3) and using eq. (4.18), (5.2) can be written as:

(f − fSSB) cos4 θ + (g − gSSB) sin4 θ + (h− hSSB) cos2 θ sin2 θ ≥ 0 (5.4)
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Thus, for VEV structure in eq. (3.1) to be the global minima of the theory, following

conditions are required:

f ≥ fSSB, g ≥ gSSB (5.5)

h− hSSB + 2
√

(f − fSSB) (g − gSSB) ≥ 0 (5.6)

It is also required that VSSB exhibits stable vaccum, which implies:

fSSB > 0, gSSB > 0, hSSB + 2
√
fSSB gSSB > 0 (5.7)

We begin by noticing that in eq. (5.1), fSSB takes the same form as f(λ, ξ, ω) for the general

potential. VEV condition 〈Φ〉 6= 0 translates to r cos θ 6= 0. It is satisfied as long as λ sector

is bounded from below. This implies all the conditions found for λ sector are required for

existence of a good vacuum. It also implies f = fSSB trivially satisfies condition for correct

symmetry breaking.

On the other hand, gSSB has η1,2 = 0.

Tr[〈∆L〉〈∆L〉] = 0 =⇒ η1 = 0

Tr[〈∆R〉〈∆R〉] = 0 =⇒ η2 = 0

Therefore, coefficients of ρ2 and ρ4 vanish leading to following form of g (See eq. (4.20)):

gSSB ≡
1

(1 + tan2 γ)2
(
ρ1 tan4 γ + ρ3 tan2 γ + ρ1

)
The minimum for this expression occurs at tan2 γ = 0 or 1. We require 〈∆L〉 < 〈∆R〉
which can be easily shown equivalent to:

Tr
[
〈∆L〉〈∆†L〉

]
< Tr

[
〈∆R〉〈∆†R〉

]
So according to the chosen parametrization, the preferred minima is tan2 γ = 0. We know

from section 2.2, condition with less positive value dominates the minima. Thus, this

condition should dominate over the other minima i.e tan2 γ = 1 in gSSB. Thus, we require

ρ3 + 2ρ1
4

≥ ρ1 =⇒ ρ3 − 2ρ1 ≥ 0

After requiring the internal structure of the VEV alignment, we want eq. (5.5) to hold i.e.

g ≥ gSSB should hold. The minimum of gSSB occurs for ρ1 > 0. This condition should

dominate other possible minima of the general potential. Using minimum conditions from

eq. (4.21),

ρ1 + ρ2 ≥ ρ1 =⇒ ρ2 ≥ 0

ρ3 + 2ρ1
4

≥ ρ1 =⇒ ρ3 − 2ρ1 ≥ 0

ρ3 − 2|ρ4|+ 2(ρ1 + ρ2)

4
≥ ρ1 =⇒ |ρ4| ≤

ρ3 − 2ρ1
2

+ ρ2

Since f = fSSB, eq. (5.6) implies h ≥ hSSB.

α1 + α3

(
ζ1 cos2 γ + ζ2 sin2 γ

)
≥ α1 + α3

(
ζSSB1 cos2 γ + ζSSB2 sin2 γ

)
Note that since ηi = 0 for VSSB, ζi 6= ζSSBi . The condition above is monotonic in ζ’s and

the endpoints of their range can be substituted depending on the sign of α3.

α3

2

(
1− Sgn(α3)

√
1− ξ2

√
1− η2i

)
≥ α3

2

(
1− Sgn(α3)

√
1− ξ2

)
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As can be seen directly, the above condition holds true for all ξ, η and α3. Similarly, for

vacuum stability condition to hold true, we require:

α1 +
α3

2
ζ + 2

√
f(λ, ξ, ω) ρ1 > 0 (5.8)

where, ζ =
(

1− Sgn(α3)
√

1− ξ2∗
)

and ξ∗ equals the value of ξ that minimizes f(λ, ξ, ω).

The minimization of f has been covered in section 4.1.

For non-zero field values to be the global minimum (refer section 2.2), we also require

eq. (2.6), (2.7) and (2.8) to hold. For non-zero 〈Φ〉 and 〈∆R〉, we require:

2 Min[fSSB]µ23 −Min[hSSB]µ̄21 > 0

2 Min[gSSB]µ̄21 −Min[hSSB]µ23 > 0 (5.9)

where,

µ̄21 = µ21 + 2σµ22, σ = ξ cosω

and

2
√

Min[fSSB] Min[gSSB]− ||Min[hSSB]|| > 0

Here, expression for µ̄21 has been obtained by using parametrization from section 4.1 to rel-

evant mass-squared terms in the scalar potential. Thus, the complete set of conditions suf-

ficient to obtain a correct vacuum after SSB in left-right symmetric model are stated below:

Analytic conditions for symmetry breaking to correct vacuum

fSSB > 0 :



λ1 > 0, ξ = σ = 0 ,(
λ1 −

λ24
2λ2+λ3

)
> 0 ⇐= 0 < ξ = |λ4|

2λ2+λ3
< 1, σ = − λ4

2λ2+λ3
,

(λ1 + λ3 + 2(λ2 − |λ4|)) > 0, ξ = 1, σ = −Sgn(λ4) ,(
λ1 + λ3 − 2λ2 −

λ24
4λ2

)
> 0 ⇐= |4λ2| > |λ4|, ξ = 1, σ = − λ4

4λ2
,

ρ1 > 0, ρ2 > 0, ρ3 > 2ρ1, |ρ4| <
ρ3 − 2ρ1

2
+ ρ2

α1 + 2
√
λ1ρ1 > 0

α1 + α3 + 2
√
λ1ρ1 > 0

α1 +
α3

2

(
1±

√
1− λ24

(2λ2 + λ3)2

)
+ 2

√(
λ1 −

λ24
2λ2 + λ3

)
ρ1 > 0

α1 +
α3

2
+ 2

√(
λ1 + λ3 − 2λ2 −

λ24
4λ2

)
ρ1 > 0

α1 +
α3

2
+ 2
√

(λ1 + λ3 + 2(λ2 − |λ4|)) ρ1 > 0

µ̄2
1 = µ2

1 + 2σµ2
2

2
√

Min[fSSB] ρ1 −
∣∣∣∣∣∣α1 +

α3

2

(
1− Sgn(α3)

√
1− ξ2

)∣∣∣∣∣∣ > 0

2 Min[fSSB]µ2
3 −

[
α1 +

α3

2

(
1− Sgn(α3)

√
1− ξ2

)]
µ̄2
1 > 0

2ρ1µ̄
2
1 −

[
α1 +

α3

2

(
1− Sgn(α3)

√
1− ξ2

)]
µ2
3 > 0
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For using these conditions, we first ensure fSSB should be strictly positive at all minima. For

some conditions in f , we have the following structure p ⇐= q, ξ = value1, σ = value2.

This implies condition p only needs to be checked if and only if condition q is true. It also

yields a corresponding values of ξ and σ to be used in the last three conditions. We then

check rest of the conditions based on minimum value of fSSB.

We would like to assert the usefulness of these conditions. Using the above conditions

not only ensures the boundedness of the potential but also gives the minimum with desired

VEV alignment. The results derived here are general in nature and reduce to those obtained

in [12] for their choice of parameters.4 In [12], their derived conditions for good vacuum

are asserted to be only sufficient but not necessary and same holds for our case. Even with

good vacuum conditions, they do not get a correct vacuum in their numerical study at all

times. This possibly happens due to the parameter range of non-zero αi’s in their numerical

analysis that leads to the violation of condition on mass-squares µ2 derived in this work.

Given the treatment here, we can also generalize the gauge-independent conditions for

correct vacuum in the left-right symmetric model as:

Tr[〈Φ〉〈Φ〉] 6= 0

Tr[〈∆L〉〈∆L〉] = Tr[〈∆R〉〈∆R〉] = 0 (5.10)

Tr[〈∆L〉〈∆†L〉] < Tr[〈∆R〉〈∆†R〉]

6 Numerical comparison

We use the following benchmark values to study the numerical minimization of the potential

and its agreement with the conditions obtained in this work.

µ21, µ
2
2, µ

2
3 ≡ (1, 0.25, 1) TeV2

λ1, λ2, λ3, λ4 ≡ (1, 0.5, 3,−0.5)

ρ1, ρ2, ρ3, ρ4 ≡ (1, 0.5, 3,−0.5)

α1, α2, α3 ≡ (0.5, 0, 0.5)

β1, β2, β3 ≡ (0, 0, 0)

In figure 2, the potential is minimized for a pair of quartics with other couplings set

according to the benchmark values. The minimization was performed with the NMinimize

function with NelderMead, DifferentialEvolution and SimulatedAnnealing method in

Mathematica. The pixel size of the grid is 0.1 × 0.1. With each parameter running from

(−5, 5) yields a 50 × 50 matrix. The yellow region has unbounded minima that violates

the BFB conditions. The green region is bounded and has a global minimum but with an

incorrect VEV alignment. In blue region, the potential undergoes correct sponataneous

symmetry breaking to the desired VEV structure of the vacuum. This vacuum is stable

and is phenomenologically viable.

4Setting λ2,4, ρ4, αi’s and βi’s to 0.
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Figure 2. Numerical minimization of the scalar potential of LRSM. The figures are plotted for

different pair of quartic couplings with values ranging from (−5, 5) and with grid pixel size of

0.1 × 0.1, with other quartics being set according to benchmark in section 6. The yellow region

indicates an unbounded potential. The green region indicates the existence of a global minimum but

not with the required VEV structure. The blue region indicates the existence of a global minimum

with the required VEV structure.

We would like to assert that the results shown in figure 2 are in complete agreement

with the vacuum stability and correct vacuum conditions obtained in this work. It should

also be noted that although conditions to exhibit SSB to correct vaccum were derived using

a stronger condition, they match results from numerical minimization remarkably.

7 Renormalization group equations analysis

In a general case of randomly selected initial values, the evolution of quartic couplings

according to the renormalization group equations (RGEs) for the model can lead to their

running outside the allowed parameter space. Constraining the running of the quartic

couplings to satisfy the vacuum stability conditions upto a certain high energy scale ensures

the boundedness of the potential. In this section, we discuss some more constraints on the

quartic couplings before we present an example study to demostrate the usefulness of the

conditions derived earlier.
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7.1 Mass spectrum & unitarity bounds

Along with BFB conditions and correct symmetry breaking, it’s necessary to check that the

potential exhibits a physical scalar mass spectrum. The scalar mass spectrum of the LRSM

has 14 physical particles. It includes 8 electrically neutral,5 four singly-charged and four

doubly-charged Higgs bosons. The scalar mass spectrum for LRSM is given below [32, 33]:

M2
H0

0
= 2

(
λ1 −

α2
1

4ρ1

)
κ2+,

M2
H±

2
'M2

A0
1
'M2

H0
1

=
1

2
α3v

2
R,

M2
H0

2
= 2ρ1v

2
R,

M2
H±±

1
'M2

H±
1
'M2

A0
2

= M2
H0

3
=

1

2
(ρ3 − 2ρ1)v

2
R,

M2
H±±

2
= 2ρ2v

2
R +

1

2
α3κ

2
+

where κ2+ = κ21 + κ22. The lightest neutral scalar MH0
0

that only depends on the VEV

of bidoublet Φ is identified as the SM Higgs boson. We have taken the best fit value

of MH0
0

= mh = 125 GeV [34]. H0
1 , A0

1 and H±2 are the CP-even and CP-odd neutral

components and the two singly-charged scalars respectively from the bidoublet Φ. H0
2 ,

H0
3 , A0

2, H
±
1 , H±±1 and H±±2 are the two CP-even and one CP-odd neutral components, 2

singly-charged and 4 doubly-charged scalars respectively from the triplets ∆L and ∆R.

There are strong experimental bounds on most scalar masses in LRSM. This places

lower bounds on the allowed values of corresponding quartic couplings in the potential

as a function of the breaking scale. The heavy neutral scalars H0
1 , A0

1 can contribute to

Bd − Bd, Bs − Bd and K0 −K0 mixings due to presence of tree-level FCNC couplings to

the SM quarks in LRSM. Thus, there are stringent limits on their masses from the FCNC

constraints [35–37].

MH0
1 ,A

0
1
> 15 TeV

The cleanest detection channel for doubly-charged Higgs bosons is its decay to same-sign

charged dilepton pairs. The current bounds on mass limits are from LHC 13 TeV run

data [38, 39], which largely depends on charged lepton flavors involved in the decay process:

MH±±
1

& (770–870) GeV MH±±
2

& (660–760) GeV

Parameter space for quartic couplings can be further squeezed by requiring tree-level uni-

tarity to be preserved in a variety of scattering process. We consider the unitarity bounds

only from 2-body scalar scattering processes [33], given below:

λ1 < 4π/3, (λ1 + 4λ2 + 2λ3) < 4π,

(λ1 − 4λ2 + 2λ3) < 4π,

λ4 < 4π/3,

α1 < 8π, α2 < 4π, (α1 + α3) < 8π,

ρ1 < 4π/3, (ρ1 + ρ2) < 2π, ρ2 < 2
√

2π,

ρ3 < 8π, ρ4 < 2
√

2π
5It contains two massless neutral degrees of freedom absorbed as the longitudinal polarization modes of

physical gauge bosons.

– 20 –



J
H
E
P
1
2
(
2
0
1
9
)
1
3
7

7.2 Example study

We use the following benchmark values for RGE running of the quartic couplings.

µ21, µ
2
2, µ

2
3 ≡ ((8.48)2, 0, (11.99)2) TeV2

λ1, λ2, λ3, λ4 ≡ (0.0625, 0, 0, 0)

ρ1, ρ2, ρ3, ρ4 ≡ (0.01, 0.0005, 0.0226, 0) (7.1)

α1, α2, α3 ≡ (0.01, 0, 0.64)

β1, β2, β3 ≡ (0, 0, 0)

The above benchmark is in complete agreement with the current experimental bounds on

the scalar masses at the breaking scale.

κ+ =
√
κ21 + κ22 = 246 GeV, vL = 0 TeV, vR = 26.8 TeV

Most importantly the ground state of the potential exhibits correct VEV structure of the

theory at the right-handed breaking scale vR. This is evident as the benchmark eq. (7.1)

satifies conditions derived for SSB to correct vaccum.

We now have a complete set of initial values and the system of RGE’s at one-loop level

for the LRSM [33, 40–42]. We run the system from the breaking scale vR to the GUT

scale while checking vacuum stability, perturbativity and unitarity bounds [41, 43]. The

results are shown in figure 3. It can be seen that quartic couplings hit the Landau pole at a

scale lower than GUT scale 1012 GeV. Although the quartic couplings respects the vacuum

stability conditions and unitarity bounds nearly upto the scale just before violating the

perturbativity. We observe that most quartic couplings except ρ4 acquire non-zero values

even if set to zero at the breaking scale. ρ2 is the only quartic that is observed to run to

negative values although initialized at a positive value. Also notice that mass-squares µ2

don’t run appreciably once set at the breaking scale.

It should be mentioned that value of rg = gR
gL

is also crucial to the system of RGEs.

Lower values of rg for the benchmark in consideration leads to violation of vacuum stability

conditions and hence an unbounded potential at high-energies.

8 Conclusion

We develop a method to extract necessary and sufficient conditions to ensure vacuum

stability in LRSM by using the application of gauge orbit parameters in two-Higgs fields

case. We also show application of copositivity criteria and its usefulness in simplifying the

analysis for vacuum stability.

As it was asserted earlier, only requiring vacuum stability does not ensure SSB to a

vacuum which reproduces SM at low-energies. For this purpose, we extend the vacuum

stability analysis to help yield conditions sufficient to achieve SSB to the correct vacuum

which should be charge conserving and also parity violating at low-energies. These analytic

techniques can also be extended to analyze metastability of the vacuum and one-loop

effective potentials.
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Figure 3. RG running of the quartic couplings for the benchmark in section 7.2 from vR = 26.8 TeV,

with rg = gR
gL

= 1.2.

We also compared our analytic results from those generated by numerical minimization

of the potential. It is observed that the derived conditions are in excellent agreement with

the numerical results. We also show that vacuum stability constraints along with other

theoretical constraints (pertubativity, unitarity, scalar mass spectrum) coupled with RGE

analysis can help us narrow down the allowed parameter space for the quartic couplings in

the potential. A comprehensive study is required to explore the existence of sets of quartic

and gauge couplings that obey these combined bounds. This is beyond the scope of this

paper and can be another viable future direction for investigation.
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