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Abstract

Many different methods to train deep genera-
tive models have been introduced in the past.
In this paper, we propose to extend the varia-
tional auto-encoder (VAE) framework with a
new type of prior which we call "Variational
Mixture of Posteriors" prior, or VampPrior
for short. The VampPrior consists of a mix-
ture distribution (e.g., a mixture of Gaussians)
with components given by variational poste-
riors conditioned on learnable pseudo-inputs.
We further extend this prior to a two layer
hierarchical model and show that this archi-
tecture with a coupled prior and posterior,
learns significantly better models. The model
also avoids the usual local optima issues re-
lated to useless latent dimensions that plague
VAEs. We provide empirical studies on six
datasets, namely, static and binary MNIST,
OMNIGLOT, Caltech 101 Silhouettes, Frey
Faces and Histopathology patches, and show
that applying the hierarchical VampPrior de-
livers state-of-the-art results on all datasets in
the unsupervised permutation invariant set-
ting and the best results or comparable to
SOTA methods for the approach with convo-
lutional networks.

1 Introduction

Learning generative models that are capable of cap-
turing rich distributions from vast amounts of data
like image collections remains one of the major chal-
lenges of machine learning. In recent years, different
approaches to achieving this goal were proposed by
formulating alternative training objectives to the log-
likelihood [11, 13, 23] or by utilizing variational infer-
ence [3]. The latter approach could be made especially
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efficient through the application of the reparameteri-
zation trick resulting in a highly scalable framework
now known as the variational auto-encoders (VAE)
[19, 33]. Various extensions to deep generative models
have been proposed that aim to enrich the variational
posterior [10, 29, 32, 35, 39, 40]. Recently, it has been
noticed that in fact the prior plays a crucial role in
mediating between the generative decoder and the vari-
ational encoder. Choosing a too simplistic prior like
the standard normal distribution could lead to over-
regularization and, as a consequence, very poor hidden
representations [16].

In this paper, we take a closer look at the regularization
term of the variational lower bound inspired by the
analysis presented in [26]. Re-formulating the varia-
tional lower bound gives two regularization terms: the
average entropy of the variational posterior, and the
cross-entropy between the averaged (over the training
data) variational posterior and the prior. The cross-
entropy term can be minimized by setting the prior
equal to the average of the variational posteriors over
training points. However, this would be computation-
ally very expensive. Instead, we propose a new prior
that is a variational mixture of posteriors prior, or
VampPrior for short. Moreover, we present a new two-
level VAE that combined with our new prior can learn
a very powerful hidden representation.

The contribution of the paper is threefold:

• We follow the line of research of improving the VAE
by making the prior more flexible. We propose a
new prior that is a mixture of variational posteriors
conditioned on learnable pseudo-data. This allows
the variational posterior to learn more a potent
latent representation.

• We propose a new two-layered generative VAE
model with two layers of stochastic latent variables
based on the VampPrior idea. This architecture
effectively avoids the problems of unused latent
dimensions.

• We show empirically that the VampPrior always
outperforms the standard normal prior in differ-
ent VAE architectures and that the hierarchical
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VampPrior based VAE achieves state-of-the-art or
comparable to SOTA results on six datasets.

2 Variational Auto-Encoder

Let x be a vector of D observable variables and z ∈ R
M

a vector of stochastic latent variables. Further, let
pθ(x, z) be a parametric model of the joint distri-
bution. Given data X = {x1, . . . ,xN} we typically
aim at maximizing the average marginal log-likelihood,
1
N
ln p(X) = 1

N

∑N

i=1 ln p(xi), with respect to parame-
ters. However, when the model is parameterized by a
neural network (NN), the optimization could be diffi-
cult due to the intractability of the marginal likelihood.
One possible way of overcoming this issue is to apply
variational inference and optimize the following lower
bound:

E
x∼q(x)[ln p(x)] ≥E

x∼q(x)

[
Eqφ(z|x)[ln pθ(x|z)+

+ ln pλ(z)− ln qφ(z|x)]
]

(1)

∆
=L(φ, θ, λ),

where q(x) = 1
N

∑N

n=1 δ(x − xn) is the empirical dis-
tribution, qφ(z|x) is the variational posterior (the en-
coder), pθ(x|z) is the generative model (the decoder)
and pλ(z) is the prior, and φ, θ, λ are their parameters,
respectively.

There are various ways of optimizing this lower bound
but for continuous z this could be done efficiently
through the re-parameterization of qφ(z|x) [19, 33],
which yields a variational auto-encoder architecture
(VAE). Therefore, during learning we consider a Monte
Carlo estimate of the second expectation in (1) using
L sample points:

L̃(φ, θ, λ) =E
x∼q(x)

[ 1
L

L∑

l=1

(
ln pθ(x|z

(l)
φ )+ (2)

+ ln pλ(z
(l)
φ )− ln qφ(z

(l)
φ |x)

)]
, (3)

where z
(l)
φ are sampled from qφ(z|x) through the re-

parameterization trick.

The first component of the objective function can be
seen as the expectation of the negative reconstruction
error that forces the hidden representation for each data
case to be peaked at its specific MAP value. On the
contrary, the second and third components constitute a
kind of regularization that drives the encoder to match
the prior.

We can get more insight into the role of the prior by
inspecting the gradient of L̃(φ, θ, λ) in (2) and (3) with
respect to a single weight φi for a single data point
x, see Eq. (17) and (18) in Supplementary Material

for details. We notice that the prior plays a role of an
”anchor” that keeps the posterior close to it, i.e., the
term in round brackets in Eq. (18) is 0 if the posterior
matches the prior.

Typically, the encoder is assumed to have a
diagonal covariance matrix, i.e., qφ(z|x) =
N
(
z|µφ(x), diag(σ

2
φ(x))

)
, where µφ(x) and σ2

φ(x)
are parameterized by a NN with weights φ, and
the prior is expressed using the standard normal
distribution, pλ(z) = N (z|0, I). The decoder utilizes a
suitable distribution for the data under consideration,
e.g., the Bernoulli distribution for binary data or the
normal distribution for continuous data, and it is
parameterized by a NN with weights θ.

3 The Variational Mixture of

Posteriors Prior

Idea The variational lower-bound consists of two
parts, namely, the reconstruction error and the reg-
ularization term between the encoder and the prior.
However, we can re-write the training objective (1) to
obtain two regularization terms instead of one [26]:

L(φ, θ, λ) =E
x∼q(x)

[
Eqφ(z|x)[ln pθ(x|z)]

]
+ (4)

+ E
x∼q(x)

[
H[qφ(z|x)]

]
+ (5)

− E
z∼q(z)[− ln pλ(z)] (6)

where the first component is the negative reconstruction
error, the second component is the expectation of the
entropy H[·] of the variational posterior and the last
component is the cross-entropy between the aggregated
posterior [16, 26], q(z) = 1

N

∑N

n=1 qφ(z|xn), and the
prior. The second term of the objective encourages the
encoder to have large entropy (e.g., high variance) for
every data case. The last term aims at matching the
aggregated posterior and the prior.

Usually, the prior is chosen in advance, e.g., a stan-
dard normal prior. However, one could find a prior
that optimizes the ELBO by maximizing the following
Lagrange function with the Lagrange multiplier β:

max
pλ(z)

−E
z∼q(z)[− ln pλ(z)] + β

(∫
pλ(z)dz− 1

)
. (7)

The solution of this problem is simply the aggregated
posterior:

p∗λ(z) =
1

N

N∑

n=1

qφ(z|xn). (8)

However, this choice may potentially lead to overfitting
[16, 26] and definitely optimizing the recognition model
would become very expensive due to the sum over all
training points. On the other hand, having a simple
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prior like the standard normal distribution is known to
result in over-regularized models with only few active
latent dimensions [6].

In order to overcome issues like overfitting, over-
regularization and high computational complexity, the
optimal solution, i.e., the aggregated posterior, can
be further approximated by a mixture of variational
posteriors with pseudo-inputs:

pλ(z) =
1

K

K∑

k=1

qφ(z|uk), (9)

where K is the number of pseudo-inputs, and uk is
a D-dimensional vector we refer to as a pseudo-input.
The pseudo-inputs are learned through backpropaga-
tion and can be thought of as hyperparameters of
the prior, alongside parameters of the posterior φ,
λ = {u1, . . . ,uK , φ}. Importantly, the resulting prior is
multimodal, thus, it prevents the variational posterior
to be over-regularized. On the other hand, incorporat-
ing pseudo-inputs prevents from potential overfitting
once we pick K ≪ N , which also makes the model
less expensive to train. We refer to this prior as the
variational mixture of posteriors prior (VampPrior).

A comparison to a mixture of Gaussians prior

A simpler alternative to the VampPrior that still
approximates the optimal solution of the problem
in (7) is a mixture of Gaussians (MoG), pλ(z) =
1
K

∑K

k=1 N
(
µk, diag(σ

2
k)
)
. The hyperparameters of the

prior λ = {µk, diag(σ
2
k)}

K
k=1 are trained by backpropa-

gation similarly to the pseudo-inputs. The MoG prior
influences the variational posterior in the same manner
to the standard prior and the gradient of the ELBO
with respect to the encoder’s parameters takes an anal-
ogous form to (17) and (18), see Suplementary Material
for details.

In the case of the VampPrior, on the other hand, we
obtain two advantages over the MoG prior:

• First, by coupling the prior with the posterior
we entertain fewer parameters and the prior and
variational posteriors will at all times “cooperate”
during training.

• Second, this coupling highly influences the gradient
wrt a single weight of the encoder, φi, for a given x,
see Eq. (20) and (21) in Supplementary Material
for details. The differences in (20) and (21) are

close to 0 as long as qφ(z
(l)
φ |x) ≈ qφ(z

(l)
φ |uk). Thus,

the gradient is influenced by pseudo-inputs that
are dissimilar to x, i.e., if the posterior produces
different hidden representations for uk and x. In
other words, since this has to hold for every train-
ing case, the gradient points towards a solution

where the variational posterior has high variance.
On the contrary, the first part of the objective in
(19) causes the posteriors to have low variance and
map to different latent explanations for each data
case. These effects distinguish the VampPrior from
the MoG prior utilized in the VAE so far [9, 29].

A connection to the Empirical Bayes The idea
of the Empirical Bayes (EB), also known as the type-II
maximum likelihood, is to find hyperparameters λ of
the prior over latent variables z, p(z|λ), by maximizing
the marginal likelihood p(x|λ). In the case of the VAE
and the VampPrior the pseudo-inputs, alongside the
parameters of the posterior, are the hyperparameters
of the prior and we aim at maximizing the ELBO
with respect to them. Thus, our approach is closely
related to the EB and in fact it formulates a new kind
of Bayesian inference that combines the variational
inference with the EB approach.

A connection to the Information Bottleneck

We have shown that the aggregated posterior is the
optimal prior within the VAE formulation. This result
is closely related to the Information Bottleneck (IB) ap-
proach [1, 38] where the aggregated posterior naturally
plays the role of the prior. Interestingly, the VampPrior
brings the VAE and the IB formulations together and
highlights their close relation. A similar conclusion
and a more thorough analysis of the close relation be-
tween the VAE and the IB through the VampPrior is
presented in [2].

4 Hierarchical VampPrior Variational

Auto-Encoder

Hierarchical VAE and the inactive stochastic

latent variable problem A typical problem encoun-
tered during training a VAE is the inactive stochastic
units [6, 25]. Our VampPrior VAE seems to be an
effective remedy against this issue, simply because the
prior is designed to be rich and multimodal, prevent-
ing the KL term from pulling individual posteriors
towards a simple (e.g., standard normal) prior. The
inactive stochastic units problem is even worse for learn-
ing deeper VAEs (i.e., with multiple layers of stochastic
units). The reason might be that stochastic dependen-
cies within a deep generative model are top-down in
the generative process and bottom-up in the variational
process. As a result, there is less information obtained
from real data at the deeper stochastic layers, making
them more prone to become regularized towards the
prior.

In order to prevent a deep generative model to suffer
from the inactive stochastic units problem we propose
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Figure 1: Stochastical dependencies in: (a) a one-layered VAE and (b) a two-layered model. The generative part
is denoted by the solid line and the variational part is denoted by the dashed line.

a new two-layered VAE as follows:

qφ(z1|x, z2) qψ(z2|x), (10)

while the the generative part is the following:

pθ(x|z1, z2) pλ(z1|z2) p(z2), (11)

with p(z2) given by a VampPrior. The model is de-
picted in Figure 1(b).

In this model we use normal distributions with diagonal
covariance matrices to model z1 ∈ R

M1 and z2 ∈ R
M2 ,

parameterized by NNs. The full model is given by:

p(z2) =
1

K

K∑

k=1

qψ(z2|uk), (12)

pλ(z1|z2) = N
(
z1|µλ(z2), diag(σ

2
λ(z2))

)
, (13)

qφ(z1|x, z2) = N
(
z1|µφ(x, z2), diag(σ

2
φ(x, z2))

)
, (14)

qψ(z2|x) = N
(
z2|µψ(x), diag(σ

2
ψ(x))

)
. (15)

Alternative priors We have motivated the Vamp-
Prior by analyzing the variational lower bound. How-
ever, one could inquire whether we really need such
complicated prior and maybe the proposed two-layered
VAE is already sufficiently powerful. In order to an-
swer these questions we further verify three alternative
priors:

• the standard Gaussian prior (SG):

p(z2) = N (0, I);

• the mixture of Gaussians prior (MoG):

p(z2) =
1

K

K∑

k=1

N
(
µk, diag(σ

2
k)
)
,

where µk ∈ R
M2 , σ2

k ∈ R
M2 are trainable parame-

ters;

• the VampPrior with a random subset of real train-
ing data as non-trainable pseudo-inputs (Vamp-
Prior data).

Including the standard prior can provide us with an
answer to the general question if there is even a need
for complex priors. Utilizing the mixture of Gaussians
verifies whether it is beneficial to couple the prior with
the variational posterior or not. Finally, using a subset
of real training images determines to what extent it is
useful to introduce trainable pseudo-inputs.

5 Experiments

5.1 Setup

In the experiments we aim at: (i) verifying empirically
whether the VampPrior helps the VAE to train a repre-
sentation that better reflects variations in data, and (ii)
inspecting if our proposition of a two-level generative
model performs better than the one-layered model. In
order to answer these questions we compare different
models parameterized by feed-forward neural networks
(MLPs) or convolutional networks that utilize the stan-
dard prior and the VampPrior. In order to compare the
hierarchical VampPrior VAE with the state-of-the-art
approaches, we used also an autoregressive decoder.
Nevertheless, our primary goal is to quantitatively and
qualitatively assess the newly proposed prior.

We carry out experiments using six image datasets:
static MNIST [21], dynamic MNIST [34], OMNIGLOT



Jakub M. Tomczak, Max Welling

[20], Caltech 101 Silhouette [27], Frey Faces1 and
Histopathology patches [39]. More details about the
datasets can be found in the Supplementary Material.

In the experiments we modeled all distributions using
MLPs with two hidden layers of 300 hidden units in
the unsupervised permutation invariant setting. We
utilized the gating mechanism as an element-wise non-
linearity [8]. We utilized 40 stochastic hidden units
for both z1 and z2. Next we replaced MLPs with con-
volutional layers with gating mechanism. Eventually,
we verified also a PixelCNN [42] as the decoder. For
Frey Faces and Histopathology we used the discretized
logistic distribution of images as in [18], and for other
datasets we applied the Bernoulli distribution.

For learning the ADAM algorithm [17] with normal-
ized gradients [43] was utilized with the learning rate in
{10−4, 5 ·10−4} and mini-batches of size 100. Addition-
ally, to boost the generative capabilities of the decoder,
we used the warm-up for 100 epochs [5]. The weights
of the neural networks were initialized according to [12].
The early-stopping with a look ahead of 50 iterations
was applied. For the VampPrior we used 500 pseudo-
inputs for all datasets except OMNIGLOT for which
we utilized 1000 pseudo-inputs. For the VampPrior
data we randomly picked training images instead of the
learnable pseudo-inputs.

We denote the hierarchical VAE proposed in this paper
with MLPs by HVAE, while the hierarchical VAE with
convolutional layers and additionally with a PixelCNN
decoder are denoted by convHVAE and PixelHVAE,
respectively.

5.2 Results

Quantitative results We quantitatively evaluate
our method using the test marginal log-likelihood (LL)
estimated using the Importance Sampling with 5,000
sample points [6, 33]. In Table 1 we present a compari-
son between models with the standard prior and the
VampPrior. The results of our approach in comparison
to the state-of-the-art methods are gathered in Table 2,
3, 4 and 5 for static and dynamic MNIST, OMNIGLOT
and Caltech 101 Silhouettes, respectively.

First we notice that in all cases except one the ap-
plication of the VampPrior results in a substantial
improvement of the generative performance in terms
of the test LL comparing to the standard normal prior
(see Table 1). This confirms our supposition that a
combination of multimodality and coupling the prior
with the posterior is superior to the standard normal
prior. Further, we want to stress out that the Vamp-

1http://www.cs.nyu.edu/~roweis/data/frey_
rawface.mat

Prior outperforms other priors like a single Gaussian
or a mixture of Gaussians (see Table 2). These results
provide an additional evidence that the VampPrior
leads to a more powerful latent representation and it
differs from the MoG prior. We also examined whether
the presented two-layered model performs better than
the widely used hierarchical architecture of the VAE.
Indeed, the newly proposed approach is more powerful
even with the SG prior (HVAE (L = 2) + SG) than
the standard two-layered VAE (see Table 2). Applying
the MoG prior results in an additional boost of per-
formance. This provides evidence for the usefulness of
a multimodal prior. The VampPrior data gives only
slight improvement comparing to the SG prior and
because of the application of the fixed training data
as the pseudo-inputs it is less flexible than the MoG.
Eventually, coupling the variational posterior with the
prior and introducing learnable pseudo-inputs gives the
best performance.

Additionally, we compared the VampPrior with the
MoG prior and the SoG prior in Figure 2 for varying
number of pseudo-inputs/components. Surprisingly,
taking more pseudo-inputs does not help to improve the
performance and, similarly, considering more mixture
components also resulted in drop of the performance.
However, again we can notice that the VampPrior is
more flexible prior that outperforms the MoG.

Figure 2: A comparison between the HVAE (L =
2) with SG prior, MoG prior and VampPrior in
terms of ELBO and varying number of pseudo-
inputs/components on static MNIST.

An inspection of histograms of the log-likelihoods (see
Supplementary Material) shows that the distributions
of LL values are heavy-tailed and/or bimodal. A pos-
sible explanation for such characteristics of the his-
tograms is the existence of many examples that are
relatively simple to represent (first mode) and some
really hard examples (heavy-tail). Comparing our ap-

http://www.cs.nyu.edu/~roweis/data/frey_rawface.mat
http://www.cs.nyu.edu/~roweis/data/frey_rawface.mat
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Table 1: Test log-likelihood (LL) between different models with the standard normal prior (standard) and the
VampPrior. For last two datasets an average of bits per data dimension is given. In the case of Frey Faces, for all
models the standard deviation was no larger than 0.03 and that this why it is omitted in the table.

VAE (L = 1) HVAE (L = 2) convHVAE (L = 2) PixelHVAE (L = 2)

Dataset standard VampPrior standard VampPrior standard VampPrior standard VampPrior

staticMNIST −88.56 −85.57 −86.05 −83.19 −82.41 −81.09 −80.58 −79.78

dynamicMNIST −84.50 −82.38 −82.42 −81.24 −80.40 −79.75 −79.70 −78.45

Omniglot −108.50 −104.75 −103.52 −101.18 −97.65 −97.56 −90.11 −89.76

Caltech 101 −123.43 −114.55 −112.08 −108.28 −106.35 −104.22 −85.51 −86.22

Frey Faces 4.63 4.57 4.61 4.51 4.49 4.45 4.43 4.38

Histopathology 6.07 6.04 5.82 5.75 5.59 5.58 4.84 4.82

Table 2: Test LL for static MNIST.

Model LL
VAE (L = 1) + NF [32] −85.10
VAE (L = 2) [6] −87.86
IWAE (L = 2) [6] −85.32
HVAE (L = 2) + SG −85.89
HVAE (L = 2) + MoG −85.07
HVAE (L = 2) + VampPrior data −85.71
HVAE (L = 2) + VampPrior −83.19

AVB + AC (L = 1) [28] −80.20
VLAE [7] −79.03

VAE + IAF [18] −79.88
convHVAE (L = 2) + VampPrior −81.09
PixelHVAE (L = 2) + VampPrior −79.78

Table 3: Test LL for dynamic MNIST.

Model LL
VAE (L = 2) + VGP [40] −81.32
CaGeM-0 (L = 2) [25] −81.60
LVAE (L = 5) [36] −81.74
HVAE (L = 2) + VampPrior data −81.71
HVAE (L = 2) + VampPrior −81.24

VLAE [7] −78.53
VAE + IAF [18] −79.10
PixelVAE [15] −78.96
convHVAE (L = 2) + VampPrior −79.78
PixelHVAE (L = 2) + VampPrior −78.45

Table 4: Test LL for OMNIGLOT.

Model LL
VR-max (L = 2) [24] −103.72
IWAE (L = 2) [6] −103.38
LVAE (L = 5) [36] −102.11
HVAE (L = 2) + VampPrior −101.18

VLAE [7] −89.83
convHVAE (L = 2) + VampPrior −97.56
PixelHVAE (L = 2) + VampPrior −89.76

Table 5: Test LL for Caltech 101 Silhouettes.

Model LL

IWAE (L = 1) [24] −117.21

VR-max (L = 1) [24] −117.10

HVAE (L = 2) + VampPrior −108.28

VLAE [7] −78.53

convHVAE (L = 2) + VampPrior −104.22

PixelHVAE (L = 2) + VampPrior −86.22

proach to the VAE reveals that the VAE with the
VampPrior is not only better on average but it pro-
duces less examples with high values of LL and more
examples with lower LL.

We hypothesized that the VampPrior provides a remedy
for the inactive units issue. In order to verify this claim
we utilized the statistics introduced in [6]. The results
for the HVAE with the VampPrior in comparison to the
two-level VAE and IWAE presented in [6] are given in
Figure 3. The application of the VampPrior increases
the number of active stochastic units four times for the
second level and around 1.5 times more for the first level
comparing to the VAE and the IWAE. Interestingly,
the number of mixture components has a great impact
on the number of active stochastic units in the second
level. Nevertheless, even one mixture component allows
to achieve almost three times more active stochastic
units comparing to the vanilla VAE and the IWAE.

In general, an application of the VampPrior improves
the performance of the VAE and in the case of two
layers of stochastic units it yields the state-of-the-art
results on all datasets for models that use MLPs. More-
over, our approach gets closer to the performance of
models that utilize convolutional neural networks, such
as, the one-layered VAE with the inverse autoregres-
sive flow (IAF) [18] that achieves −79.88 on static
MNIST and −79.10 on dynamic MNIST, the one-
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layered Variational Lossy Autoencoder (VLAE) [7]
that obtains −79.03 on static MNIST and −78.53 on
dynamic MNIST, and the hierarchical PixelVAE [15]
that gets −78.96 on dynamic MNIST. On the other
two datasets the VLAE performs way better than our
approach with MLPs and achieves −89.83 on OM-
NIGLOT and −77.36 on Caltech 101 Silhouettes.

Figure 3: A comparison between two-level VAE and
IWAE with the standard normal prior and theirs Vamp-
Prior counterpart in terms of number of active units
for varying number of pseudo-inputs on static MNIST.

In order to compare our approach to the state-of-the-
art convolutional-based VAEs we performed additional
experiments using the HVAE (L = 2) + VampPrior
with convolutional layers in both the encoder and de-
coder. Next, we replaced the convolutional decoder
with the PixelCNN [42] decoder (convHVAE and Pix-
elHVAE in Tables 2–5). For the PixelHVAE we were
able to improve the performance to obtain −79.78 on
static MNIST, −78.45 on dynamic MNIST, −89.76 on
Omniglot, and −86.22 on Caltech 101 Silhouettes. The
results confirmed that the VampPrior combined with
a powerful encoder and a flexible decoder performs
much better than the MLP-based approach and allows
to achieve state-of-the-art performance on dynamic
MNIST and OMNIGLOT2.

Qualitative results The biggest disadvantage of the
VAE is that it tends to produce blurry images [22].
We noticed this effect in images generated and recon-
structed by VAE (see Supplementary Material). More-
over, the standard VAE produced some digits that are
hard to interpret, blurry characters and very noisy sil-
houettes. The supremacy of HVAE + VampPrior is
visible not only in LL values but in image generations
and reconstructions as well because these are sharper.

2In [7] the performance of the VLAE on static MNIST
and Caltech 101 Silhouettes is provided for a different train-
ing procedure than the one used in this paper.

We also examine what the pseudo-inputs represent at
the end of the training process (see Figure 4). In-
terestingly, trained pseudo-inputs are prototypical ob-
jects (digits, characters, silhouettes). Moreover, im-
ages generated for a chosen pseudo-input show that
the model encodes a high variety of different features
such as shapes, thickness and curvature for a single
pseudo-input. This means that the model is not just
memorizing the data-cases. It is worth noticing that
for small-sample size and/or too flexible decoder the
pseudo-inputs can be hard to train and they can repre-
sent noisy prototypes (e.g., see pseudo-inputs for Frey
Faces in Figure 4).

6 Related work

The VAE is a latent variable model that is usually
trained with a very simple prior, i.e., the standard nor-
mal prior. In [30] a Dirichlet process prior using a stick-
breaking process was proposed, while [14] proposed a
nested Chinese Restaurant Process. These priors en-
rich the generative capabilities of the VAE, however,
they require sophisticated learning methods and tricks
to be trained successfully. A different approach is to
use an autoregressive prior [7] that applies the IAF
to random noise. This approach gives very promising
results and allows to build rich representations. Never-
theless, the authors of [7] combine their prior with a
convolutional encoder and an autoregressive decoder
that makes it harder to assess the real contribution of
the autoregressive prior to the generative model.

Clearly, the quality of generated images are dependent
on the decoder architecture. One way of improving
generative capabilities of the decoder is to use an infi-
nite mixture of probabilistic component analyzers [37],
which is equivalent to a rank-one covariance matrix.
A more appealing approach would be to use deep au-
toregressive density estimators that utilize recurrent
neural networks [42] or gated convolutional networks
[41]. However, there is a threat that a too flexible de-
coder could discard hidden representations completely,
turning the encoder to be useless [7].

Concurrently to our work, in [4] a variational VAE
with a memory was proposed. This approach shares
similarities with the VampPrior in terms of a learnable
memory (pseudo-inputs in our case) and a multimodal
prior. Nevertheless, there are two main differences.
First, our prior is an explicit mixture while they sample
components. Second, we showed that the optimal prior
requires to be coupled with the variational posterior.
In the experiments we showed that the VampPrior
improves the generative capabilities of the VAE but in
[4] it was noticed that the generative performance is
comparable to the standard normal prior. We claim
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Figure 4: (top row) Images generated by PixelHVAE + VampPrior for chosen pseudo-input in the left top
corner. (bottom row) Images represent a subset of trained pseudo-inputs for different datasets.

that the success of the VampPrior follows from the
utilization of the variational posterior in the prior, a
part that is missing in [4].

Very recently, the VampPrior was shown to be a perfect
match for the information-theoretic approach to learn
latent representation [2]. Additionally, the authors of
[2] proposed to use a weighted version of the VampPrior:

pλ(z) =

K∑

k=1

wkqφ(z|uk), (16)

where w1, . . . , wK are trainable parameters such that
∀kwk ≥ 0 and

∑
k wk = 1. This allows the VampPrior

to learn which components (i.e, pseudo-inputs) are
meaningful and may prevent from potential overfitting.

7 Conclusion

In this paper, we followed the line of thinking that
the prior is a critical element to improve deep gener-
ative models, and in particular VAEs. We proposed
a new prior that is expressed as a mixture of varia-
tional posteriors. In order to limit the capacity of the
prior we introduced learnable pseudo-inputs as hyper-
parameters of the prior, the number of which can be
chosen freely. Further, we formulated a new two-level
generative model based on this VampPrior. We showed
empirically that applying our prior can indeed increase
the performance of the proposed generative model and
successfully overcome the problem of inactive stochas-
tic latent variables, which is particularly challenging for
generative models with multiple layers of stochastic la-
tent variables. As a result, we achieved state-of-the-art

or comparable results to SOTA models on six datasets.
Additionally, generations and reconstructions obtained
from the hierarchical VampPrior VAE are of better
quality than the ones achieved by the standard VAE.

We believe that it is worthwhile to further pursue the
line of the research presented in this paper. Here we
applied our prior to image data but it would be inter-
esting to see how it behaves on text or sound, where
the sequential aspect plays a crucial role. We have
already showed that combining the VampPrior VAE
with convolutional nets and a powerful autoregressive
density estimator is beneficial but more thorough study
is needed. Last but not least, it would be interesting
to utilize a normalizing flow [32], the hierarchical varia-
tional inference [31], ladder networks [36] or adversarial
training [28] within the VampPrior VAE. However, we
leave investigating these issues for future work.
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