VAL genes regulate vegetative phase change via miR156-dependent and independent mechanisms — [Source link](#)

Jim P. Fouracre, Jia He, Jia He, Victoria J. Chen ...+2 more authors

Institutions: University of Pennsylvania, Cold Spring Harbor Laboratory, Albert Einstein College of Medicine

Published on: 24 Feb 2021 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Vegetative phase change and Epigenetic Repression

Related papers:

- The molecular principles of gene regulation by Polycomb repressive complexes.
- Role of the Polycomb Repressive Complex 2 (PRC2) in Transcriptional Regulation and Cancer
- LincRNA-1614 coordinates Sox2/PRC2-mediated repression of developmental genes in pluripotency maintenance.
- Dynamical modeling of the H3K27 epigenetic landscape in mouse embryonic stem cells
- Possible roles for polycomb repressive complex 2 in cereal endosperm.

Share this paper:

VAL genes regulate vegetative phase change via miR156-dependent and independent mechanisms

Jim P. Fouracre¹, Jia He¹,³, Victoria J. Chen¹, Simone Sidoli² and R. Scott Poethig¹*

¹ Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
² Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
³ Current address: Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA

* Corresponding author: Poethig, R. S. (spoethig@sas.upenn.edu)
Abstract

How organisms control when to transition between different stages of development is a key question in biology. In plants, epigenetic silencing by Polycomb repressive complex 1 (PRC1) and PRC2 plays a crucial role in promoting developmental transitions, including from juvenile-to-adult phases of vegetative growth. PRC1/2 are known to repress the master regulator of vegetative phase change, miR156, leading to the transition to adult growth, but how this process is regulated temporally is unknown. Here we investigate whether transcription factors in the VIVIPAROUS/ABI3-LIKE (VAL) gene family provide the temporal signal for the epigenetic repression of miR156. Exploiting a novel val1 allele, we found that VAL1 and VAL2 redundantly regulate vegetative phase change by controlling the overall level, rather than temporal dynamics, of miR156 expression. Furthermore, we discovered that VAL1 and VAL2 also act independently of miR156 to control this important developmental transition.
Introduction

Flowering plant development is underpinned by transitions between stereotypical stages of growth: embryogenesis, seed maturation, juvenile and adult phases of vegetative development and flowering (Huijser and Schmid, 2011). The correct timing of these transitions is critical to plant survival and, ultimately, reproductive success. Vegetative phase change describes the transition from juvenile-to-adult vegetative growth and is associated with changes to multiple traits, including leaf morphology, light-use efficiency, herbivore resistance and shoot physiology (Gou et al., 2011; Lawrence et al., 2020; Leichty and Poethig, 2019; Mao et al., 2017). In Arabidopsis thaliana, the juvenile phase is characterized by small round leaves that lack both trichomes on the abaxial surface and serrations. Adult leaves, on the other hand, are larger, more elongated, serrated and produce abaxial trichomes (Telfer et al., 1997).

Vegetative phase change is triggered by activity of members of the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) family of transcription factors, which are post-transcriptionally repressed during juvenile development by the microRNAs miR156/miR157 (Fouracre and Poethig, 2019; Wu and Poethig, 2006; Wu et al., 2009; Xu et al., 2016a). miR156/miR157 are encoded by multiple genes of which MIR156A and MIR156C are the most functionally significant (He et al., 2018). The expression of MIR156A and MIR156C declines during juvenile growth (Yang et al., 2013b; Yu et al., 2013), leading to the de-repression of their SPL targets and the transition to adult growth. Elucidating what controls the decline in MIR156A/C expression is therefore critical to understanding how the juvenile-to-adult transition is regulated in plants.
The molecular mechanisms that lead to the temporal repression of *MIR156A/C* are only beginning to be understood. The activity of Polycomb Group (PcG) transcriptional repressors appears critical. There are two functional complexes of PcG proteins in plants, both of which repress gene expression through covalent histone modifications. PcG repressive complex 1 (PRC1) consists of a H2A E3 ubiquitin ligase module containing one AtBMI1 protein (AtBMI1A/B/C) and one AtRING1 protein (RING1A/B). PRC1 represses gene expression through ubiquitination of H2A (H2AK119ub) (Bratzel et al., 2010; Calonje, 2014; Yang et al., 2013a). The PRC2 complex includes histone methyltransferases such as *CURLY LEAF* (*CLF*) and *SWINGER* (*SWN*) and promotes H3 trimethylation (H3K27me3) (Chanvivattana et al., 2004; Goodrich et al., 1997).

We have previously found that H3K27me3 increases at *MIR156A/C* in a PRC2-dependent manner during juvenile development, and that vegetative phase change is delayed in *swn* mutants (Xu et al., 2016b). The temporal deposition of H3K27me3 is accompanied by depletion of the antagonistic H3K27ac mark that is associated with active transcription. miR156 accumulation is also repressed by PRC1, as *atbmi1a/b* mutants exhibit delayed vegetative phase change (Pico et al., 2015). In addition, we have found that accumulation of the active histone mark H3K4me3 decreases at *MIR156A/C* during vegetative development (Xu et al., 2018).

The findings that H3K27me3 replaces H3K27ac and H3K4me3 at *MIR156A/C* over time, and that PRC1/PRC2-activity promotes vegetative phase change, led us to propose that the temporal dynamics of miR156 accumulation are coordinated by antagonistic patterns of active (H3K27ac, H3K4me3) and repressive (H3K27me3).
histone modifications (Xu et al., 2018, 2016b). In this model the stochastic removal of H3K27ac/3K4me3 facilitates the deposition of H3K27me3 and the gradual epigenetic silencing of miR156. Similar mechanisms have been reported to function at other developmental transitions (Yang et al., 2014). For example, during flowering, H3K27 deacetylation is a pre-requisite for PRC2-mediated H3K27me3 deposition at FLOWERING LOCUS C (FLC) (Zeng et al., 2020), and during seed maturation, PRC1 promotes the exchange of H3K4me3 for H3K27me3 at DELAY OF GERMINATION1 (DOG1) and ABSCISIC ACID INSENSITIVE3 (ABI3) (Molitor et al., 2014).

Although there is good evidence that MIR156A/C are epigenetically silenced during vegetative development, how this mechanism is regulated temporally remains unknown. VIVIPAROUS/ABI3-LIKE (VAL) genes are excellent candidates for temporal effectors in this model. VAL genes encode B3 domain transcription factors that are closely related to the ABI3/FUSCA3 (FUS3)/LEAFY COYLEDON2 (LEC2) clade of embryogenesis regulators. There are three VAL genes in Arabidopsis, of which VAL1 and VAL2 (also known as HSI2 and HSL2 respectively) are the most functionally important (Suzuki et al., 2007). VAL proteins repress their targets by binding to 6 base pair RY-sequence motifs (CATGCA) via their B3 domain (Chen et al., 2018, 2020; Guo et al., 2013; Jing et al., 2019; Qüesta et al., 2016; Suzuki et al., 1997; Yuan et al., 2016).

A number of observations suggest that VAL genes might provide the temporal information that coordinates vegetative phase change: 1) VAL genes regulate other developmental transitions, i.e. seed maturation (Suzuki et al., 2007; Yang et al., 2013a) and flowering (Qüesta et al., 2016; Yuan et al., 2016); 2) MIR156A/C expression is...
elevated in val1/2 mutants (Pico et al., 2015); 3) VAL1/2 physically interact with several histone deacetylases (HDA6/9/19) (Chhun et al., 2016; Qüesta et al., 2016; Zeng et al., 2020; Zhou et al., 2013); and 4) VAL genes promote PRC1 and PRC2-binding (Chen et al., 2018; Pico et al., 2015; Qüesta et al., 2016; Yuan et al., 2020, 2016)

In this study we investigated whether VAL genes function as temporal regulators of vegetative phase change. We report that reduced VAL activity significantly delays the timing of vegetative phase change through both miR156-dependent and independent mechanisms. We find that the temporal decline in miR156 expression is remarkably robust and is insensitive to loss of VAL function, inhibition of VAL1-binding and the combined loss of VAL1 and PRC2 components. Finally, we show that the effects of VAL1 on the timing of vegetative phase cannot be explained by temporal changes in its interactions with other proteins.

Results

VAL genes promote vegetative phase change

To investigate the role of VAL genes in vegetative phase change, we exploited a novel mutant we identified in an ethyl methanesulfonate screen for plants exhibiting prolonged juvenile development. Mapping-by-sequencing revealed a substitution at the VAL1 locus, resulting in the conversion of a highly conserved arginine residue to a cysteine in the N-arm of the VAL1 B3 DNA-binding domain (Supplementary file 1A). This arginine residue is critical for VAL1 binding to target RY-motifs (Sasnauskas et al., 2018). The mutation in VAL1 was confirmed to be the cause of the late juvenile phenotype by its failure to complement the null val1-2 T-DNA insertion allele, and by the ability of the
VAL1 genomic sequence to rescue this phenotype (Supplementary file 1B,C). Unlike val1-2, the novel val1 allele is semi-dominant, and delays vegetative phase change when heterozygous (Supplementary file 1D). We therefore named this new allele val1-5(sd), consistent with the nomenclature of existing val1 alleles (Veerappan et al., 2012).

Both val1-5(sd) and val1-2 exhibit delayed vegetative phase change, with val1-5(sd) having a stronger effect on the timing of abaxial trichome production than val1-2 (Supplementary file 1B). As VAL1 functions redundantly with VAL2 to regulate other developmental transitions (Qüesta et al., 2016; Suzuki et al., 2007; Tsukagoshi et al., 2007; Yuan et al., 2016), we tested the effects of val1; val2 double mutants on vegetative phase change. Previous analyses of VAL gene function have utilized val1-2; val2-1 and val1-2; val2-3 double mutants. However, seedling development is so strongly perturbed in val1-2; val2-1 and val1-2; val2-3 plants (Suzuki et al., 2007; Tsukagoshi et al., 2007; Yang et al., 2013a; Yuan et al., 2020) that analyses of vegetative growth is problematic in these backgrounds. Therefore, we generated new val1; val2 combinations using val2-3 and a previously uncharacterized T-DNA insertion allele we named val2-4 (Figure 1A). Consistent with previous studies (Suzuki et al., 2007; Tsukagoshi et al., 2007; Yuan et al., 2016), val2 single mutants had no discernible effect on vegetative phase change (Figure 1B, Supplementary file 1E). However, loss of VAL2 activity enhanced the phenotypes of val1-2 and val1-5(sd). val1-2; val2-4 and val1-5(sd); val2-3 both exhibited delayed abaxial trichome production relative to val1-2 and val1-5(sd), respectively (Figure 1C). val1-5(sd); val2-3 flowered significantly later than val1-5(sd) (Figure 1D) and val1-2; val2-4 produced leaves that were significantly more juvenile in shape (i.e. rounder) than val1-2 (Figure 1E). Neither double mutant
Figure 1. VAL genes redundantly regulate vegetative phase change

(A) Schematic of val1 and val2 alleles used in this study – grey boxes represent UTRs, black boxes represent exons, red triangles represent T-DNA insertions, red line represents EMS-induced base substitution.

(B) Phenotypes at 21 DAG in LD conditions, scale bar = 5mm.

(C-E) Quantitative analysis of vegetative development. Statistically distinct genotypes were identified by one-way ANOVA with post hoc Tukey multiple comparison test (letters indicate statistically distinct groups $P < 0.05$; for (E) comparisons were made at leaf 5), all plants grown in LD. (C,D) Boxes display the interquartile range (IQR) (boxes), median (lines) and values beyond 1.5*IQR (whiskers); mean values are marked by ◆. (E) Colored lines represent the mean and black bars the SEM. Sample sizes (C, D) 21-46, (E) 13-46.
combination was as phenotypically severe as *val1-2; val2-1* (Figure 1C-E). The weaker phenotype of *val1-5(sd); val2-3* than *val1-2; val2-3* (Yang et al., 2013a; Yuan et al., 2020) suggests that the semi-dominant phenotype of *val1-5(sd)* is mediated by interaction with *VAL2*. Importantly, the rate of germination was higher in *val1-2; val2-4* and *val1-5(sd); val2-3* relative to existing *val1; val2* double mutants. *val1-2; val2-4* and *val1-5(sd); val2-3* thus provide a balance between phenotypic strength and experimental viability and are useful tools for investigating the role of *VAL* genes in developmental timing.

VAL genes function predominantly as quantitative – rather than temporal – regulators of miR156 expression

Vegetative phase change results from a temporal decline in miR156 expression (Wu and Poethig, 2006). A previous analysis of *val1-2; val2-1* revealed elevated expression of *MIR156A/C* at a single time point (Pico et al., 2015). To determine whether the delay in vegetative phase change we observed in *val* mutants is associated with a general increase in the level of miR156, or with a delay in the decline in this miRNA, we quantified miR156 expression in the shoot apex and in isolated leaf primordia at different times in shoot development. The primary transcripts of *MIR156A* and *MIR156C* were expressed at similar levels, and exhibited a similar temporal expression pattern, in wild type, *val1-5(sd)* (Figure 2A,B) and *val1-2* shoot apices and leaf primordia (Supplementary file 2). However, the abundance of the mature miR156 miRNA transcript was significantly higher in *val1-5(sd)* leaf primordia than in wild type (Figure 2B), and it was also marginally higher in *val1-5(sd)* shoot apices than in wild type.
Figure 2. VAL genes function predominantly as quantitative regulators of miR156 expression (A, B) qRT-PCR analyses of gene expression. (A) Shoot apices with leaf primordia (LP) ≥ 1mm removed at 1, 2 and 3 weeks. (B) Isolated LP 0.5-1mm in size. All plants were grown in SD conditions. Each data point represents a biological replicate and is the average of three technical replicates. Coloured lines represent the mean and black bars mean±s.e.m. Asterisks represent significant differences between WT and val mutants at the same time point, calculated by an unpaired two-tailed t-test with a Bonferroni correction for multiple comparisons (* $P < 0.025$; ** $P < 0.005$; *** $P < 0.0005$).
204 (Figure 2A). The val1-5(sd); val2-3 (Figure 2A,B) and val1-2; val2-1 (Supplementary file 2) double mutants had stronger effects on MIR156A and MIR156C expression than the respective val1 single mutants, suggesting that VAL1 and VAL2 function redundantly to repress MIR156A and MIR156C transcription. Mature miR156 was elevated throughout development in both the shoot apices (Figure 2A) and the leaf primordia (Figure 2B) of val1-5(sd); val2-3 double mutants. Loss of VAL activity also produced a slight increase in miR157 levels (Figure 2A,B, Supplementary file 2). Although val1-5(sd); val2-3 increased the abundance of miR156/miR157, it had only a minor effect on the temporal expression patterns of these miRNAs. For example, miR156 expression decreased 2.36-fold between 1W and 2W and 2.31-fold between 2W and 3W in wild type plants, but decreased 1.77 and 1.82-fold between the same time points in val1-5(sd); val2-3 plants (Figure 2A). Taken together, these data suggest that VAL genes function primarily as general, rather than temporal, regulators of miR156 expression.

218 **VAL genes coordinate PRC1 and PRC2 recruitment at MIR156 loci**

219 We have previously demonstrated that the temporal decline in MIR156A and MIR156C expression is associated with PRC2-dependent and progressive deposition of H3K27me3 at these loci (Xu et al., 2016b). To determine if VAL genes contribute to this process, we examined PRC2 activity in the val1-5(sd); val2-3 double mutant. As previously reported (Xu et al., 2016b), H3K27me3 levels increased at the MIR156A and MIR156C loci during vegetative development in wild type plants (Figure 3A,B). Although there was no difference in the temporal pattern of H3K27me3 deposition at MIR156A in
Figure 3. VAL genes regulate miR156 activity via-PRC2 and PRC1

(A) Schematics of the primer locations used for ChIP-qPCR. Blue and green bars represent sequences encoding the mature miRNA and miRNA hairpin respectively.

(B) Temporal analysis of H3K27me3 by ChIP-qPCR. Each data point represents a biological replicate and is the average of three technical replicates. Lines represent the mean, bars represent the mean ± s.e.m., asterisks represent significant differences between WT and val1-5(sd); val2-3 at the same time point, calculated by an unpaired two-tailed t-test (* P < 0.05; ** P < 0.01; *** P < 0.001). H3K27me3 values are relative to H3 and normalised to STM as an internal control. Plants were grown in SD conditions.
(C, D) Phenotypes in LD. (D) Photographs taken at 21DAG, scale bar = 5mm. (E) Asterisks represent significant differences to either WT or val1-2, calculated by unpaired two-tailed t-test with Bonferroni correction for multiple comparisons (** P < 0.00033). Sample size 22-46.

(E) qRT-PCR analyses of gene expression in shoot apices with LP \geq 1mm removed at 1, 2 and 3 weeks. Each data point represents a biological replicated and is the average of three technical replicates. Coloured lines represent the mean and black bars represent the mean \pm s.e.m. Asterisks represent significant differences between val1-2 and val1-2; clf-29/val1-2; swn-3/val1-2; hda19-3 at the same time point, calculated by unpaired two-tailed t-test with Bonferroni correction for multiple comparisons (** P < 0.0033). Plants were grown in SD conditions.

(F) Temporal analysis of H2AK119ub by ChIP-qPCR, values are relative to input and normalised to ACT7 as an internal control. See (B) for details.
val1-5(sd); val2-3, the rate of H3K27me3 deposition at MIR156C was significantly slower in this double mutant (Figure 3B). These results are consistent with a recent genome-wide study that revealed a decrease in H3K27me3 levels at MIR156C, but not MIR156A, in val1-2; val2-3 plants (Yuan et al., 2020). As a control, we measured H3K27me3 deposition at the floral regulator FLC. In the absence of vernalization, we observed no change in the level of H3K27me3 during vegetative development in wild type plants (Figure 3B). However, consistent with previous reports (Qüesta et al., 2016; Yuan et al., 2016), there was a significant decrease in H3K27me3 at FLC in val1-5(sd); val2-3.

VAL1 is thought to act by recruiting PRC1 which, in turn, promotes the activity of PRC2 (Baile et al., 2020; Calonje, 2014; Zhou et al., 2017). As a genetic test of this hypothesis, we examined the interaction between val1-2 and clf-29 and swn-3, loss-of-function mutations in the functionally redundant genes that encode the histone methyltransferase activity of PRC2. As we have shown previously (Xu et al., 2016b), swn-3 had a larger effect on the timing of vegetative phase change than clf-29 (Figure 3C,D). Consistent with the hypothesis that VAL1 regulates vegetative phase via its effect on PRC2 activity, clf-29 and swn-3 interacted synergistically with val1-2, in that the double mutants had a much more severe vegetative phase change phenotype than the single mutants (Figure 3C,D). Notably, val1-2 suppressed the curling leaf phenotype of clf-29 (Figure 3C), presumably because it enhances FLC expression (Lopez-Vernaza et al., 2012). We also examined the interaction between val1-2 and hda19-3, a putative null allele of the histone deacetylase HDA19. hda19-3 is predicted to delay vegetative phase change because HDA19 is required for PRC2-mediated repression (Zeng et al.,
2020), HDA19 physically interacts with VAL1 (Questa et al., 2016) and loss-of HDA19
enhances H3K4me3 levels (Jang et al., 2011). As predicted, hda19-3 produced abaxial
trichomes significantly later than wild type (Figure 3D), and val1-2; hda19-3 double
mutants produced abaxial trichomes significantly later than either single mutant.
Together, these results suggest that val mutations delay vegetative phase change by
interfering with the activity of PRC2.

To determine whether the synergistic interaction between clf-29, swn-3, hda19-3
and val1-2 is due to enhanced miR156/miR157 expression, we quantified expression of
the mature miR156 and miR157 miRNAs, and the primary MIR156A and MIR156C
transcripts, in these mutant backgrounds. The overall level and expression pattern of
the mature miR156/miR157 transcripts were not affected by val1-2, or by val1-2; clf-29,
val1-2; swn-3, and val1-2; hda19-3 double mutants (Figure 3E). However, pri-MIR156A
and pri-MIR156C transcripts were significantly elevated in val1-2; hda19-3, although the
rate of decline in the expression of these transcripts was normal. The lack of correlation
between the expression of miR156 and the level of pri-MIR156A and pri-MIR156C is
surprising given that these loci are the major sources of miR156. One possibility is that
the miRNA processing pathway is compensating for elevated levels of the primary
transcripts. In any case, these results suggest that VAL genes temporally regulate the
deposition of H3K27me3 at specific MIR156 loci, but are not necessary for the temporal
decline in miR156 expression.

VAL genes also repress gene expression by promoting H2AK119ub deposition
via recruitment of PRC1 (Yang et al., 2013a). Unlike H3K27me3 (Figure 3B) (Xu et al.,
2016b), we found no evidence that H2AK119ub increases over time at MIR156A and
However, we did find that \textit{val1-5(sd); val2-3} had significantly lower levels of H2AK119ub than wild type plants. This effect was observed throughout development at \textit{MIR156C}, but seemed to be limited to later in development at \textit{MIR156A}. Importantly, \textit{val1-5(sd); val2-3} had significantly reduced levels of H2AK119ub at \textit{MIR156C} one week after planting, which is before a difference in H3K27me3 is detectable at this locus (Figure 3B). \textit{val1-5(sd); val2-3} also had reduced levels of H2AK119ub at \textit{FLC} (Figure 3F).

\textbf{VAL1 regulates vegetative phase change via miR156-dependent and miR156-independent mechanisms}

To investigate whether the effects of \textit{val1-5(sd); val2-3} on the chromatin state of \textit{MIR156A/C} are due to a direct regulatory interaction, we carried out chromatin-immunoprecipitation qPCR using an HA-tagged version of VAL1 (Qüesta et al., 2016). Confirming the results of a recent ChIP-seq study (Yuan et al., 2020), we found VAL1-binding at specific locations within both the \textit{MIR156A} and \textit{MIR156C} loci (Figure 4A,B, Supplementary file 3). The affinity of VAL1 for \textit{MIR156A/C} appeared consistent throughout vegetative development. VAL1/2 bind to RY-sequence motifs, of which there are multiple copies in both \textit{MIR156A} and \textit{MIR156C} (Figure 4A). To determine if these RY-sites are required for the regulation of vegetative phase change, we mutated 5 RY-sites in \textit{MIR156C} individually and in combination. We selected \textit{MIR156C} because it is more sensitive to VAL activity than \textit{MIR156A} (Figure 2,3, Supplementary file 2). A C>T substitution that eliminates VAL1 binding (Sasnauskas et al., 2018) was introduced in one or all of these sites in a genomic construct of \textit{MIR156C}. Wild type and mutant
Figure 4. Loss of RY VAL-binding motifs at the MIR156C locus delays vegetative phase change

(A) Schematic depicting the location of primers used for ChIP-qPCR, the sequences encoding the miR156 hairpin and mature miRNA are coloured green and blue respectively.

(B) Anti-HA ChIP-qPCR of WT Col control plants at 2W and VAL1::VAL1-HA; val1-2; FRI-Sf2 plants at 1, 2 and 3W of growth. The data is presented as percentage input normalized to ACT7 and is displayed relative to WT. Each data point represents a biological replicate and is the average of three technical replicates, bars represent the mean and error bars the mean±s.e.m.
(C, D) Phenotypes of T1 plants transformed with MIR156C RY variants. Statistically distinct genotypes were identified by one-way ANOVA with post hoc Tukey multiple comparison test (letters indicate statistically distinct groups $P < 0.05$; comparison in (C) made at leaf 5). $qm = mir156a$ mir156c mir157a mir157c quadruple mutant, $tm = mir156a$ mir157a mir157c triple mutant, EV = empty vector. (C) Colored lines represent the mean and black bars the mean ± s.e.m. Sample size (B) 26-52, (C) 37-51.

(E) qRT-PCR analyses of gene expression in shoot apices with LP ≥ 1mm removed at 1, 2 and 3 weeks. Each data point represents an independent homozygous T3 line and is the average of three technical replicates. Colored lines represent the mean and black bars the mean ± s.e.m. Asterisks represent significant differences between $qm; MIR156C$ and $qm; MIR156C -RY$ lines at the same time point, calculated by an unpaired two-tailed t-test with a Bonferroni correction for multiple comparisons (* $P < 0.025$, ** $P < 0.005$).

(F) Genetic interaction between val1-2 and MIR156C RY deletions. Asterisks represent significant differences between plants with wild type or null VAL1 alleles calculated by an unpaired two-tailed t-test (*** $P < 0.001$). Sample size 24-36. Phenotyping analyses were carried out in LD conditions, gene expression and ChIP analyses were carried out in SD conditions.
constructs were then transformed into a *mir156a; mir156c; mir157a; mir157c quadruple mutant* (qm) background. We chose this background because endogenous miR156/miR157 activity has been largely eliminated and it is therefore sensitive to small changes in the level of miR156 (He et al., 2018). Plants transformed with a wild type *MIR156C* construct (+RY) produced leaves with abaxial trichomes at the same node as the *mir156a; mir157a; mir157c triple mutant* tm (Figure 4C). *tm* has an endogenous copy of *MIR156C*, confirming that the transgenic *MIR156C* sequence is fully functional. Deletion of individual RY-sites produced a significant delay in the timing of abaxial trichome production relative to *MIR156C +RY*, and deletion of all 5 RY-sites produced a more significant delay than deletion of any single site (Figure 4C). A similar result was obtained in the case of the angle of the leaf base (Figure 4D). These results demonstrate that all five RY-sites are important for the expression of *MIR156C*, and that they function additively. Individual RY-sites have also been shown to interact additively to repress the VAL1-PRC2 targets *FLC* and *DOG1* (Chen et al., 2020; Yuan et al., 2016).

To determine if these phenotypic effects are due to altered *MIR156C* expression, we quantified miR156 levels in *MIR156C +RY*, *MIR156C -RY2* and *MIR156C -RY12345* plants. *MIR156C -RY2* was selected because it has a marginally stronger effect than other individual -RY deletions (Figure 4C,D). Although there was considerable variation in miR156 levels between independent transgenic lines, *MIR156C -RY2* and *MIR156C -RY12345* plants had significantly more miR156 than plants transformed with *MIR156C +RY* (Figure 4E, Supplementary file 4). However, the temporal expression pattern of *MIR156C* was identical in -RY and +RY plants.
To establish whether the effects of RY-deletion are VAL1-dependent, we crossed

val1-2 into the qm; MIR156C +/-RY lines. If the delay in vegetative phase change in

MIR156C -RY lines is a consequence of reduced VAL1 binding, val1-2 should have less
effect in MIR156C -RY lines than in MIR156C +RY lines or the tm, in which RY sites are
intact. Surprisingly, we found that loss-of VAL1 significantly delayed abaxial trichome
production in MIR156C -RY as well as MIR156C +RY and tm plants (Figure 4F). It is
possible that MIR156C RY-sites are bound by other B3 domain transcription factors.

However, RY-binding is restricted to the ABI3/FUS3/LEC2 and VAL clade of B3 domain
genes (Kagaya et al., 1999; Sasnauskas et al., 2018; Yuan et al., 2016). The
expression of ABI3/FUS3/LEC2 is largely restricted to seed development (Carbonero et
al., 2017) and therefore these genes are unlikely to regulate vegetative shoot identity.

Moreover, FUS3 and ABI3 directly promote the expression of MIR156C (Tian et al.,
2020; Wang and Perry, 2013). A role for these genes in the regulation of MIR156C post-
germination is thus inconsistent with the juvenilized phenotype and elevated miR156
expression we found in MIR156C -RY plants. (Figure 4C-E). With regard to the potential
effects of other VAL genes, we observed no vegetative phase change phenotype in val2
single mutants (Figure 1B, Supplementary file 1E) and VAL3 has limited expression and
functionality relative to VAL1 and VAL2 (Suzuki et al., 2007). Alternatively, this result
suggests that VAL1 may regulate vegetative phase change through both miR156-
dependent and miR156-independent mechanisms. This interpretation is supported by
the observation that loss-of VAL1 and PRC2-components strongly delayed vegetative
phase change but had only minor effects on miR156 expression (Figure 3C-E).
Figure 5. **VAL1 regulates vegetative phase change by miR156-dependent and independent mechanisms**

(A-C) Phenotypes of *val1-2* and *mir156a mir156c mir157a mir157c* quadruple mutant lines. (A) Photographs taken at 17 DAG. Scale bar = 1mm. (B, C) Statistically distinct genotypes were identified by one-way ANOVA with post hoc Tukey multiple comparison test (letters indicate statistically distinct groups $P < 0.05$; (B) comparisons made at leaf 5). Bars represent the mean±s.e.m. Sample size (B) 17-60, (C) 18-36. Silhouettes in B show representative leaf 5 shapes.

(D) Expression of a miR156-resistant (*rSPL9*) reporter construct in WT, *val1-2* and *val1-5(sd)* backgrounds. Scale bars = 1mm.

(E) qRT-PCR analysis of gene expression in shoot apices with LP ≥ 1mm removed at 1, 2 and 3 weeks. Each data point represents a biological replicate and is the average of three technical replicates. Coloured lines represent the mean and gray bars represent the mean±s.e.m. Asterisk represents significant difference between WT and *val* mutant lines at the same time point, calculated by an unpaired two-tailed *t*-test with a Bonferroni correction (* $P < 0.025$; ** $P < 0.005$). All phenotypic analyses were carried out in LD conditions, the gene expression analysis was carried out in SD conditions.
To test this hypothesis, we introgressed \textit{val1-2} into the \textit{qm} genetic background, which has very low levels of miR156/miR157 (He et al., 2018). Although the gross morphology (Figure 5A) of \textit{val1-2; qm} seedlings was indistinguishable from that of \textit{qm} plants, \textit{val1-2} partially suppressed the effect of the \textit{qm} genotype on the morphology of leaves 3 and 5 (Figure 5B). This confirms that \textit{VAL1} functions through a miR156/miR157-independent mechanism to regulate vegetative phase change.

Surprisingly, a survey of abaxial trichome production revealed that \textit{val1-2} enhanced this aspect of the precocious \textit{qm} phenotype (Figure 5C). This result can be explained given that reduced histone deacetylation in a \textit{toe} loss-of-function background accelerates abaxial trichome formation (Wang et al., 2019), that \textit{SPL} genes repress \textit{TOE} activity (Wu et al., 2009), and that \textit{VAL} genes promote histone deacetylation (Zeng et al., 2020; Zhou et al., 2013).

To determine if \textit{VAL1} regulates \textit{SPL} gene expression independently of miR156, we crossed a miR156-resistant (\textit{rSPL9}) \textit{SPL9::rSPL9-GUS} reporter construct into \textit{val1} genetic backgrounds. The expression of this reporter was visibly and strongly suppressed by \textit{val1-2} and \textit{val1-5(sd)} (Figure 5D), implying that miR156 is not required for the regulation of \textit{SPL9} by \textit{VAL1}. The transcript levels of \textit{SPL9}, and its target miR172, were also decreased in \textit{val} mutant plants (Figure 5E). However, it is difficult to know if this decrease is dependent or independent of miR156 because miR156 induces cleavage of the \textit{SPL9} transcript (German et al., 2008; He et al., 2018; Ronemus et al., 2006).

\textit{VAL1/2} act as transcriptional repressors. As \textit{SPL9} transcription decreases in \textit{val} loss-of-function mutants it is therefore unlikely that \textit{VAL1/2} regulate \textit{SPL9} directly. To
test this prediction, we quantified H2AK119ub and H3K27me3 at SPL9. Consistent with previous studies, we found high levels of H2AK119ub but negligible H3K27me3 at SPL9 (Supplementary file 5) (Li et al., 2017; Zhou et al., 2017). We also found no difference in the abundance of these modifications in wild type and val1-5(sd); val2-3 plants. Taken together these results suggest that, in addition to repressing SPL9 via their effect on miR156 levels, VAL1/2 repress SPL9 indirectly through one or more miR156-independent mechanisms. The observation that val1-5(sd); val2-3 has no effect on H2AK119ub at SPL9 also suggests that VAL1/2 are not universally required for PRC1-activity.

The effects of VAL1 on developmental timing may be partly explained by its expression pattern

Our results show that VAL genes control the timing of vegetative phase change (Figure 1C,E), and have subtle effects on the expression pattern of miR156 during vegetative development (Figure 2, Supplementary file 2). To determine if these effects are attributable to changes in the expression level of VAL1, we measured the abundance of VAL1 transcript levels during vegetative growth. We observed a small but significant increase in VAL1 transcripts in shoot apices between 2 and 3 weeks of growth (Figure 6A) but there was no significant change in VAL1 levels in leaf primordia (Figure 6B). To further investigate VAL1 expression over time, we generated a VAL1 transcriptional reporter by fusing a 2.3kb sequence containing the VAL1 promoter and 5’ UTR, and a 2kb sequence containing the VAL1 3’UTR and terminator, to the GUS coding sequence (VAL1::GUS-VAL1 3’ UTR). We generated a VAL1 translational fusion by inserting a
Figure 6. VAL1 is expressed throughout vegetative development

(A, B) qRT-PCR analyses of gene expression. (A) Shoot apices with leaf primordia (LP) ≥ 1mm removed at 1, 2 and 3 weeks. (B) Isolated LP 0.5-1mm in size.

(C-F) Analyses of a VAL1-GUS translational fusion. (C) Expression in whole plants, scale bars = 1mm. (D) Expression in shoot apices following wax sectioning, scale bars = 0.1mm. (E, F) VAL1 levels quantified by MUG assay in two independent homozygous T3 lines. (A, B, E, F) Each data point represents a biological replicate and is the average of three technical replicates. Lines represent the mean and grey bars mean ± s.e.m. Asterisks represent significant differences between two continuous time points, calculated by an unpaired two-tailed t-test (* $P < 0.05$; ** $P < 0.01$). All plants except the 3 DAG sample (C – long days) were grown in SD conditions.
3.8kb VAL1 genomic sequence upstream of GUS in this construct (VAL1::VAL1-GUS-VAL1 3’UTR). Because the expression of the transcriptional fusion was consistently more diffuse, variable, and weaker than the expression of the translational fusion (Supplementary file 6), we used plants containing the translational fusion for subsequent studies.

During embryogenesis, the translational fusion was expressed in the root and shoot apical meristems and provasculature (Figure 6C, Supplementary file 6). Following germination, expression became restricted to the shoot and root apices and initiating lateral root primordia (Figure 6C, Supplementary file 6). Throughout the rest of shoot development, the translational fusion was expressed in the shoot apex and during the early stages of leaf development (Figure 6C). Histological inspection indicated that VAL1 expression increases in the shoot apex during vegetative development. This was validated by a quantitative analysis of GUS expression, which demonstrated that VAL1 accumulates more strongly in the shoot apex than leaf primordia. Further, that VAL1 levels increase over time in the shoot apex but not in older leaf primordia (Figure 6E,F).

Taken together, these data indicate that VAL1 expression is restricted to apical meristems and the early stages of root and leaf development. Our data also indicate that VAL1 expression increases during shoot development in very young leaf primordia, quickly declines to a uniform level as the leaf develops, and ceases before the leaf is fully expanded. However, the functional significance of increased VAL1 accumulation during vegetative development is unclear, as we did not detect a concomitant increase in VAL1-binding to MIR156A/C (Figure 4B, Supplementary file 3). Finally, the difference in the staining patterns and stability of our transcriptional and translational reporters
suggest that cis-regulatory elements within the VAL1 coding sequence regulate the
level and site of its expression.

VAL1 has previously been found to physically interact with VAL2, multiple PRC1
and PRC2 components, and the transcriptional repressor SAP18 (Chen et al., 2018,
Chhun et al., 2016; Jing et al., 2019; Qüesta et al., 2016; Xie et al., 2018; Yang et
al., 2013a; Yuan et al., 2016). However, these studies do not provide information about
VAL1’s in planta protein interactions over time. To determine whether VAL1 interacts
with different proteins at different stages of vegetative development, we carried out a
mass spectrometry analysis of proteins bound to HA-tagged VAL1 at 1, 2 and 3 weeks
of growth. Immunoprecipitations were carried out on a VAL1-HA; val1-2; FRI-Sf2 line,
using a val1-2; fri line as a control. The difference in the FRI genotype of these lines is a
consequence of the genotypes available at the time the experiments were performed
and may have had an effect on our results.

ATBMI1A was significantly enriched in the combined experimental samples
relative to the control samples (Figure 7A), which is consistent with a previous mass
spectrometry analysis of proteins bound to VAL1-HA (Qüesta et al., 2016). We did not
detect other proteins that have been identified by mass spectrometry in
immunoprecipitation experiments with VAL1-HA. We also observed a highly significant
enrichment of the chloroplast binding protein CRB. However, this is explained by the
enrichment of CRB in the total proteome of the experimental versus control samples
(Figure 7B). Comparisons of the proteins present in samples harvested from 1, 2 and 3
weeks old plants revealed that ATBMI1A was consistently among the most abundant
proteins immunoprecipitated with VAL1-HA (Figure 7C-E). The abundance of ATBMI1A
Figure 7. VAL1-protein interactions are consistent during vegetative development

(A-E) Protein enrichment calculated via mass spectrometry. Fold change represents the ratio of proteins purified from experimental (VAL1-HA; val1-2; FRI-Sf2) to control (val1-2; fri) samples, a t-test P-value is represented on the y-axis. Red dotted line indicates a P-value < 0.05 (resulting from the -log2 transformation of the actual p-value; proteins above the line have a significant enrichment). Each bubble represents an individual protein, the size or the bubble represents the protein abundance averaged across the experimental and control samples. (A, C-E) Proteins immunoprecipitated using an anti-HA antibody, (B) total proteome samples.
in the immunoprecipitated sample increased significantly from 1 week to 2 weeks, as indicated by both the increase in the fold change between experimental and control samples, and the statistical significance of the enrichment. This is probably a result of the increase in the abundance of VAL1 between 1 and 2 weeks (Figure 6D,E), a result which was confirmed by the increasing abundance of VAL1 in the immunoprecipitated samples from different time points (Figure 7C-E). The parallel changes in the abundance of VAL1-HA and ATBMI1A, and the absence of any major change in the proteins associated with VAL1-HA in different samples, suggest that the binding partners of VAL1 do not change significantly during shoot development.

To investigate overall trends in protein accumulation during vegetative development we conducted a supervised clustering analysis of the val1-2; VAL1-HA; FRI-Sf2 total proteome sample. We designed two clusters in which proteins either increased or decreased from 1 to 2 to 3 weeks of development (see Methods for details). The 50 proteins with the strongest and most consistent decreasing developmental trend were significantly enriched for Gene Ontology terms related to photosynthesis and carbon fixation (Supplementary file 7). In contrast, the 50 proteins with the highest increasing trend score were enriched for GO terms relating to water stress and translation. The finding that younger plants invest more resources in photosynthesis is consistent with a transcriptomic analysis of vegetative development in maize (Beydler et al., 2016), and the enhanced photosynthetic capacity of juvenile plants at low light levels (Lawrence et al., 2020).

Discussion
Plant life cycles are characterized by transitions between distinct developmental phases. VAL genes have previously been shown to promote the switch from embryogenesis to seed maturation (Suzuki et al., 2007; Yang et al., 2013a), and from vegetative to reproductive growth (Qüesta et al., 2016; Yuan et al., 2016). The results presented here demonstrate that VAL1 and VAL2 also regulate the intervening transition from juvenile to adult stages of vegetative growth. VAL genes thus function as a regulatory hub that coordinates developmental transitions throughout plant life cycles.

Regulation of miR156 expression by VAL1/2

Vegetative phase change is promoted by a temporal decline in miR156/miR157 expression (Wu and Poethig, 2006). When the level of miR156/miR157 falls below a specific threshold, the de-repression of SPL genes initiates a switch to adult identity. Previous work has shown that – with the exception of SPL3 – the increase in SPL transcript levels during development is entirely attributable to post-transcriptional regulation by miR156/miR157 (He et al., 2018). Factors that control the timing of vegetative phase change can therefore act in three ways: 1) by modifying the rate of decline in miR156; 2) by constitutively increasing or decreasing the level of miR156; and 3) by constitutively increasing or decreasing the rate of transcription of SPL genes. Our results suggest that VAL1 and VAL2 regulate vegetative phase change both by constitutively decreasing the level of miR156 and by repressing SPL gene expression independently of miR156.

Evidence that VAL1/VAL2 constitutively regulate the level of miR156 was provided by the phenotype of plants deficient for VAL1 and VAL2, VAL1-DNA binding
patterns and from the phenotype of plants expressing a MIR156C transgene lacking
VL-binding sites. We found that although VAL1 expression increases in the shoot apex
as plants develop, val1; val2 double mutants displayed only a slight decrease in the rate
at which miR156 declines. Instead, val1; val2 double mutants exhibited a significant
increase in the level of miR156 at every stage of vegetative development we examined.
Consistent with this result, mir156a; mir157a; mir157c triple mutants transformed with a
MIR156C transgene lacking VAL-binding sites had elevated levels of miR156 relative to
the wild type MIR156C control, but displayed the same temporal decrease in miR156 as
control plants.

We have proposed that the decrease in MIR156A/C expression during shoot
development may be attributable to the stochastic replacement of H3K27ac and
H3K4me3 by H3K27me3 (Xu et al., 2018, 2016b). The observation that the increase in
miR156 expression in val1; val2 is associated with a decrease in the level of H3K27me3
at MIR156C supports this hypothesis, in that it shows that H3K27me3 is associated with
low levels of MIR156C expression. The difference in the phenotype of plants doubly
mutant for val1-2 and mutations the PRC2 histone methyltransferases, SWN and CLF,
and between val1-2 and a mutation in the histone deacetylase HDA19, supports the
hypothesis that the expression of MIR156C is regulated by a combination of histone
marks. val1-2; swn-3 and val1-2; clf-29 double mutants have approximately the same
amount of miR156 as val1-2 single mutants, which is expected given that these genes
are involved in the same process, namely the deposition of H3K27me3. In contrast,
hd19-3 significantly enhanced the level of miR156 compared to val1-2. This type of
genetic interaction is predicted if miR156 expression is dependent on histone modifications aside from H3K27me3.

The evidence that VAL1/VAL2 regulate the level, but not the temporal expression pattern, of miR156 leaves open the question of how its temporal pattern arises. Several other chromatin regulators, such as the CHD3 nucleosome remodeler PICKLE (Xu et al., 2016b), the PRC-accessory protein LHP1 (Cui et al., 2020), the SWI/SNF2 chromatin remodeler BRAHMA (Xu et al., 2016c), and the histone 2 regulators ARP6 and HTA9/11 (Choi et al., 2016; Xu et al., 2018) have been found to play a role in the expression of miR156. Furthermore, transcription factors including AGL15/18 (Serivichyaswat et al., 2015), MYB33 (Guo et al., 2017), and members of the NF-Y family (Wei et al., 2017; Zhao et al., 2020), also regulate miR156 expression. It is possible that the temporal expression pattern of miR156 is a consequence of complex interactions between these diverse factors, rather than being dependent on a single class of regulator, such as VAL1/2.

VAL genes and PRC1 activity

VAL1/2 are thought to be necessary for the recruitment of PRC1 to target loci, where it represses gene expression via PRC2-dependent and independent mechanisms (Baile et al., 2020; Yuan et al., 2020; Zhou et al., 2017). We found that VAL1/2 accelerate vegetative phase change by repressing the expression of MIR156A/C, and by indirectly promoting the expression of SPL9, a target of miR156. These results are consistent with a previous study (Pico et al., 2015), which showed that VAL1/2 and the PRC1 components, AtBMI1A/B, repress MIR156A/C expression. However, the PRC1
components EMBRYONIC FLOWER1 (Pico et al., 2015) and RING1A/B (Li et al., 2017) have also been reported to repress the expression of SPL9 independently of miR156. These latter effects delay vegetative phase change, which is the exact opposite of the effect produced by PRC1-mediated repression of MIR156A/C. Together, these results indicate that PRC1 can operate at different points within a regulatory pathway, or in interacting regulatory pathways, to modulate the output of the pathway or pathways. If the genes repressed by PRC1 have different functions—as in the case of miR156 and its SPL targets—then the functional significance of a particular level of PRC1 activity at a particular locus can be difficult to predict. These results also support the hypothesis that there may be different forms of PRC1, which target different genes. Moreover, our finding that H2AK119ub deposition at SPL9 was unaffected in val1-5(sd); val2-3 suggests that VAL1/2 may not be universally required for PRC1-recruitment.

In this regard, it is interesting that although MIR156A and MIR156C are close paralogs and have similar expression patterns, previous studies (Xu et al., 2018, 2016b), and the results presented here, indicate that these genes are differentially sensitive to mutations that affect the activity of PRC2 and PRC1. For example, we found that val1; val2 mutants display a greater reduction in H2AK119ub and H3K27me3 at MIR156C than at MIR156A. Our findings align with the results of ChIP-seq studies of H2AK119ub and H3K27me3 in atbmi1a/b/c (Zhou et al., 2017) and val1-2; val2-3 (Yuan et al., 2020) mutants. The implication of these observations is that MIR156C expression is more dependent on PRC1 and PRC2 activity than MIR156A. Defining the molecular basis for this difference could provide important insights into factors that influence epigenetic regulation in plants.
Unlike in animals, where PRC1 binding requires the prior deposition of
H3K27me3, in plants PRC1 is thought to promote PRC2 activity at the majority of its
targets (Calonje, 2014; Zhou et al., 2017). This model is supported by our results. In the
case of MIR156C, we found that in 1 week old plants loss of VAL1/2 significantly
reduced H2AK119ub, but not H3K27me3. However, by 3 weeks both H2AK119ub and
H3K27me3 were reduced in val1/2 mutants. These results suggest that VAL1/2 and, by
inference, PRC1 are present at MIR156C prior to PRC2, and promote the activity of
PRC2.

In addition to their roles in vegetative phase change, VAL genes regulate multiple
nodes of the flowering time (Jing et al., 2019; Qüesta et al., 2016; Yuan et al., 2016)
and seed development (Chen et al., 2018, 2020; Suzuki et al., 2007; Yang et al., 2013a)
networks. The co-option of VAL activity throughout genetic networks thus appears
critical to coordinating plant developmental transitions. Despite the centrality of VAL
function to the control of developmental timing, the persistent and robust pattern of
MIR156A/C expression in val mutant plants emphasizes the complexity of temporal
regulation in plants.

Materials and methods

Plant material and growth conditions

All stocks were grown in the Col-0 background. The following genetic lines have been
described previously: val1-2 (SALK_088606), val2-1 (CS906036) (Suzuki et al., 2007)
(val2-1 was backcrossed to Col-0 6 times from the original Wassilewskija parent); val2-3
(SALK_059568C) (Yang et al., 2013a); clf-29 (SALK_021003) (Bouveret et al., 2006);
swn-3 (SALK_050195) (Chanvivattana et al., 2004); hda19-3 (SALK_139445) (Kim et al., 2008); mir156a-2 mir156c-1 mir157a-1 mir157c-1 (He et al., 2018); SPL9::rSPL9-GUS (Xu et al., 2016a); val1-2 VAL1::VAL1-3xHA FRI-Sf2 (Qüesta et al., 2016). val2-4
(SALK_127961) was obtained from the Arabidopsis Biological Resources Center (Ohio State University, OH, USA). Seeds were sown on fertilized Farfard #2 soil (Farfard) and kept at 4°C for 3 days prior to transfer to a growth chamber, with the transfer day counted as day 0 for plant age (0 DAG – days after germination). Plant were grown at 22°C under a mix of both white (USHIO F32T8/741) and red-enriched (Interlectric F32/T8/WS Gro-Lite) fluorescent bulbs in either long day (16 hrs light/8 hrs. dark; 40 μmol m⁻² s⁻¹) or short day (10 hrs light/14 hrs dark; 100 μmol m⁻² s⁻¹) conditions.

Identification of the val1-5(sd) mutant

The val1-5(sd) allele was generated by exposing mir157a-1; mir157c-1 seed to ethyl methanesulfonate. An M2 mutant plant exhibiting delayed vegetative phase change was backcrossed to the parental line and allowed to self. Tissue was pooled from 30 plants exhibiting severely delayed vegetative phase change in the BC1F2 generation. DNA was extracted via-SDS lysis and phenol-chloroform extraction and further purified using Clean and Concentrator columns (Zymo Research). DNA concentration was determined using a Qubit 2.0 Fluorometer (Invitrogen) and 1μg of DNA sheared using a Covaris S2 sonicator (Covaris) to produce 350bp inserts. Sequencing libraries were made following the TruSeq DNA PCR-free LT Sample Prep Kit (Illumina) manufacturer’s instructions.

Library quality and quantity was validated by Bioanalyser (Agilent) and KAPA analysis (Kapa Biosystems). 100bp paired end reads were generated using a HiSeq 2500.
(Illumina) and aligned to the TAIR10 reference genome following the default SHORE pipeline (Ossowski et al., 2008). The SHOREmap backcross pipeline (Schneeberger et al., 2009) using default options was employed to identify polymorphisms. Manual inspection of allele frequencies in the mutant revealed a peak centered on the VAL1 locus. The causative mutation was confirmed by Sanger sequencing and complementation assays. The mutant was backcrossed to a ‘Traffic Line’ (Wu et al., 2015) with seed-fluorescent markers inserted adjacent to the VAL1 locus to eliminate additional closely linked polymorphisms. Consequently, the resultant val1-5(sd) plants used in this study contain a linked pNAP::RFP insertion at 13,622,737bp on Chromosome 2 (Crick strand).

Generation of transgenic plants

For RY-mutation lines the RY-site TGCATG was replaced by TGTATG. A 5kb MIR156C genomic sequence including 2kb upstream of the transcriptional start site and 665bp downstream of the end of the last exon was cloned into the binary vector pAGM4723 from the Golden Gate MoClo toolbox supplied by Addgene (www.addgene.org) (Weber et al., 2011; Werner et al., 2012). For -RY3, -RY4 and -RY5 Q5 Site Directed Mutagenesis Kit (New England Biolabs) was used to induce a substitution directly into the expression vector. For -RY1, -RY2 and -RY12345 Gibson Assembly cloning (New England Biolabs) was used to assemble individual fragments into the same backbone. Golden Gate cloning was also used to generate VAL1::VAL1-VAL1 3’UTR, VAL1::VAL1-GUS-VAL1 3’UTR, VAL1::GUS-VAL1 3’UTR lines. Promoter/5’UTR (VAL1
- 2.3kb), functional (VAL1 – 3.8kb, MIR156A (Fouracre and Poethig, 2019)) and
3'UTR/terminator (VAL1 – 2kb) sequences were cloned separately from Arabidopsis gDNA, with Type II restriction sites removed where necessary. GUS and AtuOCS sequences were obtained from the MoClo Plant Parts toolkit supplied by Addgene (www.addgene.org) (Engler et al., 2014). Component parts were assembled using Golden Gate cloning into the pAGM4723 binary vector, including green or red seed fluorescent expression cassettes as selectable markers. Constructs were transformed into Arabidopsis using the floral dip method. All primers used for cloning are included in Supplementary table 1.

Quantification of gene expression
Tissue (either shoot apices with leaf primordia ≤1mm attached or isolated leaf primordia 0.5-1mm in size – as specified in the text) were ground in liquid nitrogen and total RNA extracted using Trizol (Invitrogen) as per the manufacturer's instructions. RNA was treated with RNase-free DNase (Qiagen) and 250ng-1μg of RNA was used for reverse transcription using Superscript III (Invitrogen). Gene specific RT primers were used to amplify miR156, miR157, miR172 and SnoR101 and a polyT primer for mRNA amplification. Three-step qPCR of cDNA was carried out using SYBR-Green Master Mix (Bimake). qPCR reactions were run in triplicate and an average was calculated. Relative transcript levels were normalized to snoR101 (for miRNAs) and ACT2 (for mRNAs) and expressed as a ratio of expression to a specified control sample. The qPCR primers used in this study are listed in Supplementary table 1.
Expanded leaves and roots were removed during tissue harvesting to produce samples enriched for shoot apices and young leaves. For histone ChIP ~0.5g of fresh tissue per antibody and for anti-HA ChIP ~5g of fresh tissue were harvested. Samples were fixed in 1% formaldehyde under vacuum for 15 minutes. Cross-linked samples were ground in liquid nitrogen and suspended in Honda buffer (0.44M sucrose, 1.25% ficoll, 2.5% dextran 40, 20mM hepes pH 7.4, 10mM MgCl$_2$, 0.5% Triton, 5mM DTT, 1mM PMSF, 1% protease inhibitors), filtered through two layers of Miracloth (EMD Millipore), and pelleted and washed thrice in Honda buffer. For histone ChIP, pellets were resuspended in nuclei lysis buffer (50mM Tris-HCl pH 8, 10mM EDTA, 1% SDS, 1% protease inhibitors), for anti-HA ChIP, pellets were resuspended in RIPA buffer (1X PBS, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 1% protease inhibitors). Samples were sonicated using a Fisherbrand Sonic Dismembrator (Fisher Scientific) 6x 10s at setting 3.2. ChIP samples were pre-cleared using Dynabeads Protein A (Invitrogen). 2% was removed as input and samples were incubated overnight with 1% antibody (for histone ChIP: anti-H3 (abcam ab1791), anti-H3K27me3 (EMD Millipore 07-449), anti-H2AK119ub (Cell Signaling Technology 8240); for VAL1-HA ChIP: anti-HA (Roche 11583816001)). Chromatin-antibody conjugates were purified with Dynabeads Protein A and washed in low/high salt, lithium and TE buffers. Following reverse-crosslinking DNA was isolated using a QIAquick PCR Purification Kit (Qiagen).

For ChIP-qPCR assays, three-step qPCR was carried out using SYBR-Green Master Mix (Bimake). qPCR reactions were run in triplicate and an average was calculated. Data were normalized and presented as follows: 1) For H3K27me3 – STM
was used as a control locus, data is presented as a ratio of (H3K27me3 gene of interest/H3 gene of interest) to (H3K27me3 STM/H3 STM); 2) For H2AK119ub – ACT7 was used as a control locus, data is presented as a ratio of (H2AK119ub gene of interest/input gene of interest) to (H2AK119ub ACT7/input ACT7); 3) For VAL1-HA – UBQ10, ACT7 and TA3 were used as control loci, data is presented as a ratio of ((VAL1-HA ChIP gene of interest/input gene of interest)/(VAL1-HA ChIP control/input control)) relative to ((WT ChIP gene of interest/input gene of interest)/(WT ChIP control/input control)). The qPCR primers used in this study are listed in Supplementary table 1.

Mass spectrometry

VAL1::VAL1-3xHA; val1-2; FRI-Sf2 and val1-2 genotypes were used as experimental and control samples respectively. Expanded leaves and roots were removed during tissue harvesting to produce samples enriched for shoot apices and young leaves. 2-3g of fresh tissue was harvested for immunoprecipitation, 0.2-0.6g was harvested for total protein extraction. For immunoprecipitation, tissue was ground in liquid nitrogen, suspended in IP buffer (20mM Tris-HCl pH 8, 150mM NaCl, 2.5mM EDTA, 0.5% Triton, 1% protease inhibitors, 1mM PMSF), rotated for 2 hours at 4°C and filtered through 2 layers of Miracloth. Anti-HA (Roche) conjugated Dynabeads Protein A (Invitrogen) were added and samples were rotated overnight at 4°C. Beads were washed thrice with IP buffer and proteins were purified for mass spectrometry using an S-Trap: Rapid Universal MS Sample Prep (Protifi) following the manufacturer’s instructions. For total proteomes, ground tissue was suspended in 8M urea and rotated at room temperature
for 45 minutes. The samples were centrifuged thrice and the supernatant reduced with DTT (final concentration 5mM) and alkylated with iodoacetamide 40 (final concentration 40mM) before overnight digest with trypsin. Samples were resuspended in 10 µl of water + 0.1% TFA and loaded onto a Dionex RSLC Ultimate 300 (Thermo Scientific, San Jose, CA, USA), coupled online with an Orbitrap Fusion Lumos (Thermo Scientific).

Chromatographic separation was performed with a two-column system, consisting of a C_{18} trap cartridge (300 µm ID, 5 mm length) and a picofrit analytical column (75 µm ID, 25 cm length) packed in-house with reversed-phase Repro-Sil Pur C_{18}-AQ 3 µm resin.

Peptides were separated using a 90 min gradient (for the IP experiments) and 180 min (for the full proteome experiment) from 2-28% buffer-B (buffer-A: 0.1% formic acid, buffer-B: 80% acetonitrile + 0.1% formic acid) at a flow rate of 300 nl/min. The mass spectrometer was set to acquire spectra in a data-dependent acquisition (DDA) mode. Briefly, the full MS scan was set to 300-1200 m/z in the orbitrap with a resolution of 120,000 (at 200 m/z) and an AGC target of 5x10e5. MS/MS was performed in the ion trap using the top speed mode (2 secs), an AGC target of 10e4 and an HCD collision energy of 30. Raw files were searched using Proteome Discoverer software (v2.4, Thermo Scientific) using SEQUEST as search engine using the SwissProt Arabidopsis thaliana database. The search for total proteome included variable modifications of methionine oxidation and N-terminal acetylation, and fixed modification of carbamidomethyl cysteine. Trypsin was specified as the digestive enzyme. Mass tolerance was set to 10 pm for precursor ions and 0.2 Da for product ions. Peptide and protein false discovery rate was set to 1%. Data transformation, normalization and
statistical analysis using heteroscedastic t-test was performed as previously described

(Aguilan et al., 2020).

Proteins were sorted according to their descending or ascending linearity across
the three weeks. To do so, we used a custom score taking into account monotonic
trend, reproducibility across replicates and magnitude of change across weeks. The 50
proteins with the highest descending and ascending trend scores were used to identify
enriched GO terms for biological processes using the Fisher’s Exact PANTHER
Overrepresentation Test (released 2020-07-28) and GO Ontology database DOI:
10.5281/zenodo.4081749 (released 2020-10-09). The Arabidopsis thaliana genome
was used as a reference list. Protein interaction maps for the same sets of 50 proteins
were made using the STRING app from Cytoscape (Shannon et al., 2003).

GUS staining and histology

Shoot apices and whole plants were fixed in 90% acetone on ice for 10 minutes,
washed with GUS staining buffer (5mM potassium ferricyanide and 5mM ferrocyanide in
0.1M PO₄ buffer) and incubated at 37°C overnight in GUS staining buffer with 2mM X-
Gluc. Embryos were placed directly in X-Gluc (GoldBio) GUS staining buffer and
incubated for 1hr. To quantify GUS activity, a 4-methylumbelliferyl b-D-glucuronide
(MUG) (Sigma-Aldrich) assay was carried out as previously described (He et al., 2018).
For histological observations individuals were fixed in FAA (3.7% formaldehyde),
dehydrated in an ethanol series and cleared using Histo-Clear (National Diagnostics).
Following embedding in Paraplast Plus (Sigma-Aldrich) 8μM sections were produced
using an HM 355 microtome (Microm) and visualized using an Olympus BX51 microscope with a DP71 camera attachment (Olympus).

Quantification and statistical analyses
Details of all statistical analyses, including the type of statistical test, sample size, replicate number and significance threshold, are included in the relevant figure legend. For figures featuring boxplots, boxes display the IQR (boxes), median (lines), and values beyond 1.5* IQR (whiskers); mean values are marked by a solid diamond (◆). Statistical analyses were carried out using RStudio (RStudio Team, 2020) and Microsoft Excel. Measurements of leaf shape were made using ImageJ (Schindelin et al., 2012).

Materials Availability
The val1-5(sd), val1-5(sd); val2-3, val1-2; val2-4, val1-2; mir156ac mir157ac and VAL1::VAL1-GUS-VAL1 3’UTR lines described herein have been donated to the ABRC (stock numbers CS72451-CS72455 respectively). All other plant lines and plasmids generated during this project are available on request to Scott Poethig (spoethig@sas.upenn.edu).

Acknowledgements
We thank members of the R.S.P laboratory and Doris Wagner (University of Pennsylvania) for helpful discussions, Daniel Martinez and Ryan McCarthy (University of Pennsylvania) for assistance with histology and chromatin sonication, the Arabidopsis Biological Resource Center for T-DNA insertion lines and Julia Qüesta and Caroline

41
Dean (John Innes Center) for the kind donation of VAL1-HA; val1-2; FRI-Sf2 seed. This project was funded by NIH Grant GM051893 (to R.S.P). S.S. gratefully acknowledges Merck/MSD for the Umberto Mortari Award (2019), the Japan Agency for Medical Research and Development (AMED) and the New York Academy of Sciences (NYAS) for supporting aging research in his lab.

Author Contributions

Declaration of Interests

The authors declare no competing interests.

Supplemental files titles and legends
Supplementary file 1. val1-5(sd) is an antimorphic allele

(A) Sequence alignment of the B3 DNA-binding domain N-arm of *Arabidopsis* LAV family members and the maize ABI3 ortholog VP1. Numbers correspond to amino acid sequence numbers, colors correspond to the ClustalX amino acid color scheme. In the val1-5(sd) mutant a C>T base substitution converts an arginine to a cysteine.

(B) val1-5(sd) complementation test with the null val1-2 allele

(C) Rescue of the val1-5(sd) abaxial trichome phenotype with a VAL1 genomic sequence. Independent T1 lines are shown.
(D) Allele heterozygosity testing. (B-D) Boxes display the interquartile range (IQR) (boxes), median (lines) and values beyond 1.5*IQR (whiskers); mean values are marked by ◆. Samples sizes are displayed on the graph. Statistically distinct genotypes were identified by one-way ANOVA with post hoc Tukey multiple comparison test (letters indicate statistically distinct groups; $P < 0.05$), all plants grown in LD.

(E) Heteroblastic series of lines shown in Figure 1.
Supplementary file 2. VAL genes redundantly regulate miR156 expression

qRT-PCR analyses of gene expression in shoot apices with leaf primordia (LP) ≥ 1mm removed at 1, 2 and 3 weeks. All plants were grown in SD conditions. Each data point represents a biological replicate and is the average of three technical replicates. Coloured lines represent the mean and black lines mean ± s.e.m. Asterisks represent significant differences between WT and val mutants at the same time point, calculated by an unpaired two-tailed t-test with a Bonferroni correction for multiple comparisons (* \(P < 0.025 \); ** \(P < 0.005 \); *** \(P < 0.0005 \).
Supplementary file 3. VAL1 binds consistently to *MIR156A* and *MIR156C* during vegetative development

(A) Schematic depicting the location of primers used for ChIP-qPCR, the sequences encoding the miR156 hairpin and mature miRNA are coloured green and blue respectively.

(B) Anti-HA ChIP-qPCR of WT Col control plants at 2W and *VAL1::VAL1-HA; val1-2; FRI-Sf2* plants at 1, 2 and 3W of growth. The data is presented as percentage input normalized to a control locus (*UBQ10* or *TA3*) and is displayed relative to WT. Each data point represents a biological replicate and is the average of three technical replicates, bars represent the mean and error bars the mean±s.e.m.

Plants were grown in SD conditions.
Supplementary file 4. RY sites are not required for the temporal decline of *MIR156C*

(A) qRT-PCR analyses of gene expression in shoot apices with LP \geq 1mm removed at 1 and 2 weeks. Bars represent the average of three technical replicates for a single biological replicate of pooled T1 plants, at least 15 independent T1 plants were pooled for each sample. *qm* = *mir156a mir156c mir157a mir157c quadruple mutant*, *tm* = *mir156a mir157a mir157c triple mutant*. Plants were grown in SD conditions.
Supplementary file 5. VAL genes do not regulate SPL9 chromatin state

(A, B) Temporal analysis of histone modification calculated by ChIP-qPCR. Each data point represents a biological replicate and is the average of three technical replicates. Lines represent the mean and bars represent the mean±s.e.m., (A) H3K2me3 values are relative to H3 and normalised to STM as an internal control. (B) H2AK119ub values are relative to input and normalised to ACT7 as an internal control. Plants were grown in SD conditions.
Supplementary file 6. *VAL1* expression is dependent on genetic elements in the coding sequence of the gene

(A) Torpedo-stage embryos of two-independent homozygous transgenic lines each expressing a transcriptional (top panel) or translational (bottom panel) *VAL1*-GUS reporter construct.

(B) Seedlings at 3 DAG. Each number designates an independent homozygous transgenic line. Arrow heads point to initiating lateral root primordia. All plants were grown in LD.
Supplementary file 7. Proteomic changes during vegetative development

(A,B) The 50 proteins with the strongest increasing or decreasing trend score during vegetative development in the experimental sample only (see Methods for details). (A) GO terms enriched within the 50 proteins that have the strongest increasing or decreasing trend score. (G) Interaction networks for each set of 50 proteins, the darker the color the stronger the increasing (red) or decreasing (blue) trend score.
Supplementary table 1. Primer sequences
This table includes all the primer sequences used in this study.

Supplementary table 2. Proteins detected by mass spectrometry following anti-HA immunoprecipitation
Related to Supplementary file 6.
This table includes the raw mass spectrometry results and data processing for IP-samples.

Supplementary table 3. Total proteome changes during vegetative development
Related to Supplementary file 6.
This table includes the raw mass spectrometry results and data processing for total proteome samples.

References

Yang, H., Howard, M., and Dean, C. (2014). Antagonistic Roles for H3K36me3 and H3K27me3 in the Cold-Induced Epigenetic Switch at Arabidopsis FLC. Current Biology 24, 1793–1797.

Yang, L., Xu, M., Koo, Y., He, J., and Poethig, R.S. (2013b). Sugar promotes vegetative phase change in *Arabidopsis thaliana* by repressing the expression of *MIR156A* and *MIR156C*. Elife 2, e00260.

