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A specific query establishes a rigid qualification and is concerned only with data that match it 

precisely. A vague query establishes a target qualification and is concerned also with data that are 

close to this target. Most conventional database systems cannot handle vague queries directly, forcing 

their users to retry specific queries repeatedly with minor modifications until they match data that 

are satisfactory. This article describes a system called VAGUE that can handle vague queries directly. 

The principal concept behind VAGUE is its extension to the relational data model with data metrics, 

which are definitions of distances between values of the same domain. A problem with implementing 

data distances is that different users may have different interpretations for the notion of distance. 

VAGUE incorporates several features that enable it to adapt itself to the individual views and 

priorities of its users. 
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1. INTRODUCTION 

Requests for data can be classified roughly into two kinds: specific queries and 
vague queries. A specific query establishes a rigid qualification and is concerned 
only with data that match it precisely. Some examples of specific queries are 
“How much does Jones earn?” or “When does flight 909 depart?” If the database 
does not contain salary information on Jones or departure time for flight 909, 
null answers should be returned; the user is not interested in the earnings of 
somebody else or in the departure time of a different flight. A vague query, on 
the other hand, establishes a target qualification and is concerned with data that 
are close to this target. As an example, consider “List the inexpensive French 
restaurants in Westwood.” If there are none, a moderately priced Continental 
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restaurant in Santa Monica may have to do. Similarly, when a project calls for 

experienced C programmers with background in applied mathematics, we may 

want the personnel database to mention also that there is an engineer with some 
knowledge of Pascal. 

Most conventional database systems cannot handle vague queries directly. 
Consequently, they must be emulated with specific queries. Usually, this means 
that the user is forced to retry a particular query repeatedly with alternative 
values until it matches data that are satisfactory. If the user is not aware of any 
close alternatives, then even this solution is infeasible. 

In this article we describe a system called VAGUE that extends the relational 
data model [3] to provide it with vague retrieval capabilities. An initial scheme 
for handling vague queries in relational databases was proposed in [ 171. 

1.1 Outline of Approach 

To determine similarity between data values we introduce the notion of distance. 

Each database domain is provided with a definition of distance between its values 
called duta metric. For example, in a database on restaurants there may be 
metrics to measure distances between cuisines, between locations, between price 
ranges, as well as a metric to measure distances between restaurants. 

To express vague queries we introduce a vague selection comparator, called 
similar-to. A similar-to comparison is satisfied with data values that are within a 
predefined distance of the specified value. For example, the vague comparison 
“location similar-to Westwood” may be satisfied by Westwood, Santa Monica, 
and Beverly Hills. 

Thus, the previous specific query “List the restaurants whose cuisine is French, 
whose price range is inexpensive, and whose location is Downtown” may be 
relaxed into a vague query such as: “List the restaurants whose cuisine is similar- 
to French, whose price range is similar-to inexpensive, and whose location is 
similar-to Downtown.” 

This model is quite straightforward, and its satisfactory operation relies almost 
entirely on the quality of the metrics that are provided for the individual domains. 
Here, VAGUE allows the database designer four choices: using one of several 
built-in metrics; providing a procedure that computes the distance between every 
two elements of the domain; providing a relation that stores the distance between 
every two elements of the domain; or using a reference relation (an existing 
database relation that is keyed on this domain). In the latter case, distances 
between elements of the domain would be defined as distances between their 
tuples in the reference relation, where tuple distance is defined as a combination 
of the individual distances between their corresponding components. 

Each tuple in the answer to a query that includes several vague qualifications 
involves several deviations from the specific values mentioned in these qualifi- 
cations. By combining these individual deviations into a single value, VAGUE 
can present the answer to the user in order of optimality. 

Thus, there are two occasions when VAGUE combines several component 
distances into a single distance: in one of its metric types and in the presentation 
of vague answers. The particular formula VAGUE uses for combining distances 
is discussed in Section 1.3.3. 
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1.2 Design Considerations 

The design of VAGUE reflects three fundamental requirements: 

Conceptual Simplicity Within a Relational Framework. The purpose of 
VAGUE is to enhance a relational database system with vague retrieval capabil- 
ities. The relational data model is adopted primarily because of its widespread 
popularity, the simplicity of its structures, and the advantages of a formal query 
language such as the relational calculus. An important design guideline is to 
realize this goal with only minimal deviation from this popular model. The 
relational data model is extended with a single concept, data metrics, and the 
query language is extended with a single feature, a similar-to comparator. (Indeed, 
the relational data model is generalized since a nonmetricized database is a 
particular type of a metricized database.) To present queries, users need only to 
know about the new comparator. 

Adaptability. To be useful, a system that implements vague queries must be 
able to adapt itself to the views and priorities of its individual users. VAGUE 
incorporates three adaptability features. (1) Often, distances between values of a 
given domain may be measured according to various metrics. For example, 
distances between values of domain CITY may be defined in miles “as the crow 
flies,” or as shortest driving distances, or even as differences between the names 
of the cities. VAGUE permits multiple metrics for the same domain. When a 
query makes use of a similar-to comparator, the user is presented with the various 
possible semantics of this comparator in its present context and is asked to 
select. (2) With referential metrics, one of the metric types available in VAGUE, 
individual users are allowed to influence the definition of the metric according to 
their own views. For example, the distance between two cities may be defined as 
a combination of the distances between some of their available attributes, such 
as size of population, climate, and employment rate. If such a metric is selected, 
the user is allowed to judge the relative importance of the various attributes in 
the overall distance. (3) When a query involves several vague qualifications, users 
are allowed to express their relative importance in the overall query. For example, 
consider the previous vague query about restaurants whose cuisine is similar to 
French, whose price range is similar to inexpensive, and whose location is similar 
to Downtown. Each tuple in its answer involves three deviations from the 
specified values, which are then combined so that the answer may be presented 
in order of optimality (i.e., “best” tuple first). However, it may be that the user 
has a different willingness to compromise on the various qualifications; for 
example, the user may be willing to compromise more on the type of the 
restaurant than on its price range or location. VAGUE allows users to express 
their relative willingness to compromise and uses this input in the definition of 
the corresponding metric. 

DBMS Externality. Ideally, data metrics and the similar-to comparator 
should be an integral part of the database system. However, it is also possible to 
enhance existing database systems by implementing these capabilities “on top” 
of these systems, an advantage when the database system cannot be modified. 
Since all distance information is represented as auxiliary relations and compu- 
tations, it is relatively easy to maintain (e.g., add new metrics or modify existing 
metrics). 
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1.3 Related Research 

1.3.1 ARES. A system that resembles VAGUE in its overall goals is ARES 
[8]. The designers of ARES extended a Query-by-Example (QBE) [29] interface 
with a similar-to operator. QBE queries are then translated into extended 
relational algebra operations called ambiguous select, ambiguous project, and 
ambiguous join. These, in turn, are translated into conventional relational algebra 
operations. ARES addresses the basic issue of “similarity matching” and it 
includes several useful graphics-based tools. However, it has several basic flaws, 
mainly: (1) Distances can only be defined via tables. This precludes defining 
distances for infinite domains, such as the distance between any two given strings 
(VAGUE has additional types of metrics such as computational and referential). 
(2) ARES lacks any of the adaptability features described above; for example, it 
does not allow multiple metrics for the same domain, and it cannot adapt itself 
to the views and priorities of individual users. Finally, (3) the extensions of the 
relational data model appear to be unnecessarily complex. Altogether, although 

ARES is a useful system that can benefit its users, these flaws substantially limit 
its usefulness. 

1.3.2 Fuzzy Databases. The issue of vague retrieval has also been addressed in 

the context of fuzzy systems. 
Buckles and Petri [2] assume that each database domain has an associated 

similarity matrix that assigns a value between 0 and 1 with each pair of domain 
elements. Relations are extended to allow values that are sets of domain elements. 
The output of standard relational algebra operators, such as join or project, is 
postprocessed to merge tuples (by performing unions of their respective compo- 
nents) if a prespecified similarity threshold is not violated. 

Other researchers [19, 281 define fuzzy databases that adhere more closely to 
the theory of fuzzy sets and systems. The main feature of a fuzzy database is 
that it can store imprecise information of various kinds; for example, Tom’s 
residence is either in Boston or in New York, Mary’s hair color is .6 brown and 
.4 black, John is .9 smart, Betty’s age is young. Definitions of fuzzy attribute 
values (such as “young”) and fuzzy comparators (such as “much-greater-than”) 
are provided by the system to allow users to formulate vague queries. 

In comparison, our approach here assumes conventional databases that store 
onlyprecise information, and our solutions are intended to be used in conjunction 
with conventional database technology: Existing databases may be metricized by 
providing the necessary distance information (this can even be done gradually 
over a period of time), and existing database systems can be extended (either 
internally or externally) to handle vague queries. 

1.3.3 Information Retrieval Systems. The notion of proximity of information 
items, such as documents, has been investigated in conjunction with information 
retrieval systems [21, 251. The most basic model describes each document with a 
set of relevant terms. This description is then converted to a vector over the 
space of all possible terms: If a term appears in the description of an item, then 
the corresponding position in its vector is set to 1; otherwise it is set to 0. 
A retrieval request specifies a set of applicable terms and is converted to a vector 
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over the same space. The request is then satisfied by all the documents whose 
vectors are “similar” to the vector of the request. 

A standard refinement of this basic model is to use weighted terms. The vector 
position that corresponds to a particular term denotes the degree of relevance of 
this term to the particular document. These weights may be assigned manually, 
or they may be derived automatically from frequency counts of the terms in the 
document. The weight of a particular term in a particular vector expresses the 
importance of this term in comparison with the other terms that describe this 
document, as well as the relevance of this term to the document in comparison 
with other documents. A retrieval request describes the “ideal” document by 
means of a similar vector of weighted terms (these terms may also be viewed as 
a specification of the relative importance of the terms in the overall request). 

Numerous measures have been suggested for the critical problem of determin- 

ing the similarity of two such vectors, most notably inner product, Dice, Jaccard, 
cosine, and overlap.’ The inner product is defined as the sum of the products of 
the corresponding components of the two vectors, When the components are 
binary, the inner product counts the matching terms. The other four measures 
may all be considered as normalized versions of the inner product [25, pp. 3% 
421. The relative effectiveness of the various similarity measures has been studied 
both empirically and analytically. However, although these studies may show 
that various measures have individual characteristics, they are often inconclusive 

WI. 
As mentioned earlier, there are two occasions when VAGUE must deal with 

vector distances: in referential metrics, where the distance between two tuples 
defines the distance between their corresponding key values, and in the answer 
space, where the distance between answer tuples and the “ideal” tuple is used for 
ranking the answer. Thus, while in information retrieval systems the components 
of vectors are indications of whether particular terms apply to the document (or, 
with weighted terms, of how strongly they apply), here they are arbitrary database 
values. Consequently, the previous measures, which were designed for comparing 
vectors of indicators, are not applicable to vectors of values. Instead, VAGUE 
applies individual component metrics to derive from the two vectors a vector of 
their component distances. Then, it weights the individual distances (this is 
similar to using weighted terms). Finally, it maps the vector into a single distance 
by computing its Euclidean length. 

VAGUE’s approach is to provide an environment for defining any desirable 
metric. Thus, various metrics can be defined for the database domains, and users 
may select the appropriate metric in a brief dialogue that follows the submission 
of a vague query. In accordance with this approach, it would appear desirable to 
allow users to select from different formulas for mapping the vector of distances 
into a single distance in the two aforementioned occasions (currently users can 
only provide the weights). However, although casual users can be expected to 
select intelligently among various domain metrics (their semantics may be 
described in plain language), the same cannot be assumed for the selection of 
formulas for mapping vectors of distances. The database designer should exper- 
iment with the various formulas and select the formula that performs most 

1 For example, the SMART information retrieval system [ZO] often uses the cosine measure. 
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satisfactorily. In the case of referential metrics, a particular formula may be 
associated with each referential metric. However, in the case of answer spaces, it 

is not feasible to associate a formula with each answer space (for a database with 
n attributes there are 2” possible answer spaces). A possible compromise here is 
to allow the database designer to select one formula for the entire database.’ 
Multiple mapping formulas are not yet available in the current version of 
VAGUE. 

A language approach to best-match querying is advocated by [27]. The authors 
argue that the notion of closeness is extremely user dependent, and it is therefore 
infeasible to adopt predefined concepts of closeness. Instead, they suggest lan- 
guage features that allow users to specify their retrieval priorities. For example, 
when either of several values may be satisfactory, a special operator will enable 
the user to specify an order of preference (this should be preferred to the standard 
disjunction operator). Although most of the suggested language features appear 
useful, it should be noted that this solution does not address directly the issue of 
vague retrieval; for example, what if the user can just name a single value, and 

the system cannot match it? Although we concur with the opinion that the 
interpretation of proximity is individual, VAGUE demonstrates that the problem 
may be addressed in part by allowing multiple interpretations (some of them 
even parameterized) and determining the suitable interpretation via a brief 
dialogue with the user. 

1.3.4 Query Constructors, Browsers, and Cooperative Interfaces. In our model, 
vague queries are distinct from specific queries only by their “soft” selection 
qualification. Thus, the same level of expertise is required to issue specific or 
vague queries. Another kind of vague request occurs when the user does not 
possess the knowledge required for formulating a proper query (this may be 
because the user is not familiar with the data model, the query language, the 
organization of the particular database, or because the user does not have a well- 
defined retrieval goal). This problem has been approached in two ways. Interactive 
query constructors help users crystalize their requests. A notable example is 
RABBIT [26], which applies a paradigm of repetitive reformulation of an initial 
goal. At each iteration in the construction process the user is presented with the 
answer to the current query. Having observed the answer, the user can then 
refine the query by critiquing it in one of several ways available. Browsers, such 
as TIMBER [22], SDMS [7], BAROQUE [15] or KIVIEW [18], provide users 
with a variety of features for exploratory searches. Often, the information is 
represented as a network, and the retrieval process is iterative. At each iteration 
the user is presented with information that corresponds to the current location 
on the network. The user can then issue a new command to advance the search 
in a particular direction. Elements of browsers are also present in the ME system 
[9]. The ME database is a network of files connected through links which 
represent weighted terms. A retrieval request is a set of terms, and a spreading 
activation process is used to match the files that are most relevant. As the user 
changes the terms of the query in one terminal window, the window that shows 
the matched files is updated dynamically. 

’ Note that the formula does not determine the tuples in the answer, only their ranking. 
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One obvious way to relax a selection qualification is to delete one of its 
conjuncts3 Although this method (which is equivalent to using a metric with an 
infinite radius) is cruder than relaxing that conjunct with a vague qualification, 
it can be used with standard (nonmetricized) databases. The effect of deleting a 
conjunct is to create a more general query (a query whose answer will contain 
the answer to the original query). This method was employed in various mecha- 
nisms for detecting erroneous presuppositions in user queries and for generating 
cooperative responses [4, 11, 161. 

A user interface to databases that is capable of handling vague requests appears 
to be more “intelligent.” This is because answering questions with information 
that is only close to what was requested, or somehow related to it, is a common 
feature of human interaction. Such interaction is known as cooperative behavior, 
and there has been much focus on how to improve man-machine interaction by 
emulating such behavior through various techniques. Various cooperative inter- 
faces (including those mentioned above) are discussed in [ 11. Not surprisingly, 
this added intelligence is made possible by including additional semantic infor- 
mation in the database, namely distances. 

1.3.5 Database Semantics. Data metrics express important semantic infor- 
mation about the domains. This information permits certain manipulations of 
the data (such as safe substitutions of some values by similar values), and it can 
be used as evidence that two differently named attributes are similar. Thus, the 
concept of metricized domains is in the same general class as abstract domains 
[14] and ordered domains [6]. 

We have chosen to represent the semantics necessary to process vague queries 
(i.e., similarity information) through the mechanism of metrics and to retain the 
standard relational data model. An alternative approach would be to define a 
data model with structures rich enough to store these semantics; for example, 
some variant of a semantic network with a new type of link between its objects 
that would specify their proximity. 

1.3.6 Null Values. Sometimes, the value that should be stored in a particular 
position in the database is not known, but it is clear that some appropriate value 
does exist. The prevailing approach in such situations is to fill these “vacancies” 
with null values [13, chap. 121. 

If nulls are treated as regular values, then distances may involve them as well. 
We use the term located null for null values for which some distance information 
is available. The advantage of located nulls is that they participate in retrieval. 
Consider, for example, a restaurant whose exact type is not available but is 
known to serve food which is similar to French. If the null value that represents 
the type of the restaurant is located within the neighborhood of French, then 
every query about restaurants whose type is close to French will retrieve this 
particular restaurant. Thus, with data metrics, conventional database systems 
can be extended in two important ways: They can process requests that are less 
specific, and they can store information that is less specific.4 

3 One may also consider adding a disjunct, but this is much less straightforward. 
4 In this respect, null values are like fuzzy values. 
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1.4 Overview of This Article 

The remainder of this article is organized as follows. Section 2 provides a formal 

definition of the model. The concepts of data metric and metricized databases 
are defined, various types of metrics are introduced, a detailed example is 
described, and issues of metric selection are discussed. Section 3 shows how data 
metrics are applied in retrieval. A formal definition of vague queries is given, 
QUEL, the query language of choice in this project, is extended to express vague 
queries, and the ranking of answers to vague queries is defined. Section 4 
is devoted to the prototype implementation. The various components of the 
VAGUE system are described, and issues of update and performance are dis- 
cussed. Section 5 is devoted to issues of incomplete database information in the 
presence of data metrics. Two kinds of information are discussed: missing data 
values and missing data distances. Section 6 concludes with a brief summary. 

2. THE MODEL 

In this section we define data metrics and metricized databases; we describe 
different methods for specifying metrics; we give a detailed example of a metri- 
cized database; and we provide guidelines for selecting appropriate metrics for 
the domains of a given database. 

2.1 Metricized Databases 

We assume the standard definition of relational databases. In particular, we 
distinguish between attributes and domains. An attribute is a named column in 
a relation. A domain is a set of values (possibly infinite). Each attribute is 
associated with one domain. The domain contains all the values that may appear 
in that attribute. In practice, a domain is either defined abstractly (e.g., a number 
in the range l-100, an alphabetic string of at most 24 characters), or implicitly 
(i.e., it comprises the values currently stored in the database attributes that are 
associated with it), or there is a reference relation, whose key attribute defines 
all the values of the domain (e.g., relation COUNTRY whose key is COUNTRY- 

NAME serves as reference for attribute CITIZENSHIP in relation PERSON). 

Let D be a database domain. A data metric for D is a function M: D X D + R 
such that Vx, y E D: 

(1) Mb, Y) 2 0 
(2) M(x, y) = 0 iff x = y 

(3) Mb, Y) = M(Y, 3~) 
(4) ‘dz E D: M(n, y) 5 M(r, z) + M(z, y) 

In addition to this standard definition of metric, we associate with each domain 
and metric two additional parameters: a diameter and a radius. The diameter is 
an upper bound on all the distances among the values of the domain; it will be 
used for estimating unknown distances (if an upper bound cannot be provided, 
then 03 is used). The radius establishes standard neighborhoods; given a value, it 
determines the values that are close to it. The radius is also used to scale distances; 
dividing a distance by the radius yields a measure of proximity that is independent 
of the particular domain and metric. 
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A database is metricized if at least one data metric is associated with each of 
its domains. If a domain has more than one metric, then one of them is designated 
as the primary metric. 

2.2 Types of Data Metrics 

In general, data metrics can be thought of as procedures with input (x, y) and 
output M(x, y). These procedures may involve both computation and retrieval. 
Three types of database metrics are of particular interest: computational, tabular, 

and referential, and they are described below. 
A data metric is computational if it derives its distances by computation only 

(i.e., no retrievals are involved). An example of a computational metric on a 
numerical domain, such as SALARY, is the absolute value of the difference between 
two numbers. An example of a computational metric on a nonnumerical domain, 
such as PERSON-NAME, is a procedure that determines the degree of similarity 
between two strings of characters. 

A data metric is tabular if it derives its distances by retrieval only (i.e., no 
computations are involved). The distance between every two values of the domain 
is stored in a table, and the metric simply searches this table. Naturally, relations 
provide convenient storage for distance tables. An example of a tabular metric is 
the geographic distance between locations. 

Each database relation has a designated attribute which is its key. Technically, 
this key provides a means for unique identification of tuples of the relation. 
Semantically, it may be regarded as the topic of the relation. In other words, 
the nonkey attributes may be regarded as a description of the key attribute. 
Distances between values of the key attribute may then be interpreted as the 
differences between their descriptions; that is, some combination of the individual 
distances between the corresponding components of the descriptions. In this 
definition, some individual distances may be given more weight than others, and 
some distances may be ignored altogether. Therefore, each relation provides 
distance information for the domain of its key attribute. Such metrics are called 
referential metrics. As an example, consider a relation FILM that describes motion 
pictures with the following attributes: TITLE, DIRECTOR, CATEGORY, and RATING. 

Assume TITLE (of domain FILM-TITLE) is the key, and let (Psycho, Hitch- 
cock, Suspense, 3.5)and(Modern-Times, Chaplin, Comedy, 4.0) 
be two tuples from this relation. The distance between the titles Psycho and 
Mode r n-T ime s may be defined as some combination of the individual distances 
between Hitchcock and Chaplin, Suspense and Comedy, and 3.5 and 
4.0. 

When a domain cannot be provided with a suitable metric, the following 
DEFAULT metric should be used: 

DEFAULT&y) = 
0 if x=y 
1 

if xfy 

When a domain is provided with this computational metric, together with the 
radius 0, the effect is that of isolation: Given a value of that domain, no other 
value is close to it. Obviously, by using the metric DEFAULT with radius 0 
throughout, the database reverts to a conventional (nonmetricized) database. 
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RELATION ATTRIBUTE 

FILM 

TITLE 

DIRECTOR 

CATEGORY 

RATING 

THEATER 4 
T-NAME 

OWNER 

LOCATION 

CAPACITY 

ENGAGEMENT 

FILM 

THEATER 

OPEN-DATE 
L 

KEY 

* 

* 

* 
* 

DOMAIN 

FILM-TITLE 

PERSON-NAME 

FILM-CATEGORY 

FILM-RATING 

THEATER-NAME 

THEATER-OWNER 

NEIGHBORHOOD 

NO-OF-SEATS 

FILM-TITLE 

THEATER-NAME 

DATE 

Fig. 1. Scheme of database on films and theaters. 

2.3 Example 

As an example, Figure 1 describes a database on films and theaters. Each attribute 
is followed by its domain, and key attributes a&indicated by a star. Figure 2 
describes the metrics of this database. For ea3 domain, one or more metrics are 
listed, with the primary metric first. Eachmetric is described by its name and 
type, its diameter and radius, and a,shdrt description of the semantics of the 
distance. A small instance of this database is shown in Figure 3.5 

The Films and Theaters database consists of three relations with a total of 
eleven attributes. These attributes draw their values from nine different domains. 
The nine domains are measured by seven different data metrics. The data metrics 
are described below. 

Values of FILM-RATING are assumed to be numbers between 0 and 4, and 
values of NO-OF-SEATS are assumed to be integers not greater than 2000. In 
each case distances are measured by the computational metric ABS, by which the 
distance between two values is the absolute value of their difference. 

Values of PERSON-NAME, THEATER-OWNER, FILM-TITLE, and THEATER- 

NAME are assumed to be arbitrary strings of characters. In each case distances 
are provided by the computational metric STRING, which implements an algo- 
rithm that rates the similarity of the strings by values between 0 (identical) 
and 1 (entirely different). 

Values of DATE are assumed to be strings of the form MM-DD-YY where MM is 
a month (Ol-12), DD is a day (Ol-31), and YY is a year (00-99). Distances between 
dates are measured by the computational metric DATE as the number of days 
between the dates. 

Distances between values of FILM-CATEGORY and NEIGHBORHOOD are ob- 
tained from tables by these names. These tables are shown in Figure 4. 

Finally, FILM-TITLE and THEATER-NAME also have referential metrics, 
obtaining their distance information from the relations FILM and THEATER, 

5 Film ratings are from Leonard Maltin’s TV Movies (Signet, New York, 1982). 
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DOMAIN 

PERSON-NAME 

FILM-TITLE 
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THEATER-NAME 

THEATER-OWNER 
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NO-OF-SEATS 

DATE 

STUFF 
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FILM-CATEGORY 
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STRING 

THEATER 
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1 

1 

10 

3 

4 

1 

10 

1 

50 

2000 
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1 

RADIUS 

0.2 

0.2 

2 

1 

0.5 

0.2 

2 
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5 

200 

7 

0 

SEMANTICS 

Persons with 

similar names 

Films with 

similar titles 

Films with 

similar attributes 

Film categories that 

are most similar 

Film ratings within 

half notch 

Theaters with 

similar names 

Theaters with 

similar attributes 

Owners with 

similar names 

Neighborhoods 

within 5 miles 

Capacities within 

200 seats 

Open dates within 

7 days 

Exact matches 

only 

Fig. 2. Metrics of database on films and theaters. 

respectively. To explain how referential metrics are used, the procedure to 
determine the distance between two film titles is subsequently outlined. 

First, the descriptions of the two films are retrieved, and the distances between 
their directors, categories, and ratings are obtained. Next, these individual 
distances are adjusted by multiplying them by 1.83, 1.47, and 2.20, respectively. 
Finally, the adjusted distances are combined by means of the root of the sum of 
their squares. Denoting individual distances by their attribute names, the distance 
between film titles is 

d(1.83 * DIRECTOR)’ + (1.47 * CATEGORY)2 + (2.20 * RATING)2. 

The adjustment has three purposes: (1) to correct for the fact that different 
metrics are involved, (2) to reflect the relative importance of the attributes in 
the description, and (3) to guarantee that resulting distances would always be in 
a prescribed range. The first purpose is achieved by scaling each distance by its 
respective radius; in this example, the three distances are divided by 0.2, 1, and 
0.5, respectively. The second purpose is achieved by weighting each distance by 
a constant supplied by the user to express the relative importance of this attribute; 
in this example, we assume that the multipliers are 1,4, and 3, respectively. Since 
the original distances were in the ranges [0, 11, [0, 31, and [0,4], respectively, the 
scaled and weighted distances are now in the ranges [0, 51, [0, 121, and [0, 241, 
respectively. If we were to combine distances in these ranges, we would 

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1988. 



I 

TITLE 
Four-Feathers 
Modern-Times 
Psycho 

Rear-Window 
Robbery 
Star-Wars 
Surf-Party 
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FILM 

CATEGORY RATING 
Adventure 3.5 
Comedy 4.0 
Suspense 3.5 
Suspense 4.0 
Suspense 3.0 
Adventure 3.5 
Drama 0.0 

DIRECTOR 
Korda 
Chaplin 
Hitchcock 
Hitchcock 
Yates 
Lucas 
Dexter 

ENGAGEMENT 

FILM THEATER OPEN-DATE 

Modern-Times Rialto 12-19-86 
Star-Wars Rialto 12-26-86 
Star-Wars Chinese 01-16-87 
Rear-Window Egyptian 12-12-86 
Surf-Party Village 11-28-86 
Robbery Odeon 01-23-87 
Modern-Times Odeon 01-30-87 
Four-Feathers Music-Hall 11-21-86 

Fig. 3. Instance of database on films and theaters. 

THEATER 

T-NAME OWNER LOCATION CAPACITY 

Chinese Mann Hollywood 815 
Egyptian UA Westwood 730 
Music-Hall Laemmle Beverly-Hills 630 
Odeon Cineplex Santa-Monica 414 
Rialto Independent Downtown 567 
Village Mann Westwood 452 

FILM-CATEGORY 

VALUE-l 

Comedy 
Comedy 
Comedy 
Drama 
Drama 
Adventure 

NEIGHBORHOOD 

VALUE-1 1 VALUE-2 ( DISTANCE 

Beverly-Hills Downtown 15 
Beverly-Hills Hollywood 8 
Beverly-Hills Santa-Monica 10 

Beverly-Hills Westwood 5 
Downtown Hollywood IO 

Downtown SantaMonica 20 
Downtown Westwood 18 
Hollywood Santa-Monica 15 
Hollywood Westwood IO 

Santa-Monica Westwood 5 

Fig. 4. Tabular metrics for database on films and theaters. 

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1988. 



VAGUE: A User Interface to Relational Databases - 199 

obtain distances in the range [0, 27.291. To create a range of film distances 
that would be between 0 and 10, each individual distance is also multiplied by 
(102/27.292)‘/2 = 0.37, yielding the multipliers shown in the formula. 

As mentioned earlier, the radiuses specified in the metrics table determine 
whether values may be considered “close” or not. For example, two locations are 
considered close if they are within 5 miles; two capacities are considered close if 
they are within 200 seats; two films are considered close under the computational 
metric STRING if they are within 0.2 units of string distance, and under the 
referential metric FILM if they are within 2 units of film distance. In the example, 
the FILM distance between Psycho and Rear-Window is 1.1, so they are 
considered close; on the other hand, Modern-Times and Surf-Party are far 
apart: The FILM distance between them is 9.5. 

2.4 Metric Design 

The process of defining a new database is usually referred to as database design. 
A database designer models real world environments with elements of the data 
model, such as relations, keys, and constraints. In the extended model this 
process now also includes the determination of the appropriate metrics and their 
parameters (i.e., diameters and radiuses) for each database domain. Proper 
selection of these metrics and parameters is critical to the successful handling of 
vague queries. Some guidelines follow. 

Often, database domains are numerical, and the absolute value distance is 
satisfactory. Sometimes, although a domain is nonnumerical, its values are 
strictly ordered (for example, a domain RANK with values such as Exe e 11 en t, 
Good, Fair, and Poor). Such domains are easily metricized by mapping the 
domain onto a range of integers (while preserving the order), using the absolute 
value metric to derive distances, and then storing the distances in a table. 

Metrics can also be derived from domain partitions. Assume that a domain can 
be partitioned into a collection of disjoint sets called clusters, each containing 
values that are judged to be similar. A tabular metric can then be defined as 
follows: All intracluster distances (distances between two values that are in the 
same cluster) are set to 0, and all intercluster distances (distances between two 
values in different clusters) are set to 1. This metric can be refined if a hierarchical 
partitioning of the domain is available (i.e., clusters are possibly partitioned into 
further subclusters). The metric is derived from the clusters at the bottom level 
(level 0). Again, the distance between two values that are in the same cluster is 
set to 0. The distance between two values that are not in the same cluster‘is set 
to the level of the cluster that contains both. For example, if at level 0 x and y 
are not in the same cluster, but x: and y are in the same cluster at level n, then 
the distance between x and y is set to n. Thus, the hierarchical partitioning 
provides more refined intracluster distances. Clustering has been used extensively 
in information retrieval systems as an automatic classification method, usually 
to improve search performance: When similar documents are clustered together, 
then it may be sufficient to compare retrieval requests only with cluster 
representatives (for a review of clustering methods see [25, chap. 31 or [21, 
pp. 137-1401). However, although document clustering is usually derived from a 
similarity measure, the process here is roughly the inverse: We derive a metric 
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from clusters that have already been constructed. Indeed, the methods sketched 

above for deriving metrics from clusters are the inverses of known methods for 
deriving clusters from similarity measures. Possibly, other clustering methods 
may be adapted as well. 

A domain that is defined by a reference relation may be provided with a 
referential metric: The distance between every two values of this domain is 
inferred from the difference between their descriptions in the reference relation. 
At times, it may be necessary to define a more complex metric, for example, a 
metric on character strings that considers similarities in appearance of characters 
or similarities in pronunciation (e.g., based on the Soundex method [12, pp. 391- 
3921). Such metrics should be defined through a computation. Finally, whenever 
a suitable metric cannot be defined, the default metric should be used. 

Some data metrics definitions are,permanent. For example, a computational 
metric, such as STRING, can be defined to handle every possible pair of values 
from that domain. However, tabular metrics may need to be updated after each 
addition to the domain. For example, if a new film category is added to FILM- 

CATEGORY, its individual distances from every other film category need to be 
incorporated into the metric. This suggests that tabular metrics are more suitable 
for static domains. 

In selecting standard radiuses, a good practice is to adopt the distance that is 
the “smallest distance of significance.” For example, a significant difference 

between theater capacities may be determined to be 200 seats, and a significant 
difference between two film ratings may be determined to be 0.5. With such 
radiuses, the standard neighborhood of a value will include all the values that 
are similar to it. If the metric was obtained by clustering, the intracluster distance 
may be selected as the radius. If the values of the domain are scattered arbitrarily, 
the radius may be defined as some fraction of the diameter of the domain. For 
example, if the maximal distance between locations is 50 miles, a standard radius 
of 5 miles will incorporate approximately 10 percent of all locations into each 
standard neighborhood. 

3. VAGUE QUERIES 

In this section we give a formal definition of vague queries; we show how the 

query language QUEL is extended to allow the specification of vague queries; 
and we describe a ranking of answers to vague queries. 

3.1 A Formal Definition 

The formal treatment of vague queries will be done in the context of tuple 
relational calculus. The definitions for tuple calculus are taken with minor 
changes from [24, pp. 156-1581. A tuple relational calculus query is an expression 
of the form (t ] $(t)), where t is a tuple variable and Ic, is a formula in predicate 
logic with t as its only free variable. Except for t, every other tuple variable of + 
must be associated with exactly one relation. The ith component of a tuple 
variable u is denoted u.i. If u is a tuple variable associated with relation R, and 
A is an attribute of R, then u.A denotes the component of u for the attribute A. 
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The atomic formulas of + may be of three kinds: 

(1) (U E R), where R is a relation name and u is a tuple variable. These atomic 

formulas are used to associate variables with relations, as discussed above. 
(2) (u.i 0 u.j), where u and u are tuple variables, and 6 is one of the following 

comparators: =, #, <, 5, >, 2. 
(3) (u.i. 0 a), where u and 0 are as above, and a is a constant. 

Assume now that x and y are values from the same domain D, and let M 
and r be, respectively, a metric on this domain and its radius. We define a new 
comparator, called similar-to (denoted -), as follows: 

x-y if M(z, y) I r 

Thus, two values from the same domain are similar if the distance between 
them is smaller than the radius. We extend the definition of atomic formulas to 
allow 8 to be -. Note that the similar-to comparators in $J may involve different 

metrics and radiuses. 
A vague query is a tuple calculus query that incorporates similar-to comparisons 

(also called vague qualifications). Every specific query can now be relaxed into a 
vague query by substituting any of its equal-to comparators with similar-to 
comparators. Since the answer to a vague query always contains the answer to 
the specific query from which it was derived, the vague query is more general (in 
the sense of [16]) than the specific query. 

Consider, for example, the following tuple calculus query to retrieve all the 
theaters in Westwood that show adventure films: 

(X 1 (3f)(st)(3e)(f E FILM) A (t E THEATER) A (e E ENGAGEMENT) 

A (X = e.THEATER) A (e.FILM = f.TITLE) A (e.THEATER = t.T-NAME) 

A (t.LOCATION = Westwood) A (f.CATEGORY = Adventure)) 

Since the only theaters in Westwood are Egyptian and Village, and neither 
shows an adventure film, this query will return a null answer. 

Assume now that we change this query, so that the location constraint becomes 
t.LOCATION - Westwood. Both operands are from domain NEIGHBORHOOD, 

which has radius 5. Therefore, the new constraint is satisfied with locations that 
are within a distance of 5 from Westwood; namely, Westwood, Beverly- 
Hills, and Santa-Monica.Consequently,thenewquerywillreturnMusic_ 
Hall in Beverly Hills, which shows an adventure film. If, instead, we change 
the category constraint to C.CATEGORY - Adventure, then all theaters in 
Westwood that show either adventure or suspense films will be retrieved (in the 
example, Egyptian). And if both changes are made, then Odeon in Santa 
Monica, which shows a suspense film, will be retrieved in addition to the previous 
two theaters. 

The similar-to comparator can also be used between two variables. Assume 
that the original query is changed so that the constraint that joins the ENGAGE- 

MENT and FILM relations is relaxed to e.FILM - f.TITLE. All Westwood theaters 
that show films that are close to adventure films will be retrieved. Similarly, if 
the constraint that binds the free variable x is relaxed to x - e.THEATER, then all 
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theaters that are close to Westwood theaters that show adventure films will be 
retrieved. 

3.2 Expressing Vague Queries in QUEL 

To demonstrate how vague queries are expressed in an actual query language, we 
choose QUEL [23]. QUEL uses a retrieve statement that corresponds to the 
following family of tuple calculus queries: 

where 6 is a tuple calculus formula composed of atomic formulas with and and 
or operators (note that negation can always be effected by changing atomic 
formulas to use complementary comparators). Although this family of queries is 
a strict subset of the queries of tuple calculus, it is a powerful subset. As an 
example, the previous query is expressed in QUEL as follows: 

range off is FILM 

range of t is THEATER 

range of e is ENGAGEMENT 

retrieve (e.THEATER) 

where &FILM = f.TITLE 

and f?.THEATER = t.T-NAME 

and f.CATEGORY = Adventure 

and t.LOCATION = Westwood 

To specify vague queries in QUEL only one minor syntactical modification is 
necessary: The symbol ?= is used for the similar-to comparator, and vague queries 
are specified simply by using ?= in the where part of the retrieve statement. 
Thus, a request to retrieve the theaters close to Westwood that show adventure- 
like films is expressed with the following vague query: 

range Off iS FILM 

range of t is THEATER 

range of e is ENGAGEMENT 

retrieve (e.THEATER) 

where e.FILM = f.TITLE 

and t?.THEATER = t.T-NAME 

and f.CATEGORY ?= Adventure 

and t.LOCATION ?= Westwood 

Notice that vague queries tend to be short: When trying to express vague 
queries in a system that supports only specific queries, queries often tend to use 
many disjunctions. 

3.3 Ranking Answers 

Each answer to a vague query involves a “compromise,” which is the deviation 
of the values used to derive this answer from the values specified in the query. 
Given two answers, the one that requires a smaller compromise may be considered 
more optimal. It is usually desirable to present the answers to the user in their 
order of optimality. 
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Let (t ) I+!J(~)] be a vague query from the family defined above. Without loss of 
generality we shall assume that 4 is in conjunctive normal form (i.e., C$ is a chain 
of subformulas connected with and operators, where each subformula is a chain 
of atomic formulas connected with or operators). Let (Y~ (i = 1, . . . , k) be the 
subformulas of d, that include vague qualifications, and let & (j = 1, . . . , ni) be 
the vague qualifications in ai. Let T denote the answer to this vague query. 

Assume ul, . . . . U, are tuples from RI, . . . , R,, respectively, that satisfy 4. 
Each similar-to comparison in 4 now involves a particular distance. Let di,j denote 
the distance involved in the comparison pi,j. For each subformula ai there are ni 
such distances. Since ai is a disjunction of comparisons, the minimums of these 
distances is the compromise necessary to satisfy the subformula ai. Since C$ is a 
conjunction of such subformulas, the root of the sum of the squares of the 

minimums is the compromise necessary to satisfy 4. 
Thus, a single distance is obtained for each combination of tuples that satisfies 

4. Since each answer in T may be derived from more than one combination of 
tuples that satisfies 4, the minimum of these single distances is the compromise 
associated with each answer. This final value determines the optimality of each 
answer. 

The individual distances, di,j are not the “raw” distances delivered by the 
metrics but adjusted distances. The adjustment is twofold: To correct for the fact 
that different metrics are involved, each distance is scaled by its respective radius. 
To allow users to express their individual views of optimality, each distance is 
multiplied by a weight supplied by the user. 

For example, assume a person interested in seeing an adventure film in 
Westwood or in Hollywood whose rating is at least 3.0. Except for the rating, 
this person is willing to relax all other constraints. This request is expressed with 
the following vague query: 

range Off is FILM 

range Of t is THEATER 

range Of e is ENGAGEMENT 

retriC?Ve (e.FILM, e.THEATER) 

where e.FILM = f.TITLE 

and e.THEATER = t.T-NAME 

and f.CATEGORY ?= Adventure 

and f.RATING 2 3.0 
and (t.LOCATION ?= Westwood 

Or t.LOCATION ?= Hollywood) 

Assume that this person is more willing to compromise on the location of 
the theater than on the category of the film and expresses these priorities with a 
pair of weights; for example, 1 for LOCATION and 3 for CATEGORY. Every raw 
distance between locations will be divided by 5 (its radius) and multiplied by 1 
(its weight), and every raw distance between film categories will be divided 
by 1 (its radius) and multiplied by 3 (its weight). The films and theaters returned 
in response to this vague query will be ordered according to the root of the sum 
of the squares of the (adjusted) distance between the category of the film and 
adventure and the smallest of these distances: the (adjusted) distance between 
the location of the theater and Hollywood and the (adjusted) distance between 
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the location of the theater and Westwood. This ranking will reflect the priorities 

of this person. 
In our example, the neighborhoods Santa Monica and Beverly Hills are similar 

to Westwood or Hollywood and the film category suspense is similar to adven- 
ture. Consequently, there are four engagements that satisfy this vague query: 
(Star-Wars, Chinese ) is an adventure film showing at a Hollywood 
theater (total compromise 0); (Four-Feathers, Music-Hall) is an adven- 
ture film showing at a Beverly Hills theater (total compromise 1); (Rear- 
Window, Egyptian) is a suspense film showing at a Westwood theater (total 
compromise 3); and ( Robbery, Odeon ) is a suspense film showing at a Santa 
Monica theater (total compromise 3.16). 

4. IMPLEMENTATION 

The extensions to the relational data model that have been described in this 
article should become an integral part of the database system. However, it is also 
possible to provide similar functionalities by constructing a simple system “on 
top” of existing database systems. The advantage of this approach is that it can 
also be implemented in cases in which the database system in use cannot be 
modified. The main disadvantage is that query processing is less efficient. The 
prototype system VAGUE is of the latter kind. VAGUE was implemented on top 
of the database system INGRES [23] using the programming language C in the 
environment of the UNIX’ operating system running on a Sun computer. 

4.1 The Components of VAGUE 

The VAGUE system includes components of three kinds: 

-Metric information. 
-A vague query interpreter. 
-DBA tools. 

Metric information is stored either in INGRES relations (alongside the actual 
database relations) or as executable programs. In particular, each INGRES 
database is augmented with the following items: 

(1) A database relation, called SCHEME, that lists the database relations with 
their attributes and the domains of the attributes (as in Figure 1). Database 
attributes that do not have domains are assumed to be from a single domain 
STUFF.7 

(2) A database relation, called METRIC, that describes the various metrics (as 
in Figure 2). Domains that do not have metrics (and the domain STUFF) are 
assumed to have the metric DEFAULT. 

(3) For each tabular metric, a database relation that stores distances between 
values of the domain (as in Figure 4). Note that tabular metrics assume that the 

6 UNIX is a trademark of AT&T Bell Laboratories. 
7 This relation is necessary only because INGRES does not implement the concept of domains. 
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domain is defined implicitly (i.e., it consists of the values currently stored in the 
database attributes that are associated with it). For efficiency, these relations are 
indexed on their first two attributes. 

(4) For each computational metric, a program that computes distinces between 
values of this domain. Note that computational metrics assume that the domain 
is defined abstractly (in effect, this abstract definition is present only in the form 
of input validity checks that are incorporated into the program). Several popular 
computational metrics such as ABS, STRING, and DATE are built into VAGUE and 
need not be defined separately. 

The vague query interpreter is an interactive program: It solicits from the user 

queries in extended QUEL, processes them in the INGRES system, and delivers 
the results back. This component is described in more detail in Section 4.2. 

The DBA tools assist the database administrator in the administration of the 
metrics, which is still under development. Eventually, we expect to have these 
three tools: 

(1) A program to assist the DBA in updating the relations SCHEME and METRIC. 

It will prompt the DBA for the necessary information, check for validity of the 
inputs, and so on. In particular, if a domain is to have a new tabular metric, it 
will define the necessary INGRES relation that will store the distances. 

(2) A program to assist the DBA in updating tabular metrics. Given the name 
of a tabular metric, it will determine the domain, prompt the DBA with pairs of 
values from this domain that currently do not have distances, solicit the missing 
distances, and store the information as triplets. The program will also check that 
distances are consistent with the requirements of metrics. 

(3) A program to assist the DBA in defining computational metrics. 

Although it is possible to verify that the definitions of tabular metrics satisfy the 
formal requirements of a metric, it is usually impractical to verify the definitions 
of computational metrics. The validity of referential metrics relies on the validity 
of the definitions of the component metrics and on the formula used to combine 
them (e.g., the formula used by VAGUE combines proper metrics into a proper 
metric). Consequently, it is possible to provide VAGUE with distance measures 
that are not true metrics.’ 

4.2 The Vague Query Interpreter 

When invoked with a name of an INGRES database, the vague query interpreter 
(also called VAGUE) verifies that all the necessary relations and programs are 
indeed available. Thereafter, the interpreter goes into query processing mode. 
After a query is entered, VAGUE scans it for vague qualifications. For each 
similar-to found, it determines the domain of its operands (if the operands do 
not have a common domain, an error message is displayed). It then retrieves 
from the relation METRIC the possible interpretations for this similar-to compar- 
ator and displays them to the user. For example, consider the following query to 

* On the other hand, at times it may be desirable to adopt distance measures that are not proper 

metrics (e.g., do not satisfy the triangle inequality). 
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retrieve the theaters near Westwood that are showing films like Psycho: 

range of e is engagement 
range oft is theater 
retrieve (e.theater) 
where e.film ?= "Psycho" 
and e-theater =t.t-name 
and t-location ?= "Westwood" 

First, VAGUE asks the user about the first vague qualification.g 

Analyzing vague qualification 
e.film ?= "Psycho". 
Possible interpretations: 

The first two options represent the known metrics for the domain FILM-TITLE. 

The last option is actually the metric DEFAULT, which the user may select if one 
of the previous metrics are satisfactory. If the user selects 2, then the user’s 
priorities are questioned. 

To discover similarities among values of 
engagement.film you must determine the 
importance of each attribute [O-lo]: 

1. film.director: 1 

2. film.category: 4 

3. film.rating: 3 

The values provided are used to combine the individual distances of the referential 
metric FILM into distances between film titles. 

Similarly, for the second vague qualification, VAGUE displays 

Analyzingvaguequalification 
t.location?="Westwood". 
Possibleinterpretations: 

1. Neighborhoodswithin5miles. 

2. Noneoftheabove (useexactmatchesonly). 

Pleaseselect [l-2]: 1 

’ User answers are shown in italics. 
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At this point VAGUE has all the information necessary to process this vague 
query. However, before doing so, it offers the user two additional options. First, 
it asks the user whether the answer should be ranked. 

I Should answer be ranked? 

1 . Yes 

2. No 

I Please select [l-2]: 7 

If the user selects 1, and the query includes more than one vague qualification, 
then the user’s priorities are examined. 

To rank the answer you must determine the importance 
of each qualification in the overall query [O-IO]: 

1. e.film ?= "Psycho": 1 

2. t-location. f ilm ?= "Westwood": 1 

These weights would enable the system to rank the answer.” 
When answering vague queries, it may be beneficial to include in the answers 

the values of the similar-to operands upon which each answer is based. If the 
user’s notion of similarity does not match the system’s, these augmented answers 
reduce the risk of confusion. In this example, the answer is based on films that 
were found to be similar to the specified title and locations that are similar to 
the specified location, but the user did not request a listing of the films or 
locations. Noticing this, VAGUE gives the user the following option: 

Should answers include the selectedvalues of 
t.location and e.film? 

1. Yes 

2. No 

I Please select [l-21: 1 I 

If 1 is selected, then all the variables that are involved in similar-to comparisons 
are added to the retrieve list. (Note that if a similarity comparison involves two 
variables, then both variables are added.) If 2 is selected, then the query is left 
unchanged. 

Although these interactions with the user are usually quite brief, they can all 
be avoided by switching VAGUE to terse mode. In this mode VAGUE employs 
the primary metrics with equal weights for all referential metrics. It does not 
rank the answer, and it does not expand the retrieve list. Additional switches 
are available for editing queries, obtaining help, and so on. 

At this point VAGUE selects an execution strategy and issues the necessary 
QUEL queries to perform the vague query. When done, it presents the answers 

lo Notice that this ranking would override any other ordering specified in the query itself. 
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to the user. Assuming the user requested both ranking and an expanded retrieve 

list, the result would be 

theater location film 

Egyptian Westwood Rear-Window 
Odeon Santa-Monica Robbery 

If the user did not request an expanded retrieve list, then only the leftmost 
column would be displayed. If the answer is empty, then VAGUE gives the user 

the following option: 

No datamatched. 
You may 

1 . Retry, allowing weaker similarities. 

2. Quit. 

IPlease select I l-21 : 1 

If the user selects 1, then the previous query is repeated with wider neighborhoods. 
VAGUE doubles each of the radiuses used in the processing of the query and 

tries again. This process is repeated until the query matches some data or the 
query is abandoned by the user. 

4.3 Performance Issues 

In the simplest form of query processing, the database system iterates over the 
tuples of a relation searching for tuples that satisfy a combination of specific 
qualifications. Each qualification is of the form A 0 a, where A is a particular 
attribute of the relation, a is a particular constant, and 8 is a specific relationship 
(e.g., =, 2). To check whether a specific qualification is satisfied requires only 
few computer instructions. 

To handle vague queries, this search process must be extended to enable it to 
check vague qualifications of the form A - a. For each such check the system 

must compute the distance between a and the value of the attribute A in the 
current tuple. If the metric is computational (either built-in or user defined), a 
procedure has to be executed. If the metric is tabular, one additional tuple must 
be retrieved from the distance relation. If the metric is referential, two additional 
tuples must be retrieved, and the distances between their components must be 
computed (possibly requiring additional retrievals) and combined. 

Thus, computational metrics do not require any retrieval, and their efficiency 
relies entirely on the number of computer instructions that have to be executed. 
To improve the efficiency of tabular metrics, the distance relations may be 
indexed on the first two attributes. Obviously, referential metrics require the 
most processing. Indeed, VAGUE does not allow “nesting” of referential metrics 
(i.e., the attributes of a reference relation should not be measured themselves by 
referential metrics). The performance of referential metrics would be improved 
considerably if the distances between every two key values of the reference 
relation (i.e., the distance between their descriptions) are precomputed and 
stored. Indeed, the result would be a tabular metric whose distances are derived 

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1988. 



VAGUE: A User Interface to Relational Databases 209 

from a reference relation. The drawback is that users would not be able to provide 
their own weights for the tuple distance computation. 

We have discussed processing of queries by iterating over relations. In practice, 
query processing is often performed through indexes. An index for an attribute 
A stores values of A with pointers to tuples of the relation that have these values 
in attribute A. Specific qualifications, such as A = a, are then processed very 
efficiently. Similarly, it is possible to construct similarity indexes. A similarity 
index for an attribute A will store values of A with pointers to tuples of the 
relation that have similar values in attribute A. Vague qualifications, such as 
A - a, can then be processed efficiently. Similarity indexes can be constructed 
for attributes that are measured by any type of metric, except when distances 
cannot be precomputed (i.e., when user-provided weights are to be taken into 
consideration). In principle, a vague query, whose vague specifications involve 
only metrics for which similarity indexes are available, should not require more 
processing time than the corresponding specific query. 

Finally, although vague queries tend to be less efficient than specific queries, 
one should keep in mind that the only alternative to a vague query is to attempt 
a set of specific queries or a more complex query that involves many disjunctions 
(and this alternative is available only if the user is aware of close values). 

4.4 Database Update 

With referential and tabular metrics, database updates may require additional 
distance information. The task of detecting the need for additional distance 
information may be relegated to the referential integrity mechanism [5, chap. 
121 in the underlying database system (assuming that such a mechanism is 
supported). If a domain is measured by a referential metric, then attributes of 
this domain should all be linked through referential integrity constraints to the 
key attribute of the reference relation. If a domain is measured by a tabular 
metric, then the attributes of this domain should all be linked to the first (or 
second) attribute of the distance relation. 

Consider now a user update that affects a database value from domain D. 
Assume D is measured by a referential metric. If the update was in the key 
attribute of the reference relation itself, then, obviously, the necessary distance 
information is available in that relation. If the update was in another database 
attribute, then the system would have already verified that the new value is 
present in the key attribute of the reference relation (and therefore also the 
necessary distance information). Assume now that D is measured by a tabular 
metric. In this case the system would have already verified that the new value is 
present in the first (or second) attribute of the distance relation. That is, the 
distance of this new value from at least one other value is available. Until all 
other distances are provided, the distances between this value and other values 
will be estimated by the diameter. 

Integrity constraints can also be used to check that each tabular metric is 
consistent with the requirements of a metric (e.g., the triangle inequality). 

5. INCOMPLETE INFORMATION 

In recent years there has been much interest in issues regarding databases with 
incomplete information (for a review of this topic see [13, chap. 121). Incomplete 
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information in metricized databases involves two new issues, first, how the 
availability of distances affects the conventional approaches to incomplete infor- 
mation, and, second, how to deal with incompleteness of the distance information 
itself. The discussion in this section focuses on tabular metrics; however, much 
of it can be adapted to other types of metrics. 

5.1 Partial Metrics 

Data distances are information, and, like other kinds of database information, it 
may be incomplete (i.e., the metric is only a partial function). Distances that are 
missing may be estimated with the following method. 

Let M be a partial metric on domain D, and let d be the diameter of D. Initially, 
all unknown distances are estimated with the range [0, d]. Assume that M(u, u), 
where u, v E D, is such an estimated distance. Let w E D be a third value and 
assume that both M(u, w), and M(v, w) are known distances. The triangle 
inequality constraint provides information on the distance between u and u. This 
distance must maintain 

1 M(u, w) - M(w, u) 1 5 Mb, u) 5 M(u, w) + M(w, u) 

And, in general, let 

p=max(lM(u,w)-M(w,u)((wED} 

q = min(M(u, w) + M(w, u) I w E Dj 

Then p 5 M(u, u) 5 q. Thus the triangle inequality constraints provide a better 
(i.e., narrower) range [p, q], as an estimate for the unknown distance between 
u and v. 

As an example, consider the previous database and assume that a new value 
Ma1 i bu is added to domain NEIGHBORHOOD and that the only known distances 
from Malibu are 

Malibu Beverly-Hills 10 

Malibu Santa-Monica 7 

Distances from Malibu to the other three places are estimated as follows: 

Malibu Downtown [13, 251 
Malibu Hollywood [8, 181 

Malibu Westwood [5, 121 

Consequently, a query that involves, for example, locations within 15 miles from 
Malibu willconsider Santa_Monica,Beverly-Hills, and Westwood. Of 
course, these range distances will introduce range distances into any other metric 
that is based on this metric (e.g., the metric THEATER). 

5.2 Located Nulls 

We have discussed the situation in which the distance between two known values 
is unknown. The dual situation, when a value is unknown, but its distance from 
some other values is known, is also interesting. 
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Often, the value that should be stored in a particular position in a tuple is not 
known, but it is clear that some appropriate value does exist. The prevailing 
approach in such situations is to fill these “vacancies” with null values. The 
information encapsulated in such nulls is rather limited: A value does exist but 
is missing. With marked nulls [13, p. 3791 it is also possible to capture situations 
in which the same missing value is known to occupy several “vacancies.” 

If marked nulls are treated as regular values of the corresponding domain, then 
distances may involve them as well. As marked null for which some distance 
information is available (whether exact or only range estimates) is termed a 
located null. 

The advantage of located nulls is that they participate in retrieval. As an 
example, consider the previous database and a film called Duck-Soup, whose 
category is unknown. Although the person who provided the information about 
this film was unsure about its category, it could be described as “having elements 
of both a comedy and a musical.” If a simple null value is stored under CATEGORY, 

this film would never be retrieved on the basis of its category. In a metricized 
database, however, the distances of this null value from other values may be 
recorded. For example, the distances between the category of DUCLSOUP and 
both Comedy and Musical may be estimated to be in the range [0, r], where r 
is the standard radius. In this way, the information available is captured, and 
thereafter this film will be retrieved whenever a query specifies its category as 
either “close to comedy” or “close to musical.” 

The information encapsulated in a located null may also be communicated 
back to the users. Whenever a located null has to be printed, it can be described 
in terms of values that are in its neighborhood. Thus, in response to a query on 
the CATEGORY of Duck-Soup, the systemwouldprint - (Comedy,Musical). 

6. CONCLUSION 

Many retrieval requests are intrinsically vague, and systems that allow users to 
express vague queries directly (rather than require them to iterate through 
numerous specific queries) are more cooperative and possibly more efficient. 
Although issues of vague retrieval have been addressed in related disciplines, 
particularly information retrieval and fuzzy systems, current relational database 
technology does not provide adequate tools for performing vague retrieval. 

The purpose of VAGUE is to enhance relational database systems with vague 
retrieval capabilities. The principal design guideline behind VAGUE has been to 
realize this goal with only minimal deviation from this popular model. This was 
achieved by extending the model with a single concept (data metrics) and a 
standard query language with a single feature (a similar-to comparator). The 
metric DEFAULT guarantees that standard databases are indeed a special case of 
metricized databases, and it allows database designers to introduce metrics only 
where they appear to be useful. The experience of VAGUE suggests that with 
modest programming effort it is possible to extend current relational database 
systems to provide useful vague retrieval capabilities (possibly even through 
interfaces that are purely external). 
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VAGUE incorporates several features that contribute to its flexibility. For 
example, it allows multiple metrics for each domain, with the ability to select the 
appropriate metric for each query; it allows users to judge the relative importance 
of attributes of referential metrics; and it allows users to express their willingness 
to compromise in retrievals that involve several vague qualifications. 

The design of VAGUE represents a compromise between the sometimes 
conflicting requirements for simplicity, flexibility, and efficiency. Some examples 
of design compromises are described below. Users of VAGUE cannot provide 
their own similarity thresholds for each vague qualification. It was observed that 
this will require that users become familiar with particular data metrics. Instead, 
VAGUE allows its users to double the radius and repeat the query. Similarly, 

except for the ability to enter weights for referential metrics, users of VAGUE 
are limited to interpretations of similarity (i.e., metrics and radiuses) that have 
been provided by others. Although it is possible to design an interface that will 
permit users to introduce their own interpretations of similarity, it was deter- 
mined that the complexity of this task usually would exceed the expertise of 
many users, especially casual users. Instead, this task is reserved for database 
designers or administrators, and users are invited to select from menus of metrics 
that are currently supported. To prevent the querying process from becoming too 
tedious to the user, VAGUE tries to be economical in its dialogue with the user. 
At several places it may be possible to gain flexibility by additional interaction; 
for example, when a vague query does not match any data, it is possible to ask 
the user which similar-to comparator should be weakened (currently, VAGUE 
increases all radiuses simultaneously). Finally, since each tuple in an answer to 
a vague query must satisfy all the vague qualifications, it is possible that a tuple 
would not be retrieved, even if its total compromise is smaller than that of tuples 
that were retrieved. This approach was adopted primarily for reasons of efficiency. 
In addition, because the combination of individual distances into a single distance 
is sometimes risky, VAGUE prefers not to rely on it for determining its answers, 
only for ranking them. 

The issue of appropriate similarity measures for retrieval has been researched 
and debated extensively. Our purpose in designing and implementing VAGUE is 
not to resolve this issue by adopting any one particular approach but to provide 
relational databases with a flexible mechanism with which different kinds of data 
metrics may be implemented and tested. 

A legitimate concern is that vague queries will be satisfied by meaning- 
less values, and we already emphasized the importance of selecting all the 
metrics and parameters carefully. Also, by extending the answers to include 
the values with which the vague qualifications were satisfied (a feature available 
in VAGUE), users can monitor the judgements made by the system. Finally, it 
can be assumed that users who consciously present vague queries (to systems or 
to humans) are well aware of the fact that subjective judgement is involved 
and would probably examine answers to vague queries more carefully than 
answers to specific queries. 
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