
VAGUE: A User Interface to Relational
Databases that Permits Vague Queries

AMIHAI MOTRO

University of Southern California, Los Angeles

A specific query establishes a rigid qualification and is concerned only with data that match it

precisely. A vague query establishes a target qualification and is concerned also with data that are

close to this target. Most conventional database systems cannot handle vague queries directly, forcing

their users to retry specific queries repeatedly with minor modifications until they match data that

are satisfactory. This article describes a system called VAGUE that can handle vague queries directly.

The principal concept behind VAGUE is its extension to the relational data model with data metrics,

which are definitions of distances between values of the same domain. A problem with implementing

data distances is that different users may have different interpretations for the notion of distance.

VAGUE incorporates several features that enable it to adapt itself to the individual views and

priorities of its users.

Categories and Subject Descriptors: HZ.1 [Database Management]: Logical Design-&a models;

H.2.3 [Database Management]: Languages--query languages; H.2.4 [Database Management]:

Systems-query processing; H.3.3. [Information Storage and Retrieval]: Information Search and

Retrieval-retrieval models

General Terms: Design, Human Factors, Languages

Additional Key Words and Phrases: Approximate match retrieval, database, data metric, neighbor-

hood query, relational database, user interface, vague query

1. INTRODUCTION

Requests for data can be classified roughly into two kinds: specific queries and
vague queries. A specific query establishes a rigid qualification and is concerned
only with data that match it precisely. Some examples of specific queries are
“How much does Jones earn?” or “When does flight 909 depart?” If the database
does not contain salary information on Jones or departure time for flight 909,
null answers should be returned; the user is not interested in the earnings of
somebody else or in the departure time of a different flight. A vague query, on
the other hand, establishes a target qualification and is concerned with data that
are close to this target. As an example, consider “List the inexpensive French
restaurants in Westwood.” If there are none, a moderately priced Continental

This work was supported in part by National Science Foundation grant IRI-8609912 and by an

Amoco Foundation Engineering Faculty Grant.

Author’s address: Computer Science Department, University of Southern California, University Park,

Los Angeles, CA 90089-0782.
Permission to copy without fee all or part of this material is granted provided that the copies are not

made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association

for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific

permission.

0 1988 ACM 0734-2047/88/0700-0187 $01.50

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1988, Pages 187-214.

188 . Amihai Motro

restaurant in Santa Monica may have to do. Similarly, when a project calls for

experienced C programmers with background in applied mathematics, we may

want the personnel database to mention also that there is an engineer with some
knowledge of Pascal.

Most conventional database systems cannot handle vague queries directly.
Consequently, they must be emulated with specific queries. Usually, this means
that the user is forced to retry a particular query repeatedly with alternative
values until it matches data that are satisfactory. If the user is not aware of any
close alternatives, then even this solution is infeasible.

In this article we describe a system called VAGUE that extends the relational
data model [3] to provide it with vague retrieval capabilities. An initial scheme
for handling vague queries in relational databases was proposed in [171.

1.1 Outline of Approach

To determine similarity between data values we introduce the notion of distance.

Each database domain is provided with a definition of distance between its values
called duta metric. For example, in a database on restaurants there may be
metrics to measure distances between cuisines, between locations, between price
ranges, as well as a metric to measure distances between restaurants.

To express vague queries we introduce a vague selection comparator, called
similar-to. A similar-to comparison is satisfied with data values that are within a
predefined distance of the specified value. For example, the vague comparison
“location similar-to Westwood” may be satisfied by Westwood, Santa Monica,
and Beverly Hills.

Thus, the previous specific query “List the restaurants whose cuisine is French,
whose price range is inexpensive, and whose location is Downtown” may be
relaxed into a vague query such as: “List the restaurants whose cuisine is similar-
to French, whose price range is similar-to inexpensive, and whose location is
similar-to Downtown.”

This model is quite straightforward, and its satisfactory operation relies almost
entirely on the quality of the metrics that are provided for the individual domains.
Here, VAGUE allows the database designer four choices: using one of several
built-in metrics; providing a procedure that computes the distance between every
two elements of the domain; providing a relation that stores the distance between
every two elements of the domain; or using a reference relation (an existing
database relation that is keyed on this domain). In the latter case, distances
between elements of the domain would be defined as distances between their
tuples in the reference relation, where tuple distance is defined as a combination
of the individual distances between their corresponding components.

Each tuple in the answer to a query that includes several vague qualifications
involves several deviations from the specific values mentioned in these qualifi-
cations. By combining these individual deviations into a single value, VAGUE
can present the answer to the user in order of optimality.

Thus, there are two occasions when VAGUE combines several component
distances into a single distance: in one of its metric types and in the presentation
of vague answers. The particular formula VAGUE uses for combining distances
is discussed in Section 1.3.3.

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1988.

VAGUE: A User Interface to Relational Databases l 189

1.2 Design Considerations

The design of VAGUE reflects three fundamental requirements:

Conceptual Simplicity Within a Relational Framework. The purpose of
VAGUE is to enhance a relational database system with vague retrieval capabil-
ities. The relational data model is adopted primarily because of its widespread
popularity, the simplicity of its structures, and the advantages of a formal query
language such as the relational calculus. An important design guideline is to
realize this goal with only minimal deviation from this popular model. The
relational data model is extended with a single concept, data metrics, and the
query language is extended with a single feature, a similar-to comparator. (Indeed,
the relational data model is generalized since a nonmetricized database is a
particular type of a metricized database.) To present queries, users need only to
know about the new comparator.

Adaptability. To be useful, a system that implements vague queries must be
able to adapt itself to the views and priorities of its individual users. VAGUE
incorporates three adaptability features. (1) Often, distances between values of a
given domain may be measured according to various metrics. For example,
distances between values of domain CITY may be defined in miles “as the crow
flies,” or as shortest driving distances, or even as differences between the names
of the cities. VAGUE permits multiple metrics for the same domain. When a
query makes use of a similar-to comparator, the user is presented with the various
possible semantics of this comparator in its present context and is asked to
select. (2) With referential metrics, one of the metric types available in VAGUE,
individual users are allowed to influence the definition of the metric according to
their own views. For example, the distance between two cities may be defined as
a combination of the distances between some of their available attributes, such
as size of population, climate, and employment rate. If such a metric is selected,
the user is allowed to judge the relative importance of the various attributes in
the overall distance. (3) When a query involves several vague qualifications, users
are allowed to express their relative importance in the overall query. For example,
consider the previous vague query about restaurants whose cuisine is similar to
French, whose price range is similar to inexpensive, and whose location is similar
to Downtown. Each tuple in its answer involves three deviations from the
specified values, which are then combined so that the answer may be presented
in order of optimality (i.e., “best” tuple first). However, it may be that the user
has a different willingness to compromise on the various qualifications; for
example, the user may be willing to compromise more on the type of the
restaurant than on its price range or location. VAGUE allows users to express
their relative willingness to compromise and uses this input in the definition of
the corresponding metric.

DBMS Externality. Ideally, data metrics and the similar-to comparator
should be an integral part of the database system. However, it is also possible to
enhance existing database systems by implementing these capabilities “on top”
of these systems, an advantage when the database system cannot be modified.
Since all distance information is represented as auxiliary relations and compu-
tations, it is relatively easy to maintain (e.g., add new metrics or modify existing
metrics).

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1988.

190 l Amihai Motro

1.3 Related Research

1.3.1 ARES. A system that resembles VAGUE in its overall goals is ARES
[8]. The designers of ARES extended a Query-by-Example (QBE) [29] interface
with a similar-to operator. QBE queries are then translated into extended
relational algebra operations called ambiguous select, ambiguous project, and
ambiguous join. These, in turn, are translated into conventional relational algebra
operations. ARES addresses the basic issue of “similarity matching” and it
includes several useful graphics-based tools. However, it has several basic flaws,
mainly: (1) Distances can only be defined via tables. This precludes defining
distances for infinite domains, such as the distance between any two given strings
(VAGUE has additional types of metrics such as computational and referential).
(2) ARES lacks any of the adaptability features described above; for example, it
does not allow multiple metrics for the same domain, and it cannot adapt itself
to the views and priorities of individual users. Finally, (3) the extensions of the
relational data model appear to be unnecessarily complex. Altogether, although

ARES is a useful system that can benefit its users, these flaws substantially limit
its usefulness.

1.3.2 Fuzzy Databases. The issue of vague retrieval has also been addressed in

the context of fuzzy systems.
Buckles and Petri [2] assume that each database domain has an associated

similarity matrix that assigns a value between 0 and 1 with each pair of domain
elements. Relations are extended to allow values that are sets of domain elements.
The output of standard relational algebra operators, such as join or project, is
postprocessed to merge tuples (by performing unions of their respective compo-
nents) if a prespecified similarity threshold is not violated.

Other researchers [19, 281 define fuzzy databases that adhere more closely to
the theory of fuzzy sets and systems. The main feature of a fuzzy database is
that it can store imprecise information of various kinds; for example, Tom’s
residence is either in Boston or in New York, Mary’s hair color is .6 brown and
.4 black, John is .9 smart, Betty’s age is young. Definitions of fuzzy attribute
values (such as “young”) and fuzzy comparators (such as “much-greater-than”)
are provided by the system to allow users to formulate vague queries.

In comparison, our approach here assumes conventional databases that store
onlyprecise information, and our solutions are intended to be used in conjunction
with conventional database technology: Existing databases may be metricized by
providing the necessary distance information (this can even be done gradually
over a period of time), and existing database systems can be extended (either
internally or externally) to handle vague queries.

1.3.3 Information Retrieval Systems. The notion of proximity of information
items, such as documents, has been investigated in conjunction with information
retrieval systems [21, 251. The most basic model describes each document with a
set of relevant terms. This description is then converted to a vector over the
space of all possible terms: If a term appears in the description of an item, then
the corresponding position in its vector is set to 1; otherwise it is set to 0.
A retrieval request specifies a set of applicable terms and is converted to a vector

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1988.

VAGUE: A User Interface to Relational Databases l 191

over the same space. The request is then satisfied by all the documents whose
vectors are “similar” to the vector of the request.

A standard refinement of this basic model is to use weighted terms. The vector
position that corresponds to a particular term denotes the degree of relevance of
this term to the particular document. These weights may be assigned manually,
or they may be derived automatically from frequency counts of the terms in the
document. The weight of a particular term in a particular vector expresses the
importance of this term in comparison with the other terms that describe this
document, as well as the relevance of this term to the document in comparison
with other documents. A retrieval request describes the “ideal” document by
means of a similar vector of weighted terms (these terms may also be viewed as
a specification of the relative importance of the terms in the overall request).

Numerous measures have been suggested for the critical problem of determin-

ing the similarity of two such vectors, most notably inner product, Dice, Jaccard,
cosine, and overlap.’ The inner product is defined as the sum of the products of
the corresponding components of the two vectors, When the components are
binary, the inner product counts the matching terms. The other four measures
may all be considered as normalized versions of the inner product [25, pp. 3%
421. The relative effectiveness of the various similarity measures has been studied
both empirically and analytically. However, although these studies may show
that various measures have individual characteristics, they are often inconclusive

WI.
As mentioned earlier, there are two occasions when VAGUE must deal with

vector distances: in referential metrics, where the distance between two tuples
defines the distance between their corresponding key values, and in the answer
space, where the distance between answer tuples and the “ideal” tuple is used for
ranking the answer. Thus, while in information retrieval systems the components
of vectors are indications of whether particular terms apply to the document (or,
with weighted terms, of how strongly they apply), here they are arbitrary database
values. Consequently, the previous measures, which were designed for comparing
vectors of indicators, are not applicable to vectors of values. Instead, VAGUE
applies individual component metrics to derive from the two vectors a vector of
their component distances. Then, it weights the individual distances (this is
similar to using weighted terms). Finally, it maps the vector into a single distance
by computing its Euclidean length.

VAGUE’s approach is to provide an environment for defining any desirable
metric. Thus, various metrics can be defined for the database domains, and users
may select the appropriate metric in a brief dialogue that follows the submission
of a vague query. In accordance with this approach, it would appear desirable to
allow users to select from different formulas for mapping the vector of distances
into a single distance in the two aforementioned occasions (currently users can
only provide the weights). However, although casual users can be expected to
select intelligently among various domain metrics (their semantics may be
described in plain language), the same cannot be assumed for the selection of
formulas for mapping vectors of distances. The database designer should exper-
iment with the various formulas and select the formula that performs most

1 For example, the SMART information retrieval system [ZO] often uses the cosine measure.

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1988.

192 l Amihai Motro

satisfactorily. In the case of referential metrics, a particular formula may be
associated with each referential metric. However, in the case of answer spaces, it

is not feasible to associate a formula with each answer space (for a database with
n attributes there are 2” possible answer spaces). A possible compromise here is
to allow the database designer to select one formula for the entire database.’
Multiple mapping formulas are not yet available in the current version of
VAGUE.

A language approach to best-match querying is advocated by [27]. The authors
argue that the notion of closeness is extremely user dependent, and it is therefore
infeasible to adopt predefined concepts of closeness. Instead, they suggest lan-
guage features that allow users to specify their retrieval priorities. For example,
when either of several values may be satisfactory, a special operator will enable
the user to specify an order of preference (this should be preferred to the standard
disjunction operator). Although most of the suggested language features appear
useful, it should be noted that this solution does not address directly the issue of
vague retrieval; for example, what if the user can just name a single value, and

the system cannot match it? Although we concur with the opinion that the
interpretation of proximity is individual, VAGUE demonstrates that the problem
may be addressed in part by allowing multiple interpretations (some of them
even parameterized) and determining the suitable interpretation via a brief
dialogue with the user.

1.3.4 Query Constructors, Browsers, and Cooperative Interfaces. In our model,
vague queries are distinct from specific queries only by their “soft” selection
qualification. Thus, the same level of expertise is required to issue specific or
vague queries. Another kind of vague request occurs when the user does not
possess the knowledge required for formulating a proper query (this may be
because the user is not familiar with the data model, the query language, the
organization of the particular database, or because the user does not have a well-
defined retrieval goal). This problem has been approached in two ways. Interactive
query constructors help users crystalize their requests. A notable example is
RABBIT [26], which applies a paradigm of repetitive reformulation of an initial
goal. At each iteration in the construction process the user is presented with the
answer to the current query. Having observed the answer, the user can then
refine the query by critiquing it in one of several ways available. Browsers, such
as TIMBER [22], SDMS [7], BAROQUE [15] or KIVIEW [18], provide users
with a variety of features for exploratory searches. Often, the information is
represented as a network, and the retrieval process is iterative. At each iteration
the user is presented with information that corresponds to the current location
on the network. The user can then issue a new command to advance the search
in a particular direction. Elements of browsers are also present in the ME system
[9]. The ME database is a network of files connected through links which
represent weighted terms. A retrieval request is a set of terms, and a spreading
activation process is used to match the files that are most relevant. As the user
changes the terms of the query in one terminal window, the window that shows
the matched files is updated dynamically.

’ Note that the formula does not determine the tuples in the answer, only their ranking.

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1988.

VAGUE: A User interface to Relational Databases - 193

One obvious way to relax a selection qualification is to delete one of its
conjuncts3 Although this method (which is equivalent to using a metric with an
infinite radius) is cruder than relaxing that conjunct with a vague qualification,
it can be used with standard (nonmetricized) databases. The effect of deleting a
conjunct is to create a more general query (a query whose answer will contain
the answer to the original query). This method was employed in various mecha-
nisms for detecting erroneous presuppositions in user queries and for generating
cooperative responses [4, 11, 161.

A user interface to databases that is capable of handling vague requests appears
to be more “intelligent.” This is because answering questions with information
that is only close to what was requested, or somehow related to it, is a common
feature of human interaction. Such interaction is known as cooperative behavior,
and there has been much focus on how to improve man-machine interaction by
emulating such behavior through various techniques. Various cooperative inter-
faces (including those mentioned above) are discussed in [11. Not surprisingly,
this added intelligence is made possible by including additional semantic infor-
mation in the database, namely distances.

1.3.5 Database Semantics. Data metrics express important semantic infor-
mation about the domains. This information permits certain manipulations of
the data (such as safe substitutions of some values by similar values), and it can
be used as evidence that two differently named attributes are similar. Thus, the
concept of metricized domains is in the same general class as abstract domains
[14] and ordered domains [6].

We have chosen to represent the semantics necessary to process vague queries
(i.e., similarity information) through the mechanism of metrics and to retain the
standard relational data model. An alternative approach would be to define a
data model with structures rich enough to store these semantics; for example,
some variant of a semantic network with a new type of link between its objects
that would specify their proximity.

1.3.6 Null Values. Sometimes, the value that should be stored in a particular
position in the database is not known, but it is clear that some appropriate value
does exist. The prevailing approach in such situations is to fill these “vacancies”
with null values [13, chap. 121.

If nulls are treated as regular values, then distances may involve them as well.
We use the term located null for null values for which some distance information
is available. The advantage of located nulls is that they participate in retrieval.
Consider, for example, a restaurant whose exact type is not available but is
known to serve food which is similar to French. If the null value that represents
the type of the restaurant is located within the neighborhood of French, then
every query about restaurants whose type is close to French will retrieve this
particular restaurant. Thus, with data metrics, conventional database systems
can be extended in two important ways: They can process requests that are less
specific, and they can store information that is less specific.4

3 One may also consider adding a disjunct, but this is much less straightforward.
4 In this respect, null values are like fuzzy values.

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1988.

194 l Amihai Motro

1.4 Overview of This Article

The remainder of this article is organized as follows. Section 2 provides a formal

definition of the model. The concepts of data metric and metricized databases
are defined, various types of metrics are introduced, a detailed example is
described, and issues of metric selection are discussed. Section 3 shows how data
metrics are applied in retrieval. A formal definition of vague queries is given,
QUEL, the query language of choice in this project, is extended to express vague
queries, and the ranking of answers to vague queries is defined. Section 4
is devoted to the prototype implementation. The various components of the
VAGUE system are described, and issues of update and performance are dis-
cussed. Section 5 is devoted to issues of incomplete database information in the
presence of data metrics. Two kinds of information are discussed: missing data
values and missing data distances. Section 6 concludes with a brief summary.

2. THE MODEL

In this section we define data metrics and metricized databases; we describe
different methods for specifying metrics; we give a detailed example of a metri-
cized database; and we provide guidelines for selecting appropriate metrics for
the domains of a given database.

2.1 Metricized Databases

We assume the standard definition of relational databases. In particular, we
distinguish between attributes and domains. An attribute is a named column in
a relation. A domain is a set of values (possibly infinite). Each attribute is
associated with one domain. The domain contains all the values that may appear
in that attribute. In practice, a domain is either defined abstractly (e.g., a number
in the range l-100, an alphabetic string of at most 24 characters), or implicitly
(i.e., it comprises the values currently stored in the database attributes that are
associated with it), or there is a reference relation, whose key attribute defines
all the values of the domain (e.g., relation COUNTRY whose key is COUNTRY-

NAME serves as reference for attribute CITIZENSHIP in relation PERSON).

Let D be a database domain. A data metric for D is a function M: D X D + R
such that Vx, y E D:

(1) Mb, Y) 2 0
(2) M(x, y) = 0 iff x = y

(3) Mb, Y) = M(Y, 3~)
(4) ‘dz E D: M(n, y) 5 M(r, z) + M(z, y)

In addition to this standard definition of metric, we associate with each domain
and metric two additional parameters: a diameter and a radius. The diameter is
an upper bound on all the distances among the values of the domain; it will be
used for estimating unknown distances (if an upper bound cannot be provided,
then 03 is used). The radius establishes standard neighborhoods; given a value, it
determines the values that are close to it. The radius is also used to scale distances;
dividing a distance by the radius yields a measure of proximity that is independent
of the particular domain and metric.

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1988.

VAGUE: A User Interface to Relational Databases l 195

A database is metricized if at least one data metric is associated with each of
its domains. If a domain has more than one metric, then one of them is designated
as the primary metric.

2.2 Types of Data Metrics

In general, data metrics can be thought of as procedures with input (x, y) and
output M(x, y). These procedures may involve both computation and retrieval.
Three types of database metrics are of particular interest: computational, tabular,

and referential, and they are described below.
A data metric is computational if it derives its distances by computation only

(i.e., no retrievals are involved). An example of a computational metric on a
numerical domain, such as SALARY, is the absolute value of the difference between
two numbers. An example of a computational metric on a nonnumerical domain,
such as PERSON-NAME, is a procedure that determines the degree of similarity
between two strings of characters.

A data metric is tabular if it derives its distances by retrieval only (i.e., no
computations are involved). The distance between every two values of the domain
is stored in a table, and the metric simply searches this table. Naturally, relations
provide convenient storage for distance tables. An example of a tabular metric is
the geographic distance between locations.

Each database relation has a designated attribute which is its key. Technically,
this key provides a means for unique identification of tuples of the relation.
Semantically, it may be regarded as the topic of the relation. In other words,
the nonkey attributes may be regarded as a description of the key attribute.
Distances between values of the key attribute may then be interpreted as the
differences between their descriptions; that is, some combination of the individual
distances between the corresponding components of the descriptions. In this
definition, some individual distances may be given more weight than others, and
some distances may be ignored altogether. Therefore, each relation provides
distance information for the domain of its key attribute. Such metrics are called
referential metrics. As an example, consider a relation FILM that describes motion
pictures with the following attributes: TITLE, DIRECTOR, CATEGORY, and RATING.

Assume TITLE (of domain FILM-TITLE) is the key, and let (Psycho, Hitch-
cock, Suspense, 3.5)and(Modern-Times, Chaplin, Comedy, 4.0)
be two tuples from this relation. The distance between the titles Psycho and
Mode r n-T ime s may be defined as some combination of the individual distances
between Hitchcock and Chaplin, Suspense and Comedy, and 3.5 and
4.0.

When a domain cannot be provided with a suitable metric, the following
DEFAULT metric should be used:

DEFAULT&y) =
0 if x=y
1

if xfy

When a domain is provided with this computational metric, together with the
radius 0, the effect is that of isolation: Given a value of that domain, no other
value is close to it. Obviously, by using the metric DEFAULT with radius 0
throughout, the database reverts to a conventional (nonmetricized) database.

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1988.

196 l Amihai Motro

RELATION ATTRIBUTE

FILM

TITLE

DIRECTOR

CATEGORY

RATING

THEATER 4
T-NAME

OWNER

LOCATION

CAPACITY

ENGAGEMENT

FILM

THEATER

OPEN-DATE
L

KEY

*

*

*
*

DOMAIN

FILM-TITLE

PERSON-NAME

FILM-CATEGORY

FILM-RATING

THEATER-NAME

THEATER-OWNER

NEIGHBORHOOD

NO-OF-SEATS

FILM-TITLE

THEATER-NAME

DATE

Fig. 1. Scheme of database on films and theaters.

2.3 Example

As an example, Figure 1 describes a database on films and theaters. Each attribute
is followed by its domain, and key attributes a&indicated by a star. Figure 2
describes the metrics of this database. For ea3 domain, one or more metrics are
listed, with the primary metric first. Eachmetric is described by its name and
type, its diameter and radius, and a,shdrt description of the semantics of the
distance. A small instance of this database is shown in Figure 3.5

The Films and Theaters database consists of three relations with a total of
eleven attributes. These attributes draw their values from nine different domains.
The nine domains are measured by seven different data metrics. The data metrics
are described below.

Values of FILM-RATING are assumed to be numbers between 0 and 4, and
values of NO-OF-SEATS are assumed to be integers not greater than 2000. In
each case distances are measured by the computational metric ABS, by which the
distance between two values is the absolute value of their difference.

Values of PERSON-NAME, THEATER-OWNER, FILM-TITLE, and THEATER-

NAME are assumed to be arbitrary strings of characters. In each case distances
are provided by the computational metric STRING, which implements an algo-
rithm that rates the similarity of the strings by values between 0 (identical)
and 1 (entirely different).

Values of DATE are assumed to be strings of the form MM-DD-YY where MM is
a month (Ol-12), DD is a day (Ol-31), and YY is a year (00-99). Distances between
dates are measured by the computational metric DATE as the number of days
between the dates.

Distances between values of FILM-CATEGORY and NEIGHBORHOOD are ob-
tained from tables by these names. These tables are shown in Figure 4.

Finally, FILM-TITLE and THEATER-NAME also have referential metrics,
obtaining their distance information from the relations FILM and THEATER,

5 Film ratings are from Leonard Maltin’s TV Movies (Signet, New York, 1982).

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1988.

VAGUE: A User Interface to Relational Databases l 197

DOMAIN

PERSON-NAME

FILM-TITLE

FILM-CATEGORY

FILM-RATING

THEATER-NAME

THEATER-OWNER

NEIGHBORHOOD

NO-OF-SEATS

DATE

STUFF

METRIC

STRING

STRING

FILM

FILM-CATEGORY

ABS

STRING

THEATER

STRING

NEIGHBORHOOD

ABS

DATE

DEFAULT

TYPE

corn

corn

ref

tab

corn

corn

ref

corn

tab

corn

corn

corn

DIAMETER

1

1

10

3

4

1

10

1

50

2000

365

1

RADIUS

0.2

0.2

2

1

0.5

0.2

2

0.2

5

200

7

0

SEMANTICS

Persons with

similar names

Films with

similar titles

Films with

similar attributes

Film categories that

are most similar

Film ratings within

half notch

Theaters with

similar names

Theaters with

similar attributes

Owners with

similar names

Neighborhoods

within 5 miles

Capacities within

200 seats

Open dates within

7 days

Exact matches

only

Fig. 2. Metrics of database on films and theaters.

respectively. To explain how referential metrics are used, the procedure to
determine the distance between two film titles is subsequently outlined.

First, the descriptions of the two films are retrieved, and the distances between
their directors, categories, and ratings are obtained. Next, these individual
distances are adjusted by multiplying them by 1.83, 1.47, and 2.20, respectively.
Finally, the adjusted distances are combined by means of the root of the sum of
their squares. Denoting individual distances by their attribute names, the distance
between film titles is

d(1.83 * DIRECTOR)’ + (1.47 * CATEGORY)2 + (2.20 * RATING)2.

The adjustment has three purposes: (1) to correct for the fact that different
metrics are involved, (2) to reflect the relative importance of the attributes in
the description, and (3) to guarantee that resulting distances would always be in
a prescribed range. The first purpose is achieved by scaling each distance by its
respective radius; in this example, the three distances are divided by 0.2, 1, and
0.5, respectively. The second purpose is achieved by weighting each distance by
a constant supplied by the user to express the relative importance of this attribute;
in this example, we assume that the multipliers are 1,4, and 3, respectively. Since
the original distances were in the ranges [0, 11, [0, 31, and [0,4], respectively, the
scaled and weighted distances are now in the ranges [0, 51, [0, 121, and [0, 241,
respectively. If we were to combine distances in these ranges, we would

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1988.

I

TITLE
Four-Feathers
Modern-Times
Psycho

Rear-Window
Robbery
Star-Wars
Surf-Party

198 l Amihai Motro

FILM

CATEGORY RATING
Adventure 3.5
Comedy 4.0
Suspense 3.5
Suspense 4.0
Suspense 3.0
Adventure 3.5
Drama 0.0

DIRECTOR
Korda
Chaplin
Hitchcock
Hitchcock
Yates
Lucas
Dexter

ENGAGEMENT

FILM THEATER OPEN-DATE

Modern-Times Rialto 12-19-86
Star-Wars Rialto 12-26-86
Star-Wars Chinese 01-16-87
Rear-Window Egyptian 12-12-86
Surf-Party Village 11-28-86
Robbery Odeon 01-23-87
Modern-Times Odeon 01-30-87
Four-Feathers Music-Hall 11-21-86

Fig. 3. Instance of database on films and theaters.

THEATER

T-NAME OWNER LOCATION CAPACITY

Chinese Mann Hollywood 815
Egyptian UA Westwood 730
Music-Hall Laemmle Beverly-Hills 630
Odeon Cineplex Santa-Monica 414
Rialto Independent Downtown 567
Village Mann Westwood 452

FILM-CATEGORY

VALUE-l

Comedy
Comedy
Comedy
Drama
Drama
Adventure

NEIGHBORHOOD

VALUE-1 1 VALUE-2 (DISTANCE

Beverly-Hills Downtown 15
Beverly-Hills Hollywood 8
Beverly-Hills Santa-Monica 10

Beverly-Hills Westwood 5
Downtown Hollywood IO

Downtown SantaMonica 20
Downtown Westwood 18
Hollywood Santa-Monica 15
Hollywood Westwood IO

Santa-Monica Westwood 5

Fig. 4. Tabular metrics for database on films and theaters.

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1988.

VAGUE: A User Interface to Relational Databases - 199

obtain distances in the range [0, 27.291. To create a range of film distances
that would be between 0 and 10, each individual distance is also multiplied by
(102/27.292)‘/2 = 0.37, yielding the multipliers shown in the formula.

As mentioned earlier, the radiuses specified in the metrics table determine
whether values may be considered “close” or not. For example, two locations are
considered close if they are within 5 miles; two capacities are considered close if
they are within 200 seats; two films are considered close under the computational
metric STRING if they are within 0.2 units of string distance, and under the
referential metric FILM if they are within 2 units of film distance. In the example,
the FILM distance between Psycho and Rear-Window is 1.1, so they are
considered close; on the other hand, Modern-Times and Surf-Party are far
apart: The FILM distance between them is 9.5.

2.4 Metric Design

The process of defining a new database is usually referred to as database design.
A database designer models real world environments with elements of the data
model, such as relations, keys, and constraints. In the extended model this
process now also includes the determination of the appropriate metrics and their
parameters (i.e., diameters and radiuses) for each database domain. Proper
selection of these metrics and parameters is critical to the successful handling of
vague queries. Some guidelines follow.

Often, database domains are numerical, and the absolute value distance is
satisfactory. Sometimes, although a domain is nonnumerical, its values are
strictly ordered (for example, a domain RANK with values such as Exe e 11 en t,
Good, Fair, and Poor). Such domains are easily metricized by mapping the
domain onto a range of integers (while preserving the order), using the absolute
value metric to derive distances, and then storing the distances in a table.

Metrics can also be derived from domain partitions. Assume that a domain can
be partitioned into a collection of disjoint sets called clusters, each containing
values that are judged to be similar. A tabular metric can then be defined as
follows: All intracluster distances (distances between two values that are in the
same cluster) are set to 0, and all intercluster distances (distances between two
values in different clusters) are set to 1. This metric can be refined if a hierarchical
partitioning of the domain is available (i.e., clusters are possibly partitioned into
further subclusters). The metric is derived from the clusters at the bottom level
(level 0). Again, the distance between two values that are in the same cluster is
set to 0. The distance between two values that are not in the same cluster‘is set
to the level of the cluster that contains both. For example, if at level 0 x and y
are not in the same cluster, but x: and y are in the same cluster at level n, then
the distance between x and y is set to n. Thus, the hierarchical partitioning
provides more refined intracluster distances. Clustering has been used extensively
in information retrieval systems as an automatic classification method, usually
to improve search performance: When similar documents are clustered together,
then it may be sufficient to compare retrieval requests only with cluster
representatives (for a review of clustering methods see [25, chap. 31 or [21,
pp. 137-1401). However, although document clustering is usually derived from a
similarity measure, the process here is roughly the inverse: We derive a metric

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1988.

200 - Amihai Motro

from clusters that have already been constructed. Indeed, the methods sketched

above for deriving metrics from clusters are the inverses of known methods for
deriving clusters from similarity measures. Possibly, other clustering methods
may be adapted as well.

A domain that is defined by a reference relation may be provided with a
referential metric: The distance between every two values of this domain is
inferred from the difference between their descriptions in the reference relation.
At times, it may be necessary to define a more complex metric, for example, a
metric on character strings that considers similarities in appearance of characters
or similarities in pronunciation (e.g., based on the Soundex method [12, pp. 391-
3921). Such metrics should be defined through a computation. Finally, whenever
a suitable metric cannot be defined, the default metric should be used.

Some data metrics definitions are,permanent. For example, a computational
metric, such as STRING, can be defined to handle every possible pair of values
from that domain. However, tabular metrics may need to be updated after each
addition to the domain. For example, if a new film category is added to FILM-

CATEGORY, its individual distances from every other film category need to be
incorporated into the metric. This suggests that tabular metrics are more suitable
for static domains.

In selecting standard radiuses, a good practice is to adopt the distance that is
the “smallest distance of significance.” For example, a significant difference

between theater capacities may be determined to be 200 seats, and a significant
difference between two film ratings may be determined to be 0.5. With such
radiuses, the standard neighborhood of a value will include all the values that
are similar to it. If the metric was obtained by clustering, the intracluster distance
may be selected as the radius. If the values of the domain are scattered arbitrarily,
the radius may be defined as some fraction of the diameter of the domain. For
example, if the maximal distance between locations is 50 miles, a standard radius
of 5 miles will incorporate approximately 10 percent of all locations into each
standard neighborhood.

3. VAGUE QUERIES

In this section we give a formal definition of vague queries; we show how the

query language QUEL is extended to allow the specification of vague queries;
and we describe a ranking of answers to vague queries.

3.1 A Formal Definition

The formal treatment of vague queries will be done in the context of tuple
relational calculus. The definitions for tuple calculus are taken with minor
changes from [24, pp. 156-1581. A tuple relational calculus query is an expression
of the form (t] $(t)), where t is a tuple variable and Ic, is a formula in predicate
logic with t as its only free variable. Except for t, every other tuple variable of +
must be associated with exactly one relation. The ith component of a tuple
variable u is denoted u.i. If u is a tuple variable associated with relation R, and
A is an attribute of R, then u.A denotes the component of u for the attribute A.

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1988.

VAGUE: A User Interface to Relational Databases 201

The atomic formulas of + may be of three kinds:

(1) (U E R), where R is a relation name and u is a tuple variable. These atomic

formulas are used to associate variables with relations, as discussed above.
(2) (u.i 0 u.j), where u and u are tuple variables, and 6 is one of the following

comparators: =, #, <, 5, >, 2.
(3) (u.i. 0 a), where u and 0 are as above, and a is a constant.

Assume now that x and y are values from the same domain D, and let M
and r be, respectively, a metric on this domain and its radius. We define a new
comparator, called similar-to (denoted -), as follows:

x-y if M(z, y) I r

Thus, two values from the same domain are similar if the distance between
them is smaller than the radius. We extend the definition of atomic formulas to
allow 8 to be -. Note that the similar-to comparators in $J may involve different

metrics and radiuses.
A vague query is a tuple calculus query that incorporates similar-to comparisons

(also called vague qualifications). Every specific query can now be relaxed into a
vague query by substituting any of its equal-to comparators with similar-to
comparators. Since the answer to a vague query always contains the answer to
the specific query from which it was derived, the vague query is more general (in
the sense of [16]) than the specific query.

Consider, for example, the following tuple calculus query to retrieve all the
theaters in Westwood that show adventure films:

(X 1 (3f)(st)(3e)(f E FILM) A (t E THEATER) A (e E ENGAGEMENT)

A (X = e.THEATER) A (e.FILM = f.TITLE) A (e.THEATER = t.T-NAME)

A (t.LOCATION = Westwood) A (f.CATEGORY = Adventure))

Since the only theaters in Westwood are Egyptian and Village, and neither
shows an adventure film, this query will return a null answer.

Assume now that we change this query, so that the location constraint becomes
t.LOCATION - Westwood. Both operands are from domain NEIGHBORHOOD,

which has radius 5. Therefore, the new constraint is satisfied with locations that
are within a distance of 5 from Westwood; namely, Westwood, Beverly-
Hills, and Santa-Monica.Consequently,thenewquerywillreturnMusic_
Hall in Beverly Hills, which shows an adventure film. If, instead, we change
the category constraint to C.CATEGORY - Adventure, then all theaters in
Westwood that show either adventure or suspense films will be retrieved (in the
example, Egyptian). And if both changes are made, then Odeon in Santa
Monica, which shows a suspense film, will be retrieved in addition to the previous
two theaters.

The similar-to comparator can also be used between two variables. Assume
that the original query is changed so that the constraint that joins the ENGAGE-

MENT and FILM relations is relaxed to e.FILM - f.TITLE. All Westwood theaters
that show films that are close to adventure films will be retrieved. Similarly, if
the constraint that binds the free variable x is relaxed to x - e.THEATER, then all

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1988.

202 - Amihai Motro

theaters that are close to Westwood theaters that show adventure films will be
retrieved.

3.2 Expressing Vague Queries in QUEL

To demonstrate how vague queries are expressed in an actual query language, we
choose QUEL [23]. QUEL uses a retrieve statement that corresponds to the
following family of tuple calculus queries:

where 6 is a tuple calculus formula composed of atomic formulas with and and
or operators (note that negation can always be effected by changing atomic
formulas to use complementary comparators). Although this family of queries is
a strict subset of the queries of tuple calculus, it is a powerful subset. As an
example, the previous query is expressed in QUEL as follows:

range off is FILM

range of t is THEATER

range of e is ENGAGEMENT

retrieve (e.THEATER)

where &FILM = f.TITLE

and f?.THEATER = t.T-NAME

and f.CATEGORY = Adventure

and t.LOCATION = Westwood

To specify vague queries in QUEL only one minor syntactical modification is
necessary: The symbol ?= is used for the similar-to comparator, and vague queries
are specified simply by using ?= in the where part of the retrieve statement.
Thus, a request to retrieve the theaters close to Westwood that show adventure-
like films is expressed with the following vague query:

range Off iS FILM

range of t is THEATER

range of e is ENGAGEMENT

retrieve (e.THEATER)

where e.FILM = f.TITLE

and t?.THEATER = t.T-NAME

and f.CATEGORY ?= Adventure

and t.LOCATION ?= Westwood

Notice that vague queries tend to be short: When trying to express vague
queries in a system that supports only specific queries, queries often tend to use
many disjunctions.

3.3 Ranking Answers

Each answer to a vague query involves a “compromise,” which is the deviation
of the values used to derive this answer from the values specified in the query.
Given two answers, the one that requires a smaller compromise may be considered
more optimal. It is usually desirable to present the answers to the user in their
order of optimality.

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1988.

VAGUE: A User Interface to Relational Databases 203

Let (t) I+!J(~)] be a vague query from the family defined above. Without loss of
generality we shall assume that 4 is in conjunctive normal form (i.e., C$ is a chain
of subformulas connected with and operators, where each subformula is a chain
of atomic formulas connected with or operators). Let (Y~ (i = 1, . . . , k) be the
subformulas of d, that include vague qualifications, and let & (j = 1, . . . , ni) be
the vague qualifications in ai. Let T denote the answer to this vague query.

Assume ul, U, are tuples from RI, . . . , R,, respectively, that satisfy 4.
Each similar-to comparison in 4 now involves a particular distance. Let di,j denote
the distance involved in the comparison pi,j. For each subformula ai there are ni
such distances. Since ai is a disjunction of comparisons, the minimums of these
distances is the compromise necessary to satisfy the subformula ai. Since C$ is a
conjunction of such subformulas, the root of the sum of the squares of the

minimums is the compromise necessary to satisfy 4.
Thus, a single distance is obtained for each combination of tuples that satisfies

4. Since each answer in T may be derived from more than one combination of
tuples that satisfies 4, the minimum of these single distances is the compromise
associated with each answer. This final value determines the optimality of each
answer.

The individual distances, di,j are not the “raw” distances delivered by the
metrics but adjusted distances. The adjustment is twofold: To correct for the fact
that different metrics are involved, each distance is scaled by its respective radius.
To allow users to express their individual views of optimality, each distance is
multiplied by a weight supplied by the user.

For example, assume a person interested in seeing an adventure film in
Westwood or in Hollywood whose rating is at least 3.0. Except for the rating,
this person is willing to relax all other constraints. This request is expressed with
the following vague query:

range Off is FILM

range Of t is THEATER

range Of e is ENGAGEMENT

retriC?Ve (e.FILM, e.THEATER)

where e.FILM = f.TITLE

and e.THEATER = t.T-NAME

and f.CATEGORY ?= Adventure

and f.RATING 2 3.0
and (t.LOCATION ?= Westwood

Or t.LOCATION ?= Hollywood)

Assume that this person is more willing to compromise on the location of
the theater than on the category of the film and expresses these priorities with a
pair of weights; for example, 1 for LOCATION and 3 for CATEGORY. Every raw
distance between locations will be divided by 5 (its radius) and multiplied by 1
(its weight), and every raw distance between film categories will be divided
by 1 (its radius) and multiplied by 3 (its weight). The films and theaters returned
in response to this vague query will be ordered according to the root of the sum
of the squares of the (adjusted) distance between the category of the film and
adventure and the smallest of these distances: the (adjusted) distance between
the location of the theater and Hollywood and the (adjusted) distance between

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1988.

204 l Amihai Motro

the location of the theater and Westwood. This ranking will reflect the priorities

of this person.
In our example, the neighborhoods Santa Monica and Beverly Hills are similar

to Westwood or Hollywood and the film category suspense is similar to adven-
ture. Consequently, there are four engagements that satisfy this vague query:
(Star-Wars, Chinese) is an adventure film showing at a Hollywood
theater (total compromise 0); (Four-Feathers, Music-Hall) is an adven-
ture film showing at a Beverly Hills theater (total compromise 1); (Rear-
Window, Egyptian) is a suspense film showing at a Westwood theater (total
compromise 3); and (Robbery, Odeon) is a suspense film showing at a Santa
Monica theater (total compromise 3.16).

4. IMPLEMENTATION

The extensions to the relational data model that have been described in this
article should become an integral part of the database system. However, it is also
possible to provide similar functionalities by constructing a simple system “on
top” of existing database systems. The advantage of this approach is that it can
also be implemented in cases in which the database system in use cannot be
modified. The main disadvantage is that query processing is less efficient. The
prototype system VAGUE is of the latter kind. VAGUE was implemented on top
of the database system INGRES [23] using the programming language C in the
environment of the UNIX’ operating system running on a Sun computer.

4.1 The Components of VAGUE

The VAGUE system includes components of three kinds:

-Metric information.
-A vague query interpreter.
-DBA tools.

Metric information is stored either in INGRES relations (alongside the actual
database relations) or as executable programs. In particular, each INGRES
database is augmented with the following items:

(1) A database relation, called SCHEME, that lists the database relations with
their attributes and the domains of the attributes (as in Figure 1). Database
attributes that do not have domains are assumed to be from a single domain
STUFF.7

(2) A database relation, called METRIC, that describes the various metrics (as
in Figure 2). Domains that do not have metrics (and the domain STUFF) are
assumed to have the metric DEFAULT.

(3) For each tabular metric, a database relation that stores distances between
values of the domain (as in Figure 4). Note that tabular metrics assume that the

6 UNIX is a trademark of AT&T Bell Laboratories.
7 This relation is necessary only because INGRES does not implement the concept of domains.

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1966.

VAGUE: A User Interface to Relational Databases 205

domain is defined implicitly (i.e., it consists of the values currently stored in the
database attributes that are associated with it). For efficiency, these relations are
indexed on their first two attributes.

(4) For each computational metric, a program that computes distinces between
values of this domain. Note that computational metrics assume that the domain
is defined abstractly (in effect, this abstract definition is present only in the form
of input validity checks that are incorporated into the program). Several popular
computational metrics such as ABS, STRING, and DATE are built into VAGUE and
need not be defined separately.

The vague query interpreter is an interactive program: It solicits from the user

queries in extended QUEL, processes them in the INGRES system, and delivers
the results back. This component is described in more detail in Section 4.2.

The DBA tools assist the database administrator in the administration of the
metrics, which is still under development. Eventually, we expect to have these
three tools:

(1) A program to assist the DBA in updating the relations SCHEME and METRIC.

It will prompt the DBA for the necessary information, check for validity of the
inputs, and so on. In particular, if a domain is to have a new tabular metric, it
will define the necessary INGRES relation that will store the distances.

(2) A program to assist the DBA in updating tabular metrics. Given the name
of a tabular metric, it will determine the domain, prompt the DBA with pairs of
values from this domain that currently do not have distances, solicit the missing
distances, and store the information as triplets. The program will also check that
distances are consistent with the requirements of metrics.

(3) A program to assist the DBA in defining computational metrics.

Although it is possible to verify that the definitions of tabular metrics satisfy the
formal requirements of a metric, it is usually impractical to verify the definitions
of computational metrics. The validity of referential metrics relies on the validity
of the definitions of the component metrics and on the formula used to combine
them (e.g., the formula used by VAGUE combines proper metrics into a proper
metric). Consequently, it is possible to provide VAGUE with distance measures
that are not true metrics.’

4.2 The Vague Query Interpreter

When invoked with a name of an INGRES database, the vague query interpreter
(also called VAGUE) verifies that all the necessary relations and programs are
indeed available. Thereafter, the interpreter goes into query processing mode.
After a query is entered, VAGUE scans it for vague qualifications. For each
similar-to found, it determines the domain of its operands (if the operands do
not have a common domain, an error message is displayed). It then retrieves
from the relation METRIC the possible interpretations for this similar-to compar-
ator and displays them to the user. For example, consider the following query to

* On the other hand, at times it may be desirable to adopt distance measures that are not proper

metrics (e.g., do not satisfy the triangle inequality).

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1988.

206 l Amihai Motro

retrieve the theaters near Westwood that are showing films like Psycho:

range of e is engagement
range oft is theater
retrieve (e.theater)
where e.film ?= "Psycho"
and e-theater =t.t-name
and t-location ?= "Westwood"

First, VAGUE asks the user about the first vague qualification.g

Analyzing vague qualification
e.film ?= "Psycho".
Possible interpretations:

The first two options represent the known metrics for the domain FILM-TITLE.

The last option is actually the metric DEFAULT, which the user may select if one
of the previous metrics are satisfactory. If the user selects 2, then the user’s
priorities are questioned.

To discover similarities among values of
engagement.film you must determine the
importance of each attribute [O-lo]:

1. film.director: 1

2. film.category: 4

3. film.rating: 3

The values provided are used to combine the individual distances of the referential
metric FILM into distances between film titles.

Similarly, for the second vague qualification, VAGUE displays

Analyzingvaguequalification
t.location?="Westwood".
Possibleinterpretations:

1. Neighborhoodswithin5miles.

2. Noneoftheabove (useexactmatchesonly).

Pleaseselect [l-2]: 1

’ User answers are shown in italics.

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1988.

VAGUE: A User Interface to Relational Databases - 207

At this point VAGUE has all the information necessary to process this vague
query. However, before doing so, it offers the user two additional options. First,
it asks the user whether the answer should be ranked.

I Should answer be ranked?

1 . Yes

2. No

I Please select [l-2]: 7

If the user selects 1, and the query includes more than one vague qualification,
then the user’s priorities are examined.

To rank the answer you must determine the importance
of each qualification in the overall query [O-IO]:

1. e.film ?= "Psycho": 1

2. t-location. f ilm ?= "Westwood": 1

These weights would enable the system to rank the answer.”
When answering vague queries, it may be beneficial to include in the answers

the values of the similar-to operands upon which each answer is based. If the
user’s notion of similarity does not match the system’s, these augmented answers
reduce the risk of confusion. In this example, the answer is based on films that
were found to be similar to the specified title and locations that are similar to
the specified location, but the user did not request a listing of the films or
locations. Noticing this, VAGUE gives the user the following option:

Should answers include the selectedvalues of
t.location and e.film?

1. Yes

2. No

I Please select [l-21: 1 I

If 1 is selected, then all the variables that are involved in similar-to comparisons
are added to the retrieve list. (Note that if a similarity comparison involves two
variables, then both variables are added.) If 2 is selected, then the query is left
unchanged.

Although these interactions with the user are usually quite brief, they can all
be avoided by switching VAGUE to terse mode. In this mode VAGUE employs
the primary metrics with equal weights for all referential metrics. It does not
rank the answer, and it does not expand the retrieve list. Additional switches
are available for editing queries, obtaining help, and so on.

At this point VAGUE selects an execution strategy and issues the necessary
QUEL queries to perform the vague query. When done, it presents the answers

lo Notice that this ranking would override any other ordering specified in the query itself.

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1988.

208 l Amihai Motro

to the user. Assuming the user requested both ranking and an expanded retrieve

list, the result would be

theater location film

Egyptian Westwood Rear-Window
Odeon Santa-Monica Robbery

If the user did not request an expanded retrieve list, then only the leftmost
column would be displayed. If the answer is empty, then VAGUE gives the user

the following option:

No datamatched.
You may

1 . Retry, allowing weaker similarities.

2. Quit.

IPlease select I l-21 : 1

If the user selects 1, then the previous query is repeated with wider neighborhoods.
VAGUE doubles each of the radiuses used in the processing of the query and

tries again. This process is repeated until the query matches some data or the
query is abandoned by the user.

4.3 Performance Issues

In the simplest form of query processing, the database system iterates over the
tuples of a relation searching for tuples that satisfy a combination of specific
qualifications. Each qualification is of the form A 0 a, where A is a particular
attribute of the relation, a is a particular constant, and 8 is a specific relationship
(e.g., =, 2). To check whether a specific qualification is satisfied requires only
few computer instructions.

To handle vague queries, this search process must be extended to enable it to
check vague qualifications of the form A - a. For each such check the system

must compute the distance between a and the value of the attribute A in the
current tuple. If the metric is computational (either built-in or user defined), a
procedure has to be executed. If the metric is tabular, one additional tuple must
be retrieved from the distance relation. If the metric is referential, two additional
tuples must be retrieved, and the distances between their components must be
computed (possibly requiring additional retrievals) and combined.

Thus, computational metrics do not require any retrieval, and their efficiency
relies entirely on the number of computer instructions that have to be executed.
To improve the efficiency of tabular metrics, the distance relations may be
indexed on the first two attributes. Obviously, referential metrics require the
most processing. Indeed, VAGUE does not allow “nesting” of referential metrics
(i.e., the attributes of a reference relation should not be measured themselves by
referential metrics). The performance of referential metrics would be improved
considerably if the distances between every two key values of the reference
relation (i.e., the distance between their descriptions) are precomputed and
stored. Indeed, the result would be a tabular metric whose distances are derived

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1988.

VAGUE: A User Interface to Relational Databases 209

from a reference relation. The drawback is that users would not be able to provide
their own weights for the tuple distance computation.

We have discussed processing of queries by iterating over relations. In practice,
query processing is often performed through indexes. An index for an attribute
A stores values of A with pointers to tuples of the relation that have these values
in attribute A. Specific qualifications, such as A = a, are then processed very
efficiently. Similarly, it is possible to construct similarity indexes. A similarity
index for an attribute A will store values of A with pointers to tuples of the
relation that have similar values in attribute A. Vague qualifications, such as
A - a, can then be processed efficiently. Similarity indexes can be constructed
for attributes that are measured by any type of metric, except when distances
cannot be precomputed (i.e., when user-provided weights are to be taken into
consideration). In principle, a vague query, whose vague specifications involve
only metrics for which similarity indexes are available, should not require more
processing time than the corresponding specific query.

Finally, although vague queries tend to be less efficient than specific queries,
one should keep in mind that the only alternative to a vague query is to attempt
a set of specific queries or a more complex query that involves many disjunctions
(and this alternative is available only if the user is aware of close values).

4.4 Database Update

With referential and tabular metrics, database updates may require additional
distance information. The task of detecting the need for additional distance
information may be relegated to the referential integrity mechanism [5, chap.
121 in the underlying database system (assuming that such a mechanism is
supported). If a domain is measured by a referential metric, then attributes of
this domain should all be linked through referential integrity constraints to the
key attribute of the reference relation. If a domain is measured by a tabular
metric, then the attributes of this domain should all be linked to the first (or
second) attribute of the distance relation.

Consider now a user update that affects a database value from domain D.
Assume D is measured by a referential metric. If the update was in the key
attribute of the reference relation itself, then, obviously, the necessary distance
information is available in that relation. If the update was in another database
attribute, then the system would have already verified that the new value is
present in the key attribute of the reference relation (and therefore also the
necessary distance information). Assume now that D is measured by a tabular
metric. In this case the system would have already verified that the new value is
present in the first (or second) attribute of the distance relation. That is, the
distance of this new value from at least one other value is available. Until all
other distances are provided, the distances between this value and other values
will be estimated by the diameter.

Integrity constraints can also be used to check that each tabular metric is
consistent with the requirements of a metric (e.g., the triangle inequality).

5. INCOMPLETE INFORMATION

In recent years there has been much interest in issues regarding databases with
incomplete information (for a review of this topic see [13, chap. 121). Incomplete

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1988.

210 l Amihai Motro

information in metricized databases involves two new issues, first, how the
availability of distances affects the conventional approaches to incomplete infor-
mation, and, second, how to deal with incompleteness of the distance information
itself. The discussion in this section focuses on tabular metrics; however, much
of it can be adapted to other types of metrics.

5.1 Partial Metrics

Data distances are information, and, like other kinds of database information, it
may be incomplete (i.e., the metric is only a partial function). Distances that are
missing may be estimated with the following method.

Let M be a partial metric on domain D, and let d be the diameter of D. Initially,
all unknown distances are estimated with the range [0, d]. Assume that M(u, u),
where u, v E D, is such an estimated distance. Let w E D be a third value and
assume that both M(u, w), and M(v, w) are known distances. The triangle
inequality constraint provides information on the distance between u and u. This
distance must maintain

1 M(u, w) - M(w, u) 1 5 Mb, u) 5 M(u, w) + M(w, u)

And, in general, let

p=max(lM(u,w)-M(w,u)((wED}

q = min(M(u, w) + M(w, u) I w E Dj

Then p 5 M(u, u) 5 q. Thus the triangle inequality constraints provide a better
(i.e., narrower) range [p, q], as an estimate for the unknown distance between
u and v.

As an example, consider the previous database and assume that a new value
Ma1 i bu is added to domain NEIGHBORHOOD and that the only known distances
from Malibu are

Malibu Beverly-Hills 10

Malibu Santa-Monica 7

Distances from Malibu to the other three places are estimated as follows:

Malibu Downtown [13, 251
Malibu Hollywood [8, 181

Malibu Westwood [5, 121

Consequently, a query that involves, for example, locations within 15 miles from
Malibu willconsider Santa_Monica,Beverly-Hills, and Westwood. Of
course, these range distances will introduce range distances into any other metric
that is based on this metric (e.g., the metric THEATER).

5.2 Located Nulls

We have discussed the situation in which the distance between two known values
is unknown. The dual situation, when a value is unknown, but its distance from
some other values is known, is also interesting.

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1988.

VAGUE: A User Interface to Relational Databases l 211

Often, the value that should be stored in a particular position in a tuple is not
known, but it is clear that some appropriate value does exist. The prevailing
approach in such situations is to fill these “vacancies” with null values. The
information encapsulated in such nulls is rather limited: A value does exist but
is missing. With marked nulls [13, p. 3791 it is also possible to capture situations
in which the same missing value is known to occupy several “vacancies.”

If marked nulls are treated as regular values of the corresponding domain, then
distances may involve them as well. As marked null for which some distance
information is available (whether exact or only range estimates) is termed a
located null.

The advantage of located nulls is that they participate in retrieval. As an
example, consider the previous database and a film called Duck-Soup, whose
category is unknown. Although the person who provided the information about
this film was unsure about its category, it could be described as “having elements
of both a comedy and a musical.” If a simple null value is stored under CATEGORY,

this film would never be retrieved on the basis of its category. In a metricized
database, however, the distances of this null value from other values may be
recorded. For example, the distances between the category of DUCLSOUP and
both Comedy and Musical may be estimated to be in the range [0, r], where r
is the standard radius. In this way, the information available is captured, and
thereafter this film will be retrieved whenever a query specifies its category as
either “close to comedy” or “close to musical.”

The information encapsulated in a located null may also be communicated
back to the users. Whenever a located null has to be printed, it can be described
in terms of values that are in its neighborhood. Thus, in response to a query on
the CATEGORY of Duck-Soup, the systemwouldprint - (Comedy,Musical).

6. CONCLUSION

Many retrieval requests are intrinsically vague, and systems that allow users to
express vague queries directly (rather than require them to iterate through
numerous specific queries) are more cooperative and possibly more efficient.
Although issues of vague retrieval have been addressed in related disciplines,
particularly information retrieval and fuzzy systems, current relational database
technology does not provide adequate tools for performing vague retrieval.

The purpose of VAGUE is to enhance relational database systems with vague
retrieval capabilities. The principal design guideline behind VAGUE has been to
realize this goal with only minimal deviation from this popular model. This was
achieved by extending the model with a single concept (data metrics) and a
standard query language with a single feature (a similar-to comparator). The
metric DEFAULT guarantees that standard databases are indeed a special case of
metricized databases, and it allows database designers to introduce metrics only
where they appear to be useful. The experience of VAGUE suggests that with
modest programming effort it is possible to extend current relational database
systems to provide useful vague retrieval capabilities (possibly even through
interfaces that are purely external).

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1988.

212 l Amihai Motro

VAGUE incorporates several features that contribute to its flexibility. For
example, it allows multiple metrics for each domain, with the ability to select the
appropriate metric for each query; it allows users to judge the relative importance
of attributes of referential metrics; and it allows users to express their willingness
to compromise in retrievals that involve several vague qualifications.

The design of VAGUE represents a compromise between the sometimes
conflicting requirements for simplicity, flexibility, and efficiency. Some examples
of design compromises are described below. Users of VAGUE cannot provide
their own similarity thresholds for each vague qualification. It was observed that
this will require that users become familiar with particular data metrics. Instead,
VAGUE allows its users to double the radius and repeat the query. Similarly,

except for the ability to enter weights for referential metrics, users of VAGUE
are limited to interpretations of similarity (i.e., metrics and radiuses) that have
been provided by others. Although it is possible to design an interface that will
permit users to introduce their own interpretations of similarity, it was deter-
mined that the complexity of this task usually would exceed the expertise of
many users, especially casual users. Instead, this task is reserved for database
designers or administrators, and users are invited to select from menus of metrics
that are currently supported. To prevent the querying process from becoming too
tedious to the user, VAGUE tries to be economical in its dialogue with the user.
At several places it may be possible to gain flexibility by additional interaction;
for example, when a vague query does not match any data, it is possible to ask
the user which similar-to comparator should be weakened (currently, VAGUE
increases all radiuses simultaneously). Finally, since each tuple in an answer to
a vague query must satisfy all the vague qualifications, it is possible that a tuple
would not be retrieved, even if its total compromise is smaller than that of tuples
that were retrieved. This approach was adopted primarily for reasons of efficiency.
In addition, because the combination of individual distances into a single distance
is sometimes risky, VAGUE prefers not to rely on it for determining its answers,
only for ranking them.

The issue of appropriate similarity measures for retrieval has been researched
and debated extensively. Our purpose in designing and implementing VAGUE is
not to resolve this issue by adopting any one particular approach but to provide
relational databases with a flexible mechanism with which different kinds of data
metrics may be implemented and tested.

A legitimate concern is that vague queries will be satisfied by meaning-
less values, and we already emphasized the importance of selecting all the
metrics and parameters carefully. Also, by extending the answers to include
the values with which the vague qualifications were satisfied (a feature available
in VAGUE), users can monitor the judgements made by the system. Finally, it
can be assumed that users who consciously present vague queries (to systems or
to humans) are well aware of the fact that subjective judgement is involved
and would probably examine answers to vague queries more carefully than
answers to specific queries.

ACKNOWLEDGMENT

The implementation of VAGUE was carried out by Fawzan Malas.

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1988.

VAGUE: A User Interface to Relational Databases l 213

REFERENCES

1. BOLC, L., AND JARKE, M., Eds. Cooperative Interfaces to Information Systems. Topics in

Information Systems, Springer-Verlag, Berlin, West Germany, 1986.

2. BUCKLES, B. P., AND PETRY, F. E. A fuzzy representation of data for relational databases.

Fuzzy Sets Syst. 7,3 (May 1982), 213-226.

3. CODD, E. F. A relational model for large shared data banks. Commun. ACM 23, 6 (June 1970),

377-387.
4. CORELLA, F., KAPLAN, S. J., WIEDERHOLD, G., AND YESIL, L. Cooperative responses to boolean

queries. In Proceedings of the IEEE Computer Society 1st International Conference on Data

Engineering (Los Angeles, Calif., Apr. 24-27). IEEE Computer Society, Washington, D.C., 1984,

pp. 77-85.

5. DATE, C. J. An Introduction to Database Systems. Vol. 1 (4th Ed.). Addison-Wesley, Reading,

Mass., 1986.

6. GINSBURG, S., AND HULL, R. Order dependency in the relational model. Theor. Comput. Sci.

26, 1, 2 (Sept. 1983), 149-195.

7. HEROT, C. Spatial management of data. ACM Trans. Database Syst. 5,4 (Dec. 1980), 493-513.
8. ICHIKAWA, T., AND HIRAKAWA, M. ARES: a relational database with the capability ofperforming

flexible interpretation of queries. IEEE Trans. Softw. Eng. SE-12, 5 (May 1986), 624-634.

9. JONES, W. P. On the applied use of human memory models: the memory extender personal

filing system. Znt. J. Man-Mach. Stud. 25, 2 (Aug. 1986), 191-228.

10. JONES, W. P., AND FURNAS, G. W. Pictures of relevance: a geometric analysis of similarity

measures. J. Am. Sot. Inf. Sci. 38, 6 (Dec. 1987), 420-447.

11. KAPLAN, S. J. Cooperative responses from a portable natural language query system. Artif.

Zntell. 19, 2 (Oct. 1982), 165-187.

12. KNUTH, D. E. The Art of Computer Programming. Vol. 3, Sorting and Searching. Addison-
Wesley, Reading, Mass., 1973.

13. MAIER, D. The Theory of Relational Databases. Computer Science Press, Rockville, Md., 1983.
14. MCLEOD, D. J. High level definition of abstract domain in a relational data base system.

J. Comput. Lang. 2,3 (July 1977), 61-73.

15. MOTRO, A. BAROQUE: A browser for relational databases. ACM Trans. Off. Inf. Syst. 4, 2

(Apr. 1986), 164-181.

16. MOTRO, A. SEAVE: A mechanism for verifying user presuppositions in query systems. ACM

Trans. Off. Znf. Syst. 4,4 (Oct. 1986), 312-330.

17. MOTRO, A. Supporting goal queries in relational databases. In Proceedings of the Zst Interna-

tional Conference on Expert Database Systems (Charleston, S.C., Apr. l-4). Institute of Infor-

mation Management, Technology, and Policy, University of South Carolina, Columbia. SC.,
1986, pp. 85-96.

18. MOTRO, A., D’ATRI, A., AND TARANTINO, L. The design of KIVIEW: an object-oriented browser.

In Proceedings of the 2nd International Conference on Expert Database Systems (Tysons Corner,

Va., Apr. 25-27). George Mason University, Fairfax, Va., 1988, pp. 17-31.

19. PRADE, H., AND TESTEMALE, C. Generalizing database relational algebra for the treatment of

incomplete or uncertain information and vague queries. Inf. Sci. 34,2 (Nov. 1984), 115-143.

20. SALTON, G., Ed. The SMART Retrieval System-Experiments in Automatic Document Process-

ing. Prentice Hall, Englewood Cliffs, N.J., 1971.

21. SALTON, G., AND MCGILL, M. J. introduction to Modern Information Retrieval. McGraw-Hill,

N.Y. 1983.
22. STONEBRAKER, M., AND KALASH, J. Timber: a sophisticated database browser. In Proceedings

of the 8th International Conference on Very Large Data Bases (Mexico City, Mexico, Sept. 8-10).

VLDB Endowment (Morgan-Kaufmann, Los Altos, Calif.), 1982, pp. l-10.

23. SUN MICROSYSTEMS. SunZNGRES Manual Set. Release 5.0 (Part Number 800-1644.Ol), Moun-

tain View, Calif., 1987.

24. ULLMAN, J. D. Principles of Database Systems. Computer Science Press, Rockville, Md., 1982.
25. VAN RIJSBERGEN, C. J. Information Retrieval (2nd Ed.). Butterworths, London, 1979.

26. WILLIAMS, M. D. What makes RABBIT run? Znt. J. Man-Mach. Stud. 21, 4 (Oct. 1984),

333-352.

27. YANG, C. S., AND SALTON, G. Best-match querying in general database systems-a language

approach. In Proceedings of COMPSAC 1978--the IEEE Computer Society 2nd International

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1988.

214 l Amihai Motro

Computer Software and Applications Conference (Chicago, Ill., Nov. 13-16). IEEE Computer

Society, Washington, D.C., 1978, pp. 458-463.

28. ZEMANKOVA, M., AND KANDEL, A. Implementing imprecision in information systems. Znf. Sci.

37,1,2,3 (Dec. 1985), 107-141.

29. ZLOOF, M. Query-by-Example: a database language. IBM Syst. J. 16, 4 (Dec. 1977),

324-343.

Received February 1987; revised February 1988, accepted June 1988.

ACM Transactions on Office Information Systems, Vol. 6, No. 3, July 1988.

