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Abstract We calculate analytical vacuum stability or
bounded from below conditions for general scalar potentials
of a few fields. After a brief review of copositivity, we show
how to find positivity conditions for more complicated poten-
tials. We discuss the vacuum stability conditions of the gen-
eral potential of two real scalars, without and with the Higgs
boson included in the potential. As further examples, we give
explicit vacuum stability conditions for the two Higgs dou-
blet model with no explicit CP breaking, and for theZ3 scalar
dark matter with an inert doublet and a complex singlet. We
give a short overview of positivity conditions for tensors of
quartic couplings via tensor eigenvalues.

1 Introduction

A scalar potential has to be bounded from below to make
physical sense. In the Standard Model (SM), it simply means
that the self-coupling of the Higgs boson has to be positive. In
an extended model with more scalar fields, the potential has to
be bounded from below – the vacuum has to be stable – in the
limit of large field values in all possible directions of the field
space. In this limit, any terms with dimensionful couplings –
mass or cubic terms – can be neglected in comparison with
the quartic part of the scalar potential.1

In quantum field theories, scalar couplings change with
energy due to the renormalisation group running. The vac-
uum stability conditions may be satisfied at some scales and
not satisfied at others. Checking the vacuum stability of the
tree level potential with running couplings can help to deter-
mine the scale of validity of a given model. On the other hand,
in models with classical scale invariance [1], where tree-level
mass terms are absent, violation of vacuum stability condi-
tions at a finite field range can be used to produce minima and
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induce symmetry breaking via dimensional transmutation as
in the Coleman–Weinberg mechanism [2].

The remarkable Tarski–Seidenberg theorem implies that
the question of whether the vacuum is stable or not for given
values of the scalar couplings is in principle always decid-
able. Nevertheless, the general problem of finding whether a
given polynomial is non-negative is an NP-hard problem if
the degree of the polynomial is at least four [3], which is the
case for renormalisable scalar potentials in four dimensions.

The most general quartic potential of real scalars is, of
course,

V (φ) = λi jklφiφ jφkφl , (1)

where the coupling tensor λi jkl can be always made com-
pletely symmetric under any exchange of the indices. Alas,
relatively simple complete conditions of the positivity of the
potential (1) can be given only in the case of two fields
(Sect. 3), or of three fields, if the potential is biquadratic
in one of them (Sect. 4).

Since V (φ) is a homogenous quartic polynomial, scaling
the fields by a positive real constant c givesV (c φ) = c4V (φ)

and does not affect vacuum stability.2 Therefore, we can write
the quartic potential as

V (φ) = V (φ̂) r4, (2)

1 The requirement of strong stability means demanding that the quartic
part of the potential V4 > 0 as the fields ϕi → ∞, whereas V4 � 0 gives
stability in the marginal sense and there can be flat directions (then the
quadratic or mass squared part of the potential has to be positive and
there cannot be any cubic terms). For simplicity, we give conditions for
strong stability, which in practice means making inequalities strict.
2 We can even scale each field φi separately by a different positive

coefficient. In particular, we can scale it by φi → φi/λ
1
4
i , where λi is

its self-coupling, and make the coefficient of φ4
i equal to unity for the

purpose of calculating positivity conditions (this only holds at tree level
or at a fixed energy scale).
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where φ̂2 = 1 and r � 0. We see that if V (φ̂) is negative
for some φ̂, then the potential tends to negative infinity as
r → ∞ and the vacuum is not stable.

Thus, to determine whether a potential is bounded from
below in the limit of large field values, we can minimise its
quartic part on a unit hypersphere, enforced by a Lagrangian
multiplier λ:

V (φ, λ) = V (φ) + λ

2

(
1 − φ2

)
, (3)

which yields the stationary point equations

∂V (φ)

∂φi
= λφi , φ2 = 1. (4)

Notice that λ = 4Vmin since if we write the constraint on φ

as g(φ, c) = c2 − φ2, then on one hand dVmin/dc = λc,
while on the other hand dVmin/dc = 4c3Vmin with c = 1 in
the end.

Global or gauge symmetries of the potential may help to
simplify the problem. An important special case is given by
quartic potentials that are biquadratic in fields and have the
form

V = λi jφ
2
i φ

2
j . (5)

The couplings λi j can be written as a matrix on the basis of
φ2
i . Since the squares of real fields are non-negative, the nat-

ural domain of such potentials is not Rn but the non-negative
orthant Rn+. Positivity on R

n+ or copositivity (short for ‘con-
ditional positivity’) was introduced in [4].3 Copositivity has
found wide use in the field of convex optimisation, and was
first used to derive vacuum stability conditions in [6]. The set
of copositive matrices is larger than and includes the famil-
iar set of positive semidefinite matrices.4 While the positive
definite part of the parameter space can be easily found via
Sylvester’s criterion [8], the criteria for copositivity are more
involved, but definite analytic procedures exist to compute
them.

Even if the fields are gauge multiplets, any potential can be
written in terms of field magnitudes and orbit space variables
[9–13]. In many cases the potential is a monotonous function
of orbit space parameters and its minimum occurs on the
boundary of the orbit space. The symmetries of the potential
may restrict the variables to a more complicated space such as
the ‘future light cone’ orbit space of the two Higgs doublet
model (2HDM) [14–17] or the similar orbit spaces of the
3HDM [18] and NHDM [19]. The importance of taking the
orbit space into account properly can be seen, for example, in
the case of the type II seesaw: the vacuum stability conditions

3 See [5] for a good review of copositive matrices.
4 For a recent review on positive semidefinite matrices, see [7].

calculated in [20] were somewhat too strong, because the
orbit space parameters do not vary independently [21].

In general, the conditions for a potential to be bounded
below can be expressed in many ways. It may be possible to
produce conditions for vacuum stability that are analytical
but of considerable length. For more complicated potentials
with several fields, one has to resort to numerics, for which
the methods we present can still be useful for reducing the
parameter space to scan over. The purpose of the paper is to
introduce into the ‘toolbox’ of calculating vacuum stability
conditions some methods that are specific, but useable in
many practical cases, and others that are more complicated
but also more general. While recent mathematical literature
is concerned with approximate methods of finding positivity
for polynomials of many variables, particle physics models
usually deal with a few scalar fields and analytical solutions
may afford more insight.

On numerous occasions, the new addition to the scalar
sector consists of just a couple of real scalar singlets, often in
the guise of a complex singlet. In this case the vacuum stabil-
ity reduces to the problem of positivity of a general quartic
polynomial. For comparison, we derive the vacuum stabil-
ity conditions in another form as well, using the Sylvester
criteria for the matrix of scalar couplings. And, of course,
no low energy scalar potential is complete without the Stan-
dard Model Higgs doublet, which we learn to include as well.
Similar conditions can be derived e.g. for the 2HDM, where
the potential can be considered to be a quartic polynomial in
magnitudes of fields, or for more complicated models, such
as the Z3 scalar dark matter [22,23] with an inert doublet
and a complex singlet. To our knowledge, the results for the
potentials of the two singlets (and the Higgs) and for the Z3

scalar dark matter are new. As for the 2HDM with real cou-
plings, our results are in shorter form than similar results in
the literature [24].

In addition, we reconsider the notion of copositivity of
matrices and discuss its relation to orbit space variables. In
more complicated situations, tests of (co)positivity in terms
of eigenvalues of the tensor of scalar couplings can help.
Similarly to a positive matrix, a tensor is positive-definite
if its eigenvalues associated with its real eigenvectors are
positive.

In Sect. 2 we give a brief review of orbit spaces and coposi-
tivity. In Sect. 3 we give the conditions for the general poten-
tial of two real scalars to be positive. It is not too hard to
include the SM Higgs doublet into the potential in Sect. 4. In
Sect. 5 we derive vacuum stability conditions for the 2HDM
with no explixit CP-breaking. Section 6 provides another
illustration in the vacuum stability conditions for Z3 scalar
dark matter. In Sect. 7 we introduce tensor eigenvalues as a
way to determine the vacuum stability conditions for a most
general scalar potential. We conclude in Sect. 8.
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2 Copositivity and orbit spaces

A scalar potential (5) biquadratic in fields is bounded from
below if the matrix of couplings λi j is copositive [6]. Even
if the fields are higher multiplets under a gauge group, any
potential can be written in terms of squares of field magni-
tudes and a few dimensionless orbit space variables.

2.1 Copositivity

The criteria to determine whether a matrix is positive in the
usual sense are well established. A symmetric matrix A is said
to be positive semidefinite if the quadratic form xT Ax � 0
for all vectors x in R

n . A symmetric matrix A is positive def-
inite if the inequality is strict, xT Ax > 0 for any non-zero
vector x in R

n . A matrix A is positive (semi)definite if and
only if (i) the eigenvalues of A are positive (non-negative),
(ii) the principal minors of A are positive (non-negative), or
(iii) the principal invariants of A are positive (non-negative).
The principal minors of A are determinants of the princi-
pal submatrices, which are obtained by deleting k rows and
columns from A in a symmetric way, i.e. both the i1, . . . , ik
rows and the i1, . . . , ik columns are deleted. The largest prin-
cipal submatrix of A is A itself.

On the other hand, copositive matrices are required to be
positive not for all vectors in the Rn , but only on positive
vectors in R

n+. A symmetric matrix A is copositive if the
quadratic form xT Ax � 0 for all vectors x � 0 in the non-
negative orthant Rn+. (The notation x � 0 means that xi � 0
for each i = 0, . . . , n.) A symmetric matrix A is strictly
copositive if the quadratic form xT Ax > 0 for all vectors
x > 0 in the non-negative orthant Rn+.

For matrices of low order the copositivity conditions are
relatively simple. A symmetric matrix A of order 2 is copos-
itive if and only if [25]

a11 � 0, a22 � 0, a12 + √
a11a22 � 0. (6)

A symmetric matrix A of order 3 is copositive if and only if
[26,27]

a11 � 0, a22 � 0, a33 � 0, (7)

ā12 = a12 + √
a11a22 � 0, (8)

ā13 = a13 + √
a11a33 � 0, (9)

ā23 = a23 + √
a22a33 � 0, (10)

a12
√
a33 + a13

√
a22 + a23

√
a11

+ √
a11a22a33 +√2ā12ā13ā23 � 0. (11)

The Cottle–Habetler–Lemke theorem [28] provides a
practical way to find analytical copositivity conditions for
matrices of low order. Let the order n − 1 submatrices of a

real symmetric matrix A of order n be copositive. Then A is
not copositive if and only if

det A < 0 ∧ adj A � 0, (12)

or A is copositive if and only if

det A � 0 ∨ (adj A)i j < 0 for some i, j. (13)

The adjugate of A is the transpose of the cofactor matrix of
A:

(adj A)i j = (−1)i+ j M ji , (14)

where Mi j is the (i, j) minor of A, the determinant of the
submatrix resulting from deleting the i th row and j th column
of A.

Another general way to test copositivity is Kaplan’s test
[29]: A symmetric matrix A is copositive if and only if every
principal submatrix of A has no eigenvector v � 0 with
associated eigenvalue λ � 0.

We see that while the positivity of the matrix can be
checked via its eigenvalues and the direction of its eigen-
vectors is irrelevant in this case, to check for copositivity at
worst all the eigenvalues and eigenvectors of all principal
submatrices of the matrix have to be calculated.

Copositivity with respect to a closed cone K or K -
copositivity means

xT Ax � 0 ∀ x ∈ K . (15)

If the cone K is polyhedral, it can be represented in
the form K = {Gx | x ∈ R

p
+}, where G is a real matrix

whose columns {u1, . . . , un} are positively linearly indepen-
dent vectors in R

n that map the extremal rays of Rn+ (basis
vectors) into the extremal rays of the cone K . In such a case,
the condition (15) takes the form [5]

xT GT AGx � 0 ∀ x ∈ Rp
+. (16)

Therefore to check whether A is copositive on K , we can
check the usual copositivity of GT AG on R

n+.
Kaplan’s test can also be generalised to copositivity on a

closed cone K by requiring that every principal submatrix
of A have no eigenvector v ∈ K with associated eigenvalue
λ � 0.

2.2 Orbit spaces

Because the scalar potential is a homogenous polynomial of
fields, the question whether the potential is bounded from
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below does not depend on the norm of the field for a sin-
gle scalar field (e.g. the Higgs in the SM) and depends only
on ratios of the norms for multiple fields. Orbit spaces for
different gauge groups and potentials were actively stud-
ied in the 1980s, especially in the context of Grand Uni-
fied Theories. We give a short review with references to
some works. The space of magnitudes of fields is the non-
negative orthant R

n+ and hence the problem of positivity
of the potential can be put in terms of copositivity of the
matrix (or tensor) of quartic couplings on the basis of norms
of fields, with a few orbit space parameters to minimise
over.

Orbit spaces in the context of spontaneous symmetry
breaking are described in [30,31]. The method of orbit spaces
to minimise potentials is detailed in [11]. The case of the
adjoint representation of SU (N ), in particular of the 24 of
SU (5), is detailed in [10]. An illustration for a potential
of two scalars in different representations is given in [9]
for the orbit space for the quartic potential of the 5 and
the 24 representation of SU (5). In [12] the case of SO(N )

with adjoint + vector representation is analysed. For several
groups, the orbit spaces for simple potentials are described
in [13].

We present a short outline of the method for a potential
of one scalar multiplet. In our cursory review we will heed
to the presentation of Jai Sam Kim [11]. For a theory with
the non-Abelian gauge group G, the quartic potential for a
scalar φ in an n-dimensional irreducible representation R of
G can be written as

V (φ) = λφ(φ∗
i φi )

2 + λ′
φ fi jklφ

∗
i φ jφ

∗
kφl

+ λ′′
φgi jklφ

∗
i φ jφ

∗
kφl + · · · , (17)

where f and g specify different gauge invariant contractions
of indices. The potential V (φ) is invariant under a group
transformation

φ j = T (θ) j iφi , (18)

where T (θ) is an n-dimensional matrix representing a group
element. In general

T (θ) = e−iθL XL , (19)

where XL are the generators of the groupG and θL are param-
eters that specify the group element.

Because in general the multiplet φ has many components,
it is hard to solve the minimisation equations (4) for them.
Moreover, there is a degeneracy of the components of φ that
give the same minimum of V . A gauge transformation rotates
the components of φ while leaving the value of the potential
unchanged.

More formally, the orbit of a particular φ with constant
components (such as a vacuum expectation value) is the set
of states φθ = T (θ)φ with T (θ) an element of G. It can be
shown that all the states φθ respect the same group, the little
group of the orbit, as φ does. If the group is unitary, then all
the states φθ have the same norm φ†φ. The set of orbits that
respect the same little group is called the stratum of the little
group. Therefore we have to look for the orbit – and its little
group – that minimises the potential.

Orbits of φ are specified by invariant polynomials P(φ)

[32–34]. There is a basis set of invariant polynomials Ia(φ)

such that every invariant polynomial P(φ) can be expressed
as a polynomial in the polynomial basis: P(φ) = P̄[Ia(φ)].
Each representation R has a different number � of basic
invariants. An orbit can be pictured as a point in the �-
dimensional space of Ia .

The magnitude of φ is irrelevant to minimising the poten-
tial to find the vacuum stability conditions. The strata can be
specified by dimensionless ratios of invariants, e.g.

α1 = fi jklφ∗
i φ jφ

∗
kφl

(φ∗
i φi )2 . (20)

These dimensionless ratios are called orbit parameters and
can be thought of as a set of angles. The potential (17) can
then be written as

V (φ) =
[
λφ + λ′

φα1(φ̂) + λ′′
φα2(φ̂) + · · ·

]
|φ|4, (21)

where

|φ|2 = φ∗
i φi , φ̂i = φi

|φ| . (22)

The potential V (φ) is bounded from below if

λφ + λ′
φα1(φ̂) + λ′′

φα2(φ̂) + · · · > 0 for any αi (φ̂). (23)

Therefore, we have to minimise the potential with respect
to the orbit space parameters. It is obvious that for any φ̂,
the range of αi is bounded from below and above: αimin �
αi � αimax. We have to calculate the orbit space – the
physical region in the orbit space parameters αi . Because
λφ + λ′

φα1 + λ′′
φα2 = C describes a line in the orbit space,

the minimum of the potential is on the boundary of the orbit
space, in particular it can be on a cusp of the boundary
curve.

Similar considerations apply for more than two orbit space
parameters and for several scalars in different representa-
tions. For many more details, we refer the interested reader
to the works cited.
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3 Vacuum stability of the scalar potential of two real
scalars

3.1 Vacuum stability conditions from positivity of a quartic
polynomial

The most general scalar potential of two real scalar fields φ1

and φ2 is5

V (φ1, φ2) = λi jφ
i
1φ

j
2 = λ40φ

4
1 + λ31φ

3
1φ2 + λ22φ

2
1φ2

2

+ λ13φ1φ
3
2 + λ04φ

4
2 . (24)

Here we use the same notation λi j in a different way than
in Eq. (5) and copositivity, but the meaning should be clear
from the context.

Set either φ1 or φ2 to zero, and it follows that the self-
couplings λ40 and λ04 have to be positive in order for V to
be positive.6 When both fields are non-zero, we can divide
the potential V by φ4

2 and choose the ratio x = φ1/φ2 as the
new variable (equivalently, set φ2 = 1 to dehomogenise V ),
reducing the question of vacuum stability of the potential to
that of the positivity of a general quartic polynomial of one
variable,

P = a4x
4 + a3x

3 + a2x
2 + a1x + a0, (25)

which obviously is positive if it has no real roots and a4 > 0
and a0 > 0.

The nature of the roots of P can be determined by consid-
ering its discriminant

D = 256a3
0a

3
4 − 4a3

1a
3
3 − 27a2

0a
4
3 + 16a0a

4
2a4

− 6a0a
2
1a

2
3a4 − 27a4

1a
2
4 − 192a2

0a1a3a
2
4

− 4a3
2

(
a0a

2
3 + a2

1a4

)
+ 18a2(a1a3 + 8a0a4)

×
(
a0a

2
3 + a2

1a4

)
+ a2

2

(
a2

1a
2
3 − 80a0a1a3a4 − 128a2

0a
2
4

)
,

(26)

and two additional polynomials of its coefficients,

Q = 8a2a4 − 3a2
3 , (27)

R = 64a0a
3
4 + 16a2a

2
3a4 − 16a2

4

(
a2

2 + a1a3

)
− 3a4

3 . (28)

The condition for P to have only complex roots is [35,36]

D > 0 ∧ (Q > 0 ∨ R > 0). (29)

5 Of course, the most general potential of the real and imaginary com-
ponents of a complex singlet S = φ1 + iφ2 can be written in the same
form. If λ31 = λ13 = 0, the potential has a CP symmetry. Therefore
λ31 and λ13 could be naturally small.
6 Note that we can scale the fields byφ1 → φ1/λ

1/4
40 andφ2 → φ2/λ

1/4
04 ,

so in effect there are three independent parameters to consider.

In the marginal case D = 0 (which we can usually ignore),
the conditions

Q > 0, R = 0, S = a3
3 + 8a1a

2
4 − 4a4a3a2 = 0 (30)

must hold.
For V (φ1, φ2)/φ

4
2 , the discriminant D and the polynomi-

als Q and R are given by

D = 256λ3
40λ

3
04 − 4λ3

31λ
3
13 − 27λ4

31λ
2
04

+ 16λ40λ
4
22λ04 − 6λ40λ

2
31λ04λ

2
13 − 27λ2

40λ
4
13

− 192λ2
40λ31λ

2
04λ13 − 4λ3

22

(
λ2

31λ04 + λ40λ
2
13

)

+ 18λ22(8λ40λ04 + λ31λ13)
(
λ2

31λ04 + λ40λ
2
13

)

+ λ2
22

(
λ2

31λ
2
13 − 80λ40λ31λ04λ13 − 128λ2

40λ
2
04

)
,

(31)

Q = 8λ40λ22 − 3λ2
31, (32)

R = 64λ3
40λ04 + 16λ40λ22λ

2
31

− 16λ2
40

(
λ2

22 + λ31λ13

)
− 3λ4

31, (33)

and the vacuum stability conditions for V (φ1, φ2) are given
by

λ40 > 0, λ04 > 0, D > 0 ∧ (Q > 0 ∨ R > 0). (34)

For the record, the polynomial S = λ3
13 + 4λ40(2λ40λ31 −

λ22λ13).
Of course, we could as well divide by φ4

1 and choose φ2/φ1

as the variable.7 The discriminant D is invariant under the
exchange, but Q and R are not. The allowed parameter space,
of course, stays the same. If either λ31 or λ13 is zero due
to some symmetry, this freedom permits us to simplify the
expressions for Q and R. For example, if λ31 = 0, the condi-
tions are simpler if we choose φ1/φ2 as the variable, since the
remaining λ13 term is only linear in φ1. In this case the con-
dition Q > 0 ∨ R > 0 takes the form λ22 + 2

√
λ40λ04 > 0.

As a cross-check, we can set both λ31 and λ13 to zero.
Then the vacuum stability conditions become

λ40 > 0, λ04 > 0,

D = λ40λ04

(
λ2

22 − 4λ40λ04

)2
> 0,

Q = λ2
40

(
4λ40λ04 − λ2

22

)
> 0 ∨ R = λ40λ22 > 0, (35)

which can be simplified to

λ40 > 0, λ04 > 0, λ22 + 2
√

λ40λ04 > 0, (36)

7 In fact, it is possible to not only exchange the fields but to rotate them
by an arbitrary angle α.
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the usual copositivity conditions for V with φ2
1 and φ2

2 as the
non-negative variables.

An illustration of the vacuum stability conditions for some
values of parameters is given in Fig. 1. The parts of the param-
eter space that are allowed are shown in dark green. The light
green area is allowed in addition if the scalars can have only
non-negative values (see Sect. 3.2). If both λ31 = λ13 = 0,
the vacuum stability conditions reduce to the usual coposi-
tivity (dashed line in the right panel).

3.2 Bounded from below conditions for a quartic
polynomial on R+

The domain of the general quartic polynomial (25) can be
restricted to non-negative real numbers R+. In this case, the
allowed range of parameters is somewhat larger. The posi-
tivity conditions for the polynomial (25) for x � 0 are given
by [37]8

(
D � 0 ∧ a3

√
a0 + a1

√
a4 > 0

)

∨ (−2
√
a0a4 < a2 < 6

√
a0a4 ∧ D � 0 ∧ 	1 � 0

)

∨ (6√
a0a4 < a2 ∧ [(a1 > 0 ∧ a3 > 0)

∨ (D � 0 ∧ 	2 � 0)]), (37)

where

	1 = (
√
a0a3 − a1

√
a4)

2 − 32 (a0a4)
3
2

− 16

(
a0a2a4 + a

5
4
0 a3a

3
4
4 + a

3
4
0 a1a

5
4
4

)
, (38)

	2 = (
√
a0a3 − a1

√
a4)

2 − 4
√
a0a4(a2 + 2

√
a0a4)√

a2 − 2
√
a0a4

×
(√

a0a3 + a1
√
a4 + 4

√
a0a4

√
a2 − 2

√
a0a4

)
.

(39)

The main difference with the case of two real scalars is that
a range of positive and opposite-sign λ31 and λ13 is allowed,
as seen in the left hand panel of Fig. 1. Also note that it
is trivial to restrict the domain to the non-positive numbers
instead by taking x → −x , equivalent to changing a1 →
−a1 and a3 → −a3 in the above conditions.

If the non-negative variables are magnitudes of scalar
fields, then the coefficients ai may depend on additional orbit
space parameters, notably phases. These may allow, in effect,
to always choose the λ31 and/or λ13 terms to be negative. For
that reason, as we will see below for the 2HDM, the condi-
tions (37) for a positive variable can often be eschewed in
favour of the simpler conditions (29) for a real variable.

8 We have restored a ≡ a0 and e ≡ a4 in the conditions given in [37]
and slightly reorganised them. They were first used for finding vacuum
stability conditions in [38].

−1 −0.5 0 0.5 1
λ31

−1

−0.5

0

0.5

1

λ
13

0 0.5 1
λ40

−1

−0.5

0

0.5

1

λ
22

Fig. 1 Left panel An example of parameter space allowed by vacuum
stability constraints (34) for the potential (24) two real scalars (dark
green). If the scalars take only non-negative values, the light green area
is allowed in addition (37). The values of the remaining parameters are
λ40 = 0.125, λ04 = 0.25 and λ22 = 0.25. Right panel The allowed
parameter space (dark green) in the λ22 vs. λ40 plane with λ04 = 0.25,
λ13 = −0.75 and λ31 = 0. The dashed line in the right panel shows
the vacuum stability bound (36) from copositivity for λ31 = λ13 = 0

3.3 Vacuum stability conditions from positivity with an
affine space

We will derive another, different form of vacuum stabil-
ity conditions for the potential (24). The matrix of quar-
tic couplings of the potential (24) in the monomial basis
(φ2

1 , φ1φ2, φ
2
2) is

	 =
⎛
⎝

λ40
1
2λ31

1
2 (1 − c)λ22

1
2λ31 cλ22

1
2λ13

1
2 (1 − c)λ22

1
2λ13 λ04

⎞
⎠ , (40)

where c is an arbitrary constant due to the ambiguity
(φ1φ2)

2 = φ2
1φ2

2 . The matrices 	(c) form an affine space.
If for some value of c the matrix 	 is positive-definite, then
the potential (24) is bounded from below. Note that since
φ1φ2 ∈ R, one has to demand the usual positivity, not copos-
itivity.

The Sylvester criterion for the positivity of 	 is given by

λ40 > 0, λ04 > 0, cλ22 > 0, (41)

4λ40λ04 + (1 − c)2λ2
22 > 0, (42)

4cλ22λ40 − λ2
31 > 0, (43)

4cλ22λ04 − λ2
13 > 0, (44)

cλ22(4λ40λ04 − λ31λ13) − λ40λ
2
13 − λ04λ

2
31

+ λ22λ31λ13 − c(1 − c)2λ3
22 > 0. (45)

First of all, the last inequality of (41) implies that c is real
and has the same sign as λ22. The inequality (42) is trivially
satisfied. To satisfy the two inequalities (43) and (44), one
must have |c| � |c0|, where

c0 ≡ 1

4λ22
max

(
λ2

13

λ40
,
λ2

31

λ04

)
. (46)
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The extrema of the left hand side (LHS) of the inequality
(45) with respect to c are

c± = 1

3

⎡
⎣2 ±

√
λ2

22(λ
2
22 + 12λ40λ04 − 3λ31λ13)

λ2
22

⎤
⎦ . (47)

Which of c± gives the maximum of the LHS of (45)? The
second derivative of the LHS of (45) with respect to c is
(1 − 3

2c)λ
3
22. Inserting here the solutions c±, we see that

for λ22 > 0, the maximum is given by c+ and likewise for
λ22 < 0 the maximum is c−. Of course, if for λ22 > 0, for
example, c+ < c0, one must take c = c0.

Therefore, the optimal value for c is

c =

⎧
⎪⎨
⎪⎩

max(c0, c+) if λ22 > 0,

min(c0, c−) if λ22 < 0,

c = 0 if λ22 = 0.

(48)

The conditions (41), (43), (44) and (45) together with (48)
define the same region of the parameter space as (34). We
have traded the relative complexity of the latter for the appar-
ent simplicity of the former at the cost of introducing the opti-
mal coefficient c as a piece-wise function of the couplings
that has a discontinuity at λ22 = 0.

4 Vacuum stability for two real scalars & the Higgs
boson

The most general scalar potential of two real scalar fields φ1

and φ2 and the Higgs doublet H is

V (φ1, φ2, |H |2) = λH |H |4 + λH20|H |2φ2
1

+ λH11|H |2φ1φ2 + λH02|H |2φ2
2

+ λ40φ
4
1 + λ31φ

3
1φ2 + λ22φ

2
1φ2

2

+ λ13φ1φ
3
2 + λ04φ

4
2

≡ λH |H |4 + M2(φ1, φ2)|H |2
+ V (φ1, φ2), (49)

where M2(φ1, φ2) ≡ λH20φ
2
1 + λH11φ1φ2 + λH02φ

2
2 and

V (φ1, φ2) ≡ V (φ1, φ2, 0).
The potential (49) is a quadratic polynomial in |H |2. Set-

ting φ1 = φ2 = 0, we obtain λH > 0. Setting |H |2 =
0 we recover the conditions (34) for V (φ1, φ2) > 0. If
all three fields are non-zero, we can eliminate the Higgs:
V (φ1, φ2, |H |2) > 0 if either M2(φ1, φ2) > 0, or else the
discriminant of V (φ1, φ2, |H |2) with respect to |H |2 is neg-
ative, that is M4(φ1, φ2) − 4λHV (φ1, φ2) < 0.

An equivalent way to eliminate |H |2 is to minimise the
potential with respect to it:

0 = ∂V

∂|H |2 = 2λH |H |2 + M2(φ1, φ2), (50)

giving

|H |2min = − 1

2λH
M2(φ1, φ2). (51)

Again, either M2(φ1, φ2) > 0 and the solution (51) for
|H |2min is unphysical, or else V|H |2=|H |2min

= V (φ1, φ2) −
1

4λH
M4(φ1, φ2) must be positive. Inserting the solution (51)

into the potential in effect means substituting λ40 → λ40 −
λ2
H20/λH and so on in V (φ1, φ2).

Therefore, for the potential (49) to be bounded from below,
we altogether require

λH > 0, V (φ1, φ2) > 0,

M2(φ1, φ2) > 0 ∨ V|H |2=|H |2min
(φ1, φ2)

= V (φ1, φ2) − 1

4λH
M4(φ1, φ2) > 0, (52)

where the last or condition is tantamount to the problem
of positivity of the quartic polynomial V|H |2=|H |2min

with the

quadratic constraint M2 < 0. In general M2 can be positive
for some values of φ1 and φ2 and negative for others. In this
case the region defined by M2 < 0 is a pointed double cone
in the φ1φ2-plane.

In some regions of the parameter space it is easy to find
the conditions. If the coefficient matrix of M2, given by

M2 =
(

λH20
1
2λH11

1
2λH11 λH02

)
, (53)

is positive-definite, that is

λH20 > 0, λH02 > 0, 4λH20λH02 > λ2
H11, (54)

then M2 > 0 for any values of the fields. If, on the other
hand,

λH20 � 0, λH02 � 0, 4λH20λH02 � λ2
H11, (55)

then we have M2 � 0 for any values of the fields, and
V|H |2=|H |2min

> 0 must hold for all values of the fields.
The intermediate situation, where for some values of the

fields M2 < 0 and for others M2 > 0, occurs if the eigen-
values of M2 have opposite sign, that is, the determinant of
M2 is negative:

4λH20λH02 < λ2
H11. (56)

123
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Then we can always make a transformation of the singlet
fields to bring M2 into the anti-diagonal form

M ′2 = λ′
H11φ1φ2. (57)

It is evident that such an M ′2 is negative in two opposite quad-
rants in the φ1φ2-plane. If we dehomogenise V|H |2=|H |2min

by
taking e.g. φ1 = 1, we have to restrict the other field φ2 to a
half-axis to respect the constraint M ′2 < 0. But we already
have conditions for a quartic polynomial to be positive (or
negative) on a half-axis: the conditions (37) for a quartic in
a positive variable.

To begin to bring M2 into the form (57), first we diago-
nalise M2 by the orthogonal matrix

Uθ =
(

cos θ − sin θ

sin θ cos θ

)
, (58)

where

sin θ = λH11 sgn(λH02 − λH20)
/(

λ2
H11 + [|λH20 − λH02|

+
√

(λH20 − λH02)2 + λ2
H11

]2) 1
2
, (59)

cos θ =
(
|λH20 − λH02| +

√
(λH20 − λH02)2 + λ2

H11

)
/(

λ2
H11 + [|λH20 − λH02|

+
√

(λH20 − λH02)2 + λ2
H11]2

) 1
2
. (60)

For our purposes, sgn 0 = 1. The eigenvalues of M2 are
given by

λ′
H∓ = 1

2

[
λH20 + λH02 ∓

√
λ2
H11 + (λH20 − λH02)2

]
.

(61)

In the intermediate case, we have λ′
H− < 0 and λ′

H+ > 0.
After the diagonalisation

M2 =
(

λ′
H20 0
0 λ′

H02

)
(62)

with |λ′
H20| = −λ′

H−, |λ′
H02| = λ′

H+ if λH20 < λH02, and
|λ′

H20| = λ′
H+, |λ′

H02| = −λ′
H− if λH20 � λH02, so

|λ′
H20,H02| = ∓1

2
sgn(λH02 − λH20)

×
[
λH20 + λH02 ∓ sgn(λH02 − λH20)

×
√

λ2
H11 + (λH20 − λH02)2

]
. (63)

Next we scale M2 by

S = 1√
2

⎛
⎝

1√|λ′
H20| 0

0 1√|λ′
H02|

⎞
⎠ (64)

to make it proportional to the unit matrix. Finally we rotate
M2 by

U π
4

= 1√
2

(
1 −1
1 1

)
(65)

into the anti-diagonal form. Altogether, we transform the
fields in V|H |2=|H |2min

by

(
φ1

φ2

)
→ UT

θ SU π
4

(
φ1

φ2

)
, (66)

yielding the transformed potential V ′
|H |2=|H |2min

.

After the transformation, the coefficient matrix has the
form

M′2 = 1

2
sgn(λH02 − λH20)

(
0 1
1 0

)
, (67)

hence λ′
H11 = sgn(λH02 − λH20).

We can now dehomogenise V ′
|H |2=|H |2min

by taking φ1 =
1, and use the conditions (37) for when M ′2 is negative. If
λ′
H11 < 0, then M ′2 is negative in the 1st and 3rd quadrants of

the φ1φ2-plane and the conditions (37) apply as is; if λ′
H11 >

0, then M ′2 is negative in the 2nd and 4th quadrants, and we
have to take φ2 → −φ2 in V ′

|H |2=|H |2min
before applying the

conditions. In short we have to take φ2 → − sgn(λ′
H11) φ2,

equivalent to taking λ′
31 → − sgn(λ′

H11) λ′
31 and λ′

13 →
− sgn(λ′

H11) λ′
13.

Altogether, the vacuum stability conditions for the poten-
tial (49) are given by

λ40 > 0, λ04 > 0, λH > 0,

D|H |2=0 ∧ (Q|H |2=0 > 0 ∨ R|H |2=0 > 0),

λH20 � 0 ∧ λH02 � 0 ∧ λ2
H11 � 4λH20λH02


⇒ 4λHλ40 − λ2
H20 > 0 ∧ 4λHλ04 − λ2

H02 > 0

∧ D|H |2=|H |2min
∧ (Q|H |2=|H |2min

> 0

∨ R|H |2=|H |2min
> 0),

λ2
H11 > 4λH20λH02 
⇒ λ′

04 > 0 ∧ λ′
40 > 0

∧
[(

D|H |2=|H |2min
� 0 ∧

(
λ′

31

√
λ′

04 + λ′
13

√
λ′

40

)
> 0

)

∨
(

− 2
√

λ′
04λ

′
40 < λ′

22 < 6
√

λ′
04λ

′
40

∧ D|H |2=|H |2min
� 0 ∧ 	′

1 |H |2=|H |2min
� 0
)
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Fig. 2 An example of parameter space allowed by the vacuum stability
conditions (68) for the potential (49) of two real scalars and the Higgs.
The values of parameters are λH = 0.125, λ40 = 0.125, λ04 = 0.25,

λ31 = λ13 = λH20 = λH02 = 0, except for plots where these couplings
vary. Both light and dark green regions are allowed for for λH11 = 0,
while only the dark green region is allowed for λH11 = 0.5

∨
(

6
√

λ′
04λ

′
40 < λ′

22 ∧ [(λ′
13 > 0 ∧ λ′

31 > 0)

∨ (D|H |2=|H |2min
� 0 ∧ 	′

2 |H |2=|H |2min
� 0)]

)]
, (68)

where we take λ′
31 → − sgn(λH02 − λH20)λ

′
31 and λ′

13 →
− sgn(λH02 − λH20)λ

′
13. The primes on 	′

1 and 	′
2 indi-

cate that they are calculated for the transformed potential
V ′

|H |2=|H |2min
. The discriminant of the transformed potential

is, up to a positive constant coefficient which does not affect
positivity, equal to the discriminant of V|H |2=|H |2min

and does
not depend on sgn(λH02 − λH20). The conditions (68) are
illustrated in Fig. 2.

For comparison, if we set all the terms containing odd
powers of φ1 and φ2 to zero, λH11 = λ31 = λ13 = 0, then
the positivity of the potential is given by the much simpler
(strict) copositivity constraints on the matrix of couplings in
the (φ1, φ2, |H |2) basis,

λ40 > 0, λ04 > 0, λH > 0,

λ̄22 ≡ λ22 + 2
√

λ40λ04 > 0,

λ̄H20 ≡ λH20 + 2
√

λ40λH > 0,

λ̄H02 ≡ λH02 + 2
√

λ04λH > 0,√
λ40λH02 +√λ04λH20 +√λHλ22

+√λ40λ04λH +
√

λ̄22λ̄H20λ̄H02 > 0, (69)

which are still necessary, but not sufficient conditions for
positivity in the general case.

The transformed potential V ′
|H |2=|H |2min

is rather compli-

cated, so let us look at special cases. If λH20 = λH02 = 0,
then M2 already has the anti-diagonal form, the transformed
potential V ′

|H |2=|H |2min
= V|H |2=|H |2min

and λ′
H11 = λH11.

If, on the other hand, λH11 = 0, then M2 is diagonal
and Uθ is the unit matrix. Then λH20 and λH02 must have
opposite signs for the determinant of M2 to be negative and
sgn(λH02 − λH20) = sgn λH02. The transformed potential
(multiplied by the irrelevant positive coefficient 4λ2

H20λ
2
H02

to make it simpler) is

4λ2
H20λ

2
H02V

′
|H |2=|H |2min

= λ′
40φ

4
1 + λ′

31φ
3
1φ2

+ λ′
22φ

2
1φ2

2 + λ′
13φ1φ

3
2 + λ′

04φ
4
2 ,

(70)

where

λ′
40 = λH

[
λ2
H20λ04 − λ22λH20λH02 + λ40λ

2
H02

+√−λH20λH02(λ13|λH20| + λ31|λH02|)
]
,

λ′
31 = 2λH

[
2λ2

H20λ04 − 2λ40λ
2
H02

+√−λH20λH02(λ13|λH20| − λ31|λH02|)
]
,

λ′
22 = 2λH

(
3λ40λ

2
H02 + λ22λH20λH02

123
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+ 3λ04λ
2
H20

)
− 4λ2

H20λ
2
H02,

λ′
13 = 2λH

[
2λ2

H20λ04 − 2λ40λ
2
H02

−√−λH20λH02(λ13|λH20| − λ31|λH02|)
]
,

λ′
04 = λH

[
λ2
H20λ04 − λ22λH20λH02 + λ40λ

2
H02

−√−λH20λH02(λ13|λH20| + λ31|λH02|)
]
. (71)

In several particle physics models, the equivalent of M2

already is diagonal. An example is given by the classically
scale invariant Z3 symmetric dark matter model [38].

5 Vacuum stability of the 2HDM with real couplings

The scalar potential of two Higgs doublets H1 and H2 in the
2HDM with no explicit CP-violation is

V = λ1|H1|4 + λ2|H2|4 + λ3|H1|2|H2|2

+ λ4(H
†
1 H2)(H

†
2 H1) + 1

2
λ5
[
(H†

1 H2)
2

+ (H†
2 H1)

2]+ λ6|H1|2(H†
1 H2 + H†

2 H1)

+ λ7|H2|2(H†
1 H2 + H†

2 H1)

= λ1h
4
1 + λ2h

4
2 + λ3h

2
1h

2
2 + λ4ρ

2h2
1h

2
2

+ λ5ρ
2 cos 2φ h2

1h
2
2 + 2λ6ρ cos φ h3

1h2

+ 2λ7ρ cos φ h1h
3
2, (72)

where we have taken the potentially complex couplings λ5,
λ6 and λ7 real and parameterised the field bilinears as [39]

|H1|2 = h2
1, |H2|2 = h2

2. H†
1 H2 = h1h2ρe

iφ. (73)

The orbit space parameter ρ ∈ [0, 1] as implied by the
Cauchy inequality 0 � |H†

1 H2| � |H1||H2|. While the gen-
eral form of the vacuum stability conditions for the most
general 2HDM potential has been given [15–17] in the ele-
gant ‘light cone’ formalism, the conditions can be given in a
simple explicit and analytical form in terms of the potential
couplings only in special cases.

If λ6 = λ7 = 0, we recover the vacuum stability condi-
tions [39–43] for the inert doublet model

λ1 > 0, λ2 > 0, λ3 + 2
√

λ1λ2 > 0, (74)

λ3 + λ4 − |λ5| + 2
√

λ1λ2 > 0. (75)

If λ6 �= 0 or λ7 �= 0, then the condition λ3 + λ4 − λ5 +
2
√

λ1λ2 > 0 is a necessary condition [24]. Finding the min-
imum of the general potential (72) is complicated because of
its non-linear dependence on orbit parameters ρ and φ [12].
It is practically impossible to minimise the polynomials D,

φ = 0

φ = π

−1 −0.5 0 0.5 1
λ6

−1

−0.5

0

0.5

1

λ7

Fig. 3 The allowed region in the λ7 vs. λ6 plane for the 2HDM with no
CP-violation is the intersection (dark green) of the regions with φ = 0
and φ = π (light green). Other parameters have values λ1 = 0.125,
λ2 = 0.25, λ4 = 0.25, λ3 = λ5 = 0

	1 and 	2 in the conditions (37) with respect to these param-
eters. Instead, we minimise the potential with respect to φ,
ρ, h1, and h2, with the fields lying on the circle h2

1 +h2
2 = 1,

enforced by a Lagrange multiplier λ as in Eq. (3). The min-
imisation equations are

0 = h1h2ρ
(

2λ5ρh1h2 cos φ + λ6h
2
1 + λ7h

2
2

)
sin φ, (76)

0 = h1h2
[
(λ4 + λ5 cos 2φ) ρh1h2

+
(
λ6h

2
1 + λ7h

2
2

)
cos φ

]
, (77)

λh1 = 4λ1h
3
1 + 2[λ3 + (λ4 + λ5 cos 2φ) ρ2] h1h

2
2

+ 6λ6ρ cos φ h2
1h2 + 2λ7ρ cos φ h3

2, (78)

λh2 = 4λ2h
3
2 + 2[λ3 + (λ4 + λ5 cos 2φ) ρ2]h2

1h2

+ 2λ6ρ cos φ h3
1 + 6λ7ρ cos φ h1h

2
2, (79)

1 = h2
1 + h2

2. (80)

Equation (76) reduces to sin φ = 0 which yields φ = 0
and φ = π or cos φ = ±1. (There is another solution for
φ that holds in the special case λ4 = λ5, but in this limit it
gives the same solution for Vmin as we will obtain below.) The
solutions for h1 = 0, h2 = 0 and ρ = 0 reproduce the con-
ditions (74). While each of the two solutions gives a region
of parameter space corresponding to the allowed region (37)
for a positive variable, the allowed region is their intersection
which is given by the allowed region (29) of parameter space
for a real variable for Vφ=0 or Vφ=π , illustrated in Fig. 3.

The extremum solutions to the Eqs. (77), (78), (79) and
(80) are given by

ρ2 = (λ6h2
1 + λ7h2

2)
2

h2
1h

2
2(λ4 + λ5)2

, (81)

h2
1 = 1

2

(2λ2 − λ3)(λ4 + λ5) + 2λ7(λ6 − λ7)

(λ1 + λ2 − λ3)(λ4 + λ5) − (λ6 − λ7)2 , (82)
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h2
2 = 1

2

(2λ1 − λ3)(λ4 + λ5) − 2λ6(λ6 − λ7)

(λ1 + λ2 − λ3)(λ4 + λ5) − (λ6 − λ7)2 , (83)

Vmin = 1

4
[(λ4 + λ5)(4λ1λ2 − λ2

3) − 4(λ1λ
2
7 + λ2λ

2
6

− λ3λ6λ7)]/[(λ1 + λ2 − λ3)(λ4 + λ5)

− (λ6 − λ7)
2]. (84)

Note that the the solution for ρ2 in (81) is non-negative if
h2

1 and h2
2 are non-negative.

Because the extremum may not be a minimum or may
lie outside the rectangular orbit space ρ ∈ [0, 1], cos φ ∈
[−1, 1], the potential must be separately minimised on the
edges and vertices of that square. The potential is required
to be positive in these parameter regions in any case as a
necessary condition.

The conditions for ρ = 0 (and any φ) are given by (74).
The extremum solutions (82), (83) and (81) are already cal-
culated for cos φ = ±1. By continuity, the minimum value
of cos φ at ρ = 1 must be cos φ = ±1 as well. Thus the con-
ditions for ρ = 1 can be found by applying the conditions
(29) to Vcos φ=±1,ρ=1/h4

2 with x = h1/h2. The discriminant
D and the polynomials Q and R are the same for φ = 0 and
for φ = π and given by

Dcos φ=±1,ρ=1 = 16
[
16λ3

1λ
3
2 + λ1λ2λ

4
345 − 27λ2

2λ
4
6

− 48λ2
1λ

2
2λ6λ7 − 6λ1λ2λ

2
6λ

2
7 − 16λ3

6λ
3
7

− 27λ2
1λ

4
7 − λ3

345(λ2λ
2
6 + λ1λ

2
7)

+ 18λ345

(
2λ1λ2 + λ6λ7

)(
λ2λ

2
6 + λ1λ

2
7

)

+ λ2
345

(
− 8λ2

1λ
2
2 − 20λ1λ2λ6λ7 + λ2

6λ
2
7

)]
,

(85)

Qcos φ=±1,ρ=1 = 8λ1λ345 − 12λ2
6, (86)

Rcos φ=±1,ρ=1 = 16
[
4λ3

1λ2 + 4λ1λ345λ
2
6 − 3λ4

6

− λ2
1

(
λ2

345 + 4λ6λ7

)]
, (87)

where λ345 ≡ λ3 + λ4 + λ5.
Altogether, the conditions for the 2HDM potential with

real couplings to be bounded from below are

Vρ=0 > 0 ∧ Dcos φ=±1, ρ=1 ∧ (Qcos φ=±1, ρ=1 > 0

∨Rcos φ=±1, ρ=1 > 0) ∧ (0 < h2
1 < 1 ∧ 0 < h2

2 < 1

∧0 < ρ2 < 1 
⇒ Vmin > 0), (88)

where the conditions for Vρ=0 > 0 are given by (74) and
p 
⇒ q is equivalent to ¬p ∨ q. In fact, it is enough to
check that either h2

1 or h2
2 is within bounds, since they are

related by h2
1 + h2

2 = 1. The conditions (88) are illustrated
in Fig. 4.

The approach we use gives a simpler result than directly
minimising Vcos φ=±1,ρ=1 with respect to h1 and h2 as we

did for Vmin, especially as the conditions (29) automatically
take into account the two different values cos φ = ±1. For a
potential that depends on three or more moduli of fields, e.g.
the 3HDM, where we would have a h3 besides h1 and h2,
this is not possible and one has to minimise the potential on
a hypersphere or use tensor eigenvalues (see Sect. 7).

6 Vacuum stability for Z3 scalar dark matter

Another physical example is given by scalar dark matter sta-
ble under a Z3 discrete group. The most general scalar quar-
tic potential of the SM Higgs H1, an inert doublet H2 and a
complex singlet S which is symmetric under a Z3 group is
[22,23]

V = λ1|H1|4 + λ2|H2|4 + λ3|H1|2|H2|2
+ λ4(H

†
1 H2)(H

†
2 H1) + λS|S|4 + λS1|S|2|H1|2

+ λS2|S|2|H2|2 + 1

2
(λS12S

2H†
1 H2

+ λ∗
S12S

†2H†
2 H1)

= λ1h
4
1 + λ2h

4
2 + λ3h

2
1h

2
2 + λ4ρ

2h2
1h

2
2

+ λSs
4 + λS1s

2h2
1 + λS2s

2h2
2 − |λS12|ρs2h1h2

≡ λSs
4 + M2(h1, h2)s

2 + V (h1, h2), (89)

where we have used the parametrisation (73) for the doublet
bilinears and S = seiφS , and we have minimised cos(φ +
2φS +φλS12) = −1 so λS12 = −|λS12| without loss of gener-
ality. We define M2(h1, h2) ≡ λS1h2

1−|λS12|ρh1h2+λS2h2
2

and V (h1, h2) ≡ V (h1, h2, 0).
The situation is similar to the case of two real scalars

and the Higgs boson in Sect. 4. First of all, λS > 0 and
V (h1, h2) > 0. The conditions for V (h1, h2) > 0 are the
same as in the inert doublet model with λ5 = 0:

λ1 > 0, λ2 > 0, λ3 + 2
√

λ1λ2 > 0, (90)

λ3 + λ4 + 2
√

λ1λ2 > 0. (91)

We minimise the potential with respect to h1, h2, s and
ρ with the fields lying on a sphere, enforced by a Lagrange
multiplier λ. The minimisation equations are

0 = h1h2

(
2ρλ4h1h2 − |λS12|s2

)
, (92)

λh1 = 4λ1h
3
1 + 2(λ3 + λ4ρ

2)h1h
2
2 + 2λS1h1s

2

− |λS12|ρh2s
2, (93)

λh2 = 4λ2h
3
2 + 2(λ3 + λ4ρ

2)h2
1h2 + 2λS2h2s

2

− |λS12|ρh1s
2, (94)

λs = s
(
4λSs

2 + 2λS1h
2
1 + 2λS2h

2
2

− 2|λS12|ρh1h2
)
, (95)
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Fig. 4 The allowed parameter space for some values of the couplings
of the 2HDM. For all panels λ2 = 0.25, λ4 = 0.25, λ5 = 0. The
values of other parameters are λ1 = 0.125, λ3 = 0 for the first panel,

λ1 = 0.125, λ7 = 0.25 for the second panel, and λ6 = 0.25, λ7 = 0
for the third panel (the dashed line shows the bound from copositivity
for λ6 = λ7 = 0)

1 = h2
1 + h2

2 + s2. (96)

The solution with all fields non-zero is

ρ =
(
|λS12|s2

)/(
2λ4h1h2

)
, (97)

D h2
1 = 1

2

[
(2λ2 − λ3)(4λSλ4 − |λS12|2)

+ 2λ4[(λ3 + λS1)λS2 − 2λ2λS1 − λ2
S2]
]
, (98)

D h2
2 = 1

2

[
(2λ1 − λ3)(4λSλ4 − |λS12|2)

+ 2λ4[(λ3 + λS2)λS1 − 2λ1λS2 − λ2
S1]
]
, (99)

D s2 = λ4

[
4λ1λ2 − λ2

3 − 2λ1λS2 − 2λ2λS1

+ λ3(λS1 + λS2)
]
, (100)

D Vmin = 1

4

[
(4λ1λ2 − λ2

3)(4λSλ4 − |λS12|2)
− 4λ4(λ1λ

2
S2 + λ2λ

2
S1 − λ3λS1λS2)

]
, (101)

where h2
1, h2

2, s2 and Vmin share the same denominator

D = (λ1 + λ2 − λ3)(4λSλ4 − |λS12|2)
+ λ4[4λ1λ2 − λ2

3 − 4λ1λS2 − 4λ2λS1

+ 2λ3(λS1 + λS2) − (λS1 − λS2)
2]. (102)

The solution s = 0 will repeat (90) and (91) and the solutions
h1 = 0 or h2 = 0 will be made redundant by eq. (103).

Since ρ = 0 sets the λS12 term to zero, Vρ=0 > 0 is
biquadratic in the fields and we can calculate the positivity
conditions for Vρ=0 > 0 via (strict) copositivity of the matrix
of couplings in the (h2

1, h
2
2, s

2) basis,

λS > 0, λ1 > 0, λ2 > 0,

λ̄3 ≡ λ3 + 2
√

λ1λ2 > 0,

λ̄S1 ≡ λS1 + 2
√

λSλ1 > 0,

λ̄S2 ≡ λS2 + 2
√

λSλ2 > 0,
√

λSλ3 +√λ1λS2 +√λ2λS1

+√λSλ1λ2 +
√

λ̄S1λ̄S2λ̄3 > 0, (103)

part of which repeats conditions (90).
For ρ = 1, instead of direct minimisation of the potential

in all variables, we find it easier to calculate conditions very
similar to the case (68) of two real scalars and the Higgs
boson. To reduce Vρ=1 to a polynomial of two variables, we
minimise it with respect to s2:

s2
min = − 1

2λS
M2(h1, h2). (104)

Again, either M2 > 0 and the solution for s2
min is unphys-

ical, or else the minimised potential Vs2=s2
min

= Vs=0 −
1

4λS
M4 > 0. We have

4λSVs2=s2
min

= (4λ1λS − λ2
S1)h

4
1 + (4λ2λS − λ2

S2)h
4
2

+
[
4(λ3 + λ4)λS − 2λS1λS2 − |λS12|2

]
h2

1h
2
2

+ λS1|λS12|h3
1h2 + λS2|λS12|h1h

3
2. (105)

The coefficient matrix of M2 is given by

M2 =
(

λS1 − 1
2 |λS12|

− 1
2 |λS12| λS2

)
. (106)

Repeating the procedure of Sect. 4 step by step, the con-
ditions for Vρ=1 > 0, in addition to λS > 0 and (90) and
(91), are given by

λS1 � 0 ∧ λS2 � 0 ∧ |λS12|2 � 4λS1λS2


⇒ 4λSλ1 − λ2
S1 > 0 ∧ 4λSλ2 − λ2

S2 > 0

∧ Ds2=s2
min

∧ (Qs2=s2
min

> 0 ∨ Rs2=s2
min

> 0),

|λS12|2 > 4λS1λS2 
⇒ λ′
40 > 0 ∧ λ′

04 > 0

∧
[(

Ds2=s2
min

� 0 ∧
(

λ′
31

√
λ′

04 + λ′
13

√
λ′

40

)
> 0

)
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Fig. 5 An example of parameter space allowed by the vacuum stability
conditions (108) for the potential (89) of the SM Higgs, an inert dou-
blet and a complex singlet. The values of parameters are λH = 0.125,
λS = 0.125, λ2 = 0.25, λ3 = λ4 = λS1 = λS2 = 0, except for
plots where these couplings vary. Both light and dark green regions are

allowed for for |λS12| = 0, while |λS12| = 0.5 only allows the dark
green region. In the last two panels, where |λS12| varies, only the dark
blue region is allowed for λS2 = 0, while λS2 = 0.5 allows both the
dark and light blue regions

∨ (− 2
√

λ′
40λ

′
04 < λ′

22 < 6
√

λ′
40λ

′
04

∧ Ds2=s2
min

� 0 ∧ 	′
1 s2=s2

min
� 0
)

∨ (6
√

λ′
04λ

′
40 < λ′

22 ∧ [(λ′
13 > 0 ∧ λ′

31 > 0)

∨ (Ds2=s2
min

� 0 ∧ 	′
2 s2=s2

min
� 0)])

]
, (107)

where we take λ′
31 → − sgn(λS2 − λS1)λ

′
31 and λ′

13 →
− sgn(λS2 − λS1)λ

′
13. As in Sect. 4, λ′

i j denote the coeffi-

cients of the transformed potential V ′
s2=s2

min
, where M ′2 is

anti-diagonal.9 Note that we are justified to use the condi-
tions (29) for the positivity of the general quartic on reals in
the second line of (107), because in (105) the coefficients of
the h3

1h2 and h1h3
2 terms are non-positive in that case.

Altogether, the conditions for the potential (89) symmetric
under a Z3 to be bounded from below are

λS > 0 ∧ V (h1, h2) > 0 ∧ Vρ=0 > 0 ∧ Vρ=1 > 0

∧(0 < h2
1 < 1 ∧ 0 < h2

2 < 1 ∧ 0 < s2 < 1

∧0 < ρ2 < 1 
⇒ Vmin > 0), (108)

9 In Eq. (107), we have retained the λ′
i j notation of Sect. 4 for ease of

comparison. In the 2HDM notation, the coefficients would be λ′
40 ≡ λ′

1,
λ′

04 ≡ λ′
2, λ′

22 ≡ λ′
345, λ′

31 ≡ λ′
6 and λ′

13 ≡ λ′
7.

where the conditions for V (h1, h2) > 0 are given by (90)
and (91), the conditions for Vρ=0 > 0 are given by (103),
the conditions for Vρ=1 > 0 are given by (107), and the
extremum solutions h2

1, h2
2, s2, ρ2 and Vmin are given by

(97), (98), (99), (100) and (101). The conditions (108) are
illustrated in Fig. 5.

7 Tensor Eigenvalues

7.1 Positive tensors

The most general scalar potential of n real singlet scalar fields
φi can be written as

V = λi jklφiφ jφkφl ≡ 	φ4, (109)

where 	 is the tensor of scalar couplings and φ is the vector of
fields. Clearly, the tensor 	 can always made fully symmetric
under permutations of the indices of its elements.

A symmetric matrix is positive if its eigenvalues are
greater than zero. Can one generalise matrix eigenvalues and
eigenvectors to tensors in such a way that they have similar
properties? Indeed, tensor eigenvalues and eigenvectors have
been defined independently by Qi in [44] (which we follow
in our exposition) and Lim [45].
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A real mth-order n-dimensional tensor A has nm elements
Ai1...im , where i j = 1, . . . , n for j = 1, . . . ,m. A homoge-
nous polynomial f (x) of n variables and degree m can be
written as the tensor product

f (x) = Axm ≡ Ai1...im xi1 . . . xim . (110)

In analogy with non-negative matrices, a n-dimensional ten-
sor A is called non-negative if Axm � 0 for all x ∈ R

n .
For a vector x ∈ R

n we define (x [m])i = xmi . The number
λ is an eigenvalue of A if it is a solution to the equation

Axm−1 = λx [m−1], (111)

where x is an eigenvector of A. For m = 2, the tensor
A is a matrix and the Eq. (111) coincides with the usual
matrix eigenvalue equation. When m > 2, the eigenvalues
and eigenvectors of a tensor can be complex, but for even
m, there always exist real eigenvalues and eigenvectors, so-
called H -eigenvalues and H -eigenvectors.

An n-dimensional symmetric tensor of orderm has n(m−
1)n−1 eigenvalues, so a coupling tensor of a renormalisable
potential of n real scalar fields in 4-dimensional spacetime
has n 3n−1 eigenvalues: for example, with two real fields,
there are six eigenvalues. The product of all the eigenvalues
of A is the hyperdeterminant det A, that is the resultant of
Axm−1 = 0. When m = 2, the hyperdeterminant reduces
to the usual matrix determinant. The sum of all eigenvalues
is (m − 1)n−1 times the sum of diagonal elements or trace
trA =∑i Aiii i .

For even m, an eigenvalue equation similar to the matrix
eigenvalue equation can be given,

det(A − λI) = 0, (112)

where I is the unit tensor with Ii1...im = δi1...im . The degree
of the eigenvalue equation is d = n(m − 1)n−1.

Obviously only real eigenvectors have relevance to whether
the tensor A is non-negative. The tensor A is non-negative
if all its eigenvalues with real eigenvectors are non-negative.
All the principal subtensors of A, that is the tensors obtained
by setting one or more of the variables xi in f (x) to zero,
must be positive as well.

Qi also defines tensor E-eigenvalues and E-eigenvectors,
which are exactly the same as solutions to the equations (4)
with fields constrained to a hypersphere. For even m, there
always exist real E-eigenvalues and E-eigenvectors.

Copositive tensors are defined in obvious analogy to
copositive matrices [46]: A real symmetric tensor A of order
m and dimension n is copositive if Axm � 0 for all x ∈ R

n+.
It has been shown that Kaplan’s test of matrix co-positivity
[29] directly generalises to copositive tensors [47]: A sym-
metric tensor A is copositive if and only if every principal

subtensor of A has no eigenvector v > 0 with associated
H-eigenvalue λ < 0.

7.2 Vacuum stability of the potential of two real scalars

As an example, we consider again the general potential of
two real scalars given by (24):

V (φ1, φ2) = λi jφ
i
1φ

j
2

= λ40φ
4
1 + λ31φ

3
1φ2 + λ22φ

2
1φ2

2

+ λ13φ1φ
3
2 + λ04φ

4
2 . (113)

The tensor of the scalar couplings of the potential is given
by

	 =

⎛
⎜⎜⎜⎝

(
λ40

1
4λ31

1
4λ31

1
6λ22

) ( 1
4λ31

1
6λ22

1
6λ22

1
4λ13

)

( 1
4λ31

1
6λ22

1
6λ22

1
4λ13

) ( 1
6λ22

1
4λ13

1
4λ13 λ04

)

⎞
⎟⎟⎟⎠ , (114)

that is, λ1111 = λ40, λ2222 = λ04, λ1112 = λ1121 = λ1211 =
λ2111 = 1

4λ31 and so on.
The H -eigenvalue equations are

4λ40φ
3
1 + 3λ31φ

2
1φ2 + 2λ22φ1φ

2
2 + λ13φ

3
2 = 4λφ3

1 ,

λ31φ
3
1 + 2λ22φ

2
1φ2 + 3λ13φ1φ

2
2 + 4λ04φ

3
2 = 4λφ3

2 , (115)

The product of all solutions to the H -eigenvalue equations
(115) is exactly the discriminant D given by (31) and their
sum is 3(λ40 +λ04). The tensor eigenvalue equation (112) is
a 6th degree equation, and the eigenvalues cannot in general
be solved in radicals. Therefore, for two fields, we are better
off using the conditions (34).

But for the general potential of three fields we have no such
(relatively) simple conditions. For m = 4, n = 3, the recipe
for the hyperdeterminant, given in [48], is very complicated
in practice. Analytical expressions can be found only for
coupling tensors of potentials that have few fields and are
rather symmetric.

8 Conclusions

In particle physics, scalar potentials have to be bounded
from below in order for the physics to make sense. Finding
such conditions is a hard problem of algebraic geometry. We
present analytical necessary and sufficient vacuum stability
conditions for potentials of a few fields, where ‘few’ means
two or more, depending on field content and symmetry. The
vacuum stability conditions (34) for a general potential of two
real fields fit on a few lines. Already for three fields, practical
analytical conditions (68) can only be found for the potential
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(49), where at least one of the fields, such as the Higgs boson,
is present only in biquadratic form. In this case the problem
reduces to the positivity of a general quartic polynomial with
a quadratic constraint.

As further examples that put several of the discussed tech-
niques to use, we present simple vacuum stability conditions
(88) for the 2HDM potential without explicit CP-violation,
and vacuum stability conditions (108) forZ3 scalar dark mat-
ter with an inert doublet and a complex singlet. All analytical
calculations have been checked numerically.

The vacuum stability conditions for the general potential
of two real singlets (without or with the Higgs boson), and for
the Z3 scalar dark matter are novel results. The vacuum sta-
bility conditions for the 2HDM potential with real couplings
are in a shorter form than previous similar results [24].

Of course, our endeavour can be made much easier if a
restrictive symmetry is imposed on the potential. If all the
fields appear solely quadratically, for example, the problem
becomes much simpler. Then the bounded from below con-
ditions are given by copositivity constraints of the matrix of
couplings. Many potentials can be written in terms of mag-
nitudes of squares of fields and a few orbit space parameters.

The parameter space for more complicated potentials must
be found numerically by minimising the potential on a hyper-
sphere of field values or solving tensor eigenvalue equations.
Still, some insight can be gained from (necessary) analyti-
cal conditions for a subspace where a field or more is set to
zero, and the introduced methods can be used to reduce the
parameter space for a numerical scan.
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