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Abstract Valence double parton distribution functions of the nucleon are evaluated in the framework of a
simple model, where the conservation of the longitudinal momentum is taken into account. The leading-order
DGLAP QCD evolution from the low quark-model scale to higher renormalization scales is carried out via
the Mellin moments of the distributions. Results of the valence quark correlation function show that in general
the double distributions cannot be approximated as a product of the single-particle distributions.

Theoretical interest in double parton distributions (dPDFs) in hadrons has been recently renewed (see the
reviews [1,2] and the references therein). The activity is largely triggered by the experimental program at
the LHC, where the double parton scattering (DPS) may bring substantial contribution in certain production
processes [3,4]. Phenomenological aspects of the inclusion of the multi-parton effects have been widely pursued
since the early days of the parton model [5], while many formal features of the multiparton evolution [6,7]
follow from a pioneering study on fragmentation functions [8]. Elements of the QCD formulation are presented
in [9–12], while a 2GPD interpretation is provided in [13]. Positivity bounds for dPDFs were recently discussed
in [14].

Dynamic modeling of dPDFs has been up to now very little explored. In fact, the only calculations which
nonperturbatively predict the valence dPDFs of the nucleon have been carried out in the framework of the MIT
bag model [15] and in the constituent quark model [16]. In both calculations, the approximate implementation
of relativity has the side effect of producing distributions with unphysical support, i.e., extending outside the
interval 0 ≤ x1, x2, x1 + x2 ≤ 1. An important aspect of the dPDFs is that they allow to detect tight diquark
correlations, in which case the dPDF becomes a function of the sum x1 + x2. In the (x1, x2) distribution plot
the fingerprints are the straight-line structures inclined by 45◦.

The purpose of this talk is to explore the valence dPDF of the proton in a very simple model which includes
the exact momentum-conservation constraints and complies to the Lorentz invariance. Satisfaction of these
requirements results in proper theoretical features, such as the correct support in the x-variables or the quark-
number and momentum sum rules [17]. In the considered model, the correlations between partons are due
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solely to the longitudinal momentum conservation. Importantly, we carry out the LO DGLAP evolution [6,7]
of the obtained valence dPDF, confirming its crucial effects for the corresponding quark correlation function
as the evolution scale is moved up to the experimentally-accessible values. We find that with the increasing
renormalization scale, the correlation between the valence quarks becomes large and positive along the edges
where x1 or x2 is small, while it is negative in the region where x1 and x2 are similar and relatively large. This
shows in explicit terms that approximating dPDFs with a product of two single-parton distributions (sPDF) is
not justified.

Similarly to sPDF, which is interpreted as the probability distribution for the probed parton to carry the
fraction x of the total p+ momentum of the hadron, the dPDF has the interpretation of the joint probabilistic
distribution that the j1 and j2 partons carry the momentum fractions x1 and x2 of the hadron, respectively.
Denoting the sPDF as D j (x) and dPDF as D j1 j2(x!, x2), one may define the parton correlation function [15,16]

ρ j1 j2(x1, x2) =
D j1 j2(x1, x2)

D j1(x1)D j2(x2)
− 1. (1)

As mentioned, a dynamical nonperturbative calculation for the proton has been made in the MIT bag model [15],
where the correlations stem from the conservation of the linear momentum (implemented in terms of the Peierls-
Yoccoz projection). As is well known, projecting onto good linear momentum coincides with boosting from
the rest frame only for the exact eigenstates of relativistic systems [18]. A constituent quark model study has
been carried out in [16]. Here we consider a much simpler model which in our view grasps the essential features
of the problem and has the proper support. The role of transverse degrees of freedom is discussed at the end.

Let us introduce the probability that the parton carries the momentum fraction x as the square of its wave
function, φ(x) = |ψ(x)|2. Then the three-particle probability distribution is proposed in the form

D3(x1, x2, x3) = φ(x1)φ(x2)φ(x3)δ(1 − x1 − x2 − x3), (2)

where the delta function enforces the longitudinal momentum conservation. Its marginal projections define
the dPDF and sPDF:

D2(x1, x2) =
1

∫

0

dx3 D3(x1, x2, x3) = φ(x1)φ(x2)φ(1 − x1 − x2), (3)

D1(x1) =
1

∫

0

dx2 D2(x1, x2) =
1

∫

0

θ(1 − x1 − x2)dx2φ(x1)φ(x2)φ(1 − x1 − x2). (4)

Note that Eq. (4) is equivalent to the quark number sum rule of Gaunt and Stirling (GS) [17]. The momentum
GS sum rule is also satisfied, as it is straightforward to show that

1−x1
∫

0

dx2 x2 D2(x1, x2) +
1−x1
∫

0

dx3 x3 D2(x1, x3) = (1 − x1)D1(x1). (5)

As a matter of fact, the only feature used in these derivations is the symmetric form of Eq. (2). In addition,
due to the symmetry, the extremum of D3(x1, x2, x3) is located at the symmetric point x1 = x2 = x3 = 1/3
regardless of its particular shape.

Early multiparton models [5] take the simple Regge-motivated parametrization ψ(x) ∼ xa with a = 1 −
α(0) and the intercept α(0) = 1/2, while the constant phase-space model of Ref. [19] uses ψ(x) = 1. In this
presentation we investigate two simple classes of models of the form

φ(x) ≡ |ψ(x)|2 = Axα (model I), φ(x) ≡ |ψ(x)|2 = A(1 − x)a (model II), (6)

where A is a normalization constant such that
∫ 1

0 dx φ(x) = 1. We consider the cases α = 0, 1/2, 1 and
a = 1, 2. The first class corresponds to the so-called valon model [20,21] for the proton, which assumes
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Guud/p(x1, x2, x3) = (x1x2)
αx

β
3 δ(1 − x1 − x2 − x3) for α = β. For instance, for the case of the second class

with a = 2 in Eq. (6) we get

D2 (x1, x2) =
1008

29
(1 − x1)

2 (1 − x2)
2 (x1 + x2)

2 ,

D1(x) =
168

145
(1 − x)3

(

1 + 6x + 16x2 + 6x3 + x4
)

(7)

We note that the behavior of D1(x) near x → 1 conforms to the QCD counting rules [22]. This is also the case
for α = 1 in model I of Eq. (6). As we see, at small x’s we can trace a diquark correlation.

The above forms hold by construction at the quark-model scale, where the only degrees of freedom are the
valence quarks. To relate to results at experimental scales, the appropriate QCD evolution is necessary [23],
which generates radiatively the sea quarks and gluons. The matching prescription based on the requirement
that at µ = 2 GeV the valence quarks carry the experimental momentum fraction of 41.6 % [24] leads to a
very low quark model scale, µ0 = 285 MeV (where the valence quarks carry all the momentum). This low
value is compatible to the case of the pion in chiral quark models [25,26].

The QCD evolution equations for multi-parton distributions have been derived long ago [6,7]. The DGLAP
evolution preserves the GS sum rules [17], hence their satisfaction at the quark-model scale implies satisfaction
at higher scales. A simple and practical method of solving the evolution equations numerically is based on the
Mellin moments, similarly to the case of sPDFs. One introduces the corresponding moments of the sPDFs and
dPDFs,

Mn
j =

1
∫

0

dx xn D j (x), (8)

M
n1n2

j1 j2
=

1
∫

0

dx1

1
∫

0

dx2θ(1 − x1 − x2)x
n1

1 x
n2

2 D j1 j2(x1, x2),

and the moments of the QCD splitting functions

Pn
i→ j =

1
∫

0

dx xn Pi→ j (x), (9)

P
n1n2

i→ j1 j2
=

1
∫

0

dx xn1(1 − x)n2 Pi→ j1 j2(x),

P̃
n1n2

i→ j1 j2
= δ j1 j2 P

n1+n2

i→ j1
− δi j1 P

n2

j1→ j2
− δi j2 P

n1

j2→ j1
.

Then the LO dDGLAP evolution equations read [6,7]

d

dt
M

n1n2

j1 j2
=

∑

i

P
n1

i→ j1
M

n1n2

i j2
+

∑

i

P
n2

i→ j2
M

n1n2

j1i +
∑

i

(

P
n1n2

i→ j1 j2
+ P̃

n1n2

i→ j1 j2

)

M
n1+n2

i , (10)

where the evolution variable is

t =
1

2πβ
log

[

1 + αs(µ)β log(
QCD/µ)
]

, β =
11Nc − 2N f

12π
.

Partons i , j1, and j2 may in general represent the valence quarks, the sea quarks, or the gluons, whose
distributions are coupled. Moreover, the last term in Eq. (10) couples dPDFs to sPDFs. In this talk we consider
only the evolution of the valence quarks which leads to a technical simplification, as in this case there are no
partons i decaying into a pair of valence quarks and Pi→ j1 j2 = 0. This means that the inhomogeneous term in
Eq. (10) vanishes and our evolution equation simply reads

d

dt
M

n1n2

j1 j2
(t) =

(

P
n1

j1→ j1
+ P

n2

j2→ j2

)

M
n1n2

j1, j2
(t). (11)
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Fig. 1 The valence sPDF of the nucleon (multiplied by x) at the scale of µ = 2 GeV, plotted as a function of the Bjorken variable
x . The darker band corresponds to the NNPDF2.3 fit with no LHC data, while the broader light band is the the NNPDF2.3 fit with
the collider data only [24]. We show sPDF evolved with the dDGLAP equations from the quark-model scale µ0 to µ = 2 GeV.

Left The solid, dashed, and dotted lines correspond to the valon model |ψ(x)|2 = Axα with α = 1, 1/2, and 0, respectively.

Right The solid and dashed lines correspond to the model |ψ(x)|2 = A(1 − x)a with a = 2 and a = 1, respectively

Recall that for sPDFs the corresponding evolution equation is

d

dt
Mn

j (t) = Pn
j→ j Mn

j (t). (12)

Note that due to the presence of correlations we have M
n1n2

j1 j2
(t) �= M

n1

j1
(t)M

n2

j2
(t) and the system is not

separable. The solutions of Eqs. (11, 12) are

Mn
j (t) = e

Pn
j→ j (t−t0)Mn

j (t0), (13)

M
n1n2

j1 j2
(t) = e

(

P
n1
j1→ j1

+P
n2
j2→ j2

)

(t−t0)
M

n1n2

j1 j2
(t0). (14)

The inverse Mellin transform brings us to the evolved solution in the x-space, namely

D j (x; t) =
∫

C

dn

2π i
x−n−1 Mn

j (t), (15)

D j1 j2(x1, x2; t) =
∫

C

dn1

2π i
x

−n1−1
1

∫

C ′

dn2

2π i
x

−n2−1
2 M

n1,n2

j1, j2
(t), (16)

where n and n′ are treated as complex variables and the contours C and C ′, lying right to all singularities
of M , are bended by 45◦ (see e.g. Ref. [27]). The bending of the contours helps with the pace of numerical
convergence. Schwarz’s reflection principle Mn∗ = M∗

n is satisfied since the anomalous dimensions are real
for any integer n and thus one segment of the bended contour is needed in the evaluation. The method is most
practical when the moments M are analytic functions of their arguments; if they were not (as could be the case
when some numerical fits to the data are made), then they should be approximated with analytic functions,
e.g., with sums of the Euler Beta functions, whence the procedure may be carried out with no difficulty.

Next, we proceed to presenting our results of the evolution in the considered model. Before showing the
main findings for the valence dPDF, we explore the valence sPDF, where the results can be straightforwardly
compared to the existing data parameterizations. Figure 1 presents the valence quark distribution, customarily
multiplied by x , evolved to the benchmark scale of µ = 2 GeV and compared to the NNPDF2.3 fits [24],
indicated with bands (the darker narrow band is the fit excluding the LHC data, and the broad band uses the
collider data only). The reasonable reproduction of the valence sPDF gives us confidence that the simple model
of Eqs. (3,4) grasps the most essential features of the valence parton distributions of the nucleon, particularly

for the case a = 2, ψ(x) =
√

3(1 − x). We may thus move towards the double distributions. The effect of the
evolution on the valence dPDFs is presented in Fig. 2, where we show the contour maps of x1x2 D2(x1, x2)

at three scales: the quark-model scale µ0, and the higher scales µ = 2 GeV and µ = 1 TeV. Of course, the
support of the function is the region x1 + x2 ≤ 1, xi ≥ 0. We observe how the dDGLAP equations cause
the drift of the distributions towards low values of x1 and x2. This drift to low values of x is well-known for
the case of the DGLAP evolution of sPDFs; it has also been observed for the dPDFs [17]. We note the lack
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Fig. 2 Contour plots of the valence dPDF of the nucleon multiplied by x1x2, i.e., the quantity x1x2 D2(x1, x2), at the scale µ0 and

evolved to µ = 2 GeV and µ = 1 TeV with the LO dDGLAP equations. Model with a = 2 corresponding to ψ(x) =
√

3(1 − x)

Fig. 3 Contour plots of the valence quark correlation function ρ(x1, x2) = D2(x1, x2)/[D1(x1)D1(x2)] − 1, at the scales µ0,

µ = 2 GeV, and µ = 1 TeV. Model with a = 2 corresponding to ψ(x) =
√

3(1 − x)

of factorization in the x1 and x2 variables within the DGLAP approach, as emphasized in Ref. [28,29]. The
behavior at the end-lines [30] shows that for a fast variable and a slow variable, i.e., x1 → 1 and x2 → 0, the
correlation becomes small, since

D2(x1, x2; t) → H(t)(1 − x1)
ki, j1, j2 (1 − x1 − x2)

2CF t+hi, j1, j2 , (17)

a feature confirmed with our numerical analysis.

For a probability interpretation to hold, it is necessary that the evolution equations preserve the positivity
of the initial condition. Amusingly, it has been found that the upward evolution for sPDFs produces positive
distributions [31], unlike the downward evolution where a lower bound for the evolution ratio is found on this
basis [27] (cf. also the irreversible evolution of Ref. [32]). Within the considered model, the upward evolution
preserves the positivity of the valence dPDF, as can be seen from Fig. 2.

In Fig. 3 we plot the double-parton correlation function as defined in Eq. (1). As the scale increases, the
correlation becomes large and positive along the lines xi = 0, while in the central region it is negative. At
the line of the kinematic constraint x1 + x2 = 1 we find ρ(x1, x2) = −1. The results of Fig. 3 show that the
valence dPDF cannot be approximated with the uncorrelated product of the sPDFs. We note that our plots bare
qualitative similarity to the results obtained in the MIT bag model [15].

We end with some remarks concerning the longitudinal and transverse degrees of freedom. Our calculation
is essentially 1-dimensional, as the transverse dynamics plays no active role. This dimensional reduction could
be possible if the relative momentum between the two quarks is assumed to be small. To analyze this assumption
from a non-perturbative point of view, let us remind ourselves that the transverse lattice approach [33] allows to
effectively freeze the transverse degrees of freedom when the transverse spacing, a⊥, becomes larger than the
characteristic resolution of the parton momentum in the hadron, ∼ 1/
QCD. This also limits the multiparton

Fock state by powers of a⊥. For instance, for the nucleon N = q3 + a3
⊥q4q̄ + a4

⊥q3G + · · · . However, as
soon as a⊥ starts decreasing, gluons and sea quarks are radiated and it is amazing that the DGLAP evolution
equations roughly reproduce the observed behavior for sPDF [26].
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A simple way to mimic the transverse lattice dynamics is by using a 2-dimensional harmonic oscillator to
trap the partons in the hadron [34] in the transverse plane, with a mass squared operator given by

M2 =
∑

i

[

k2
i⊥ + m2

i

xi

+ σ 2xi b
2
i

]

. (18)

Here, xi are the longitudinal momentum fractions fulfilling
∑

i xi = 1, bi are the impact-parameter variables,
k⊥,i their corresponding Fourier-conjugate variables, and σ is the oscillator constant. If ψn⊥(x, b) is the single

particle two dimensional HO wave function normalized as
∫

d2b|ψn⊥(x, b)|2 = 1 with quantum numbers

n⊥ = (nx , ny) and mass squared M2 = 2σ(nx + ny + 1), then the general solution is a symmetrized product
of factorized states

�n⊥(x1, b1, . . . , xN , bN ) = ϕ(x1, . . . , xN )

N
∏

i=1

ψni,⊥(xi , bi )χspin−flavor. (19)

Due to the fact that the single-particle wave functions have an x-independent normalization, one clearly has

DN (x1, . . . , xN ) =
∏

i

∫

d2bi |�n⊥ (x1, b1, . . . , xN , bN ) |2 = |ϕ(x1, . . . , xN )|2. (20)

Note that here the variables xi are fixed, i.e., they are not dynamical, and we can still multiply by an arbitrary
function ϕ(x1, . . . , xN ) which would be generated after requantization by some unspecified 1-dimensional
dynamics, say M2 = M2

HO + M2
1+1. Our model in Eq. (2) corresponds to the product ϕ(x1, . . . xN ) =

∏

i ψ(xi ). This is similar to the Born-Oppenheimer approximation where the longitudinal variables obey
classical dynamics. In this extreme case the mass terms give after minimization xi = mi/m, with m =
∑

i mi yielding a contribution m2 to M2 and DN (x1, . . . , xN ) →
∏

i δ(xi − mi/m), which for equal masses
corresponds to locating the distribution in our Eq. (2) at the maximum, xi = 1/N . That model breaks the
transverse translational invariance, which can be restored by projecting onto zero total transverse momentum
using the Peierls-Yoccoz method [18], such that for mi = 0 one finds M2

N = 2Nσ for the symmetric state. A
straightforward calculation with the rest frame wave function yields the following result for the unintegrated
dPDF:

D2(x1, x2, k⊥) =
∫

d2bd2 B|�0

(

x1, B +
1

2
b, x2, B −

1

2
b

)

|2eib·k⊥ = D2(x1, x2)e
−

k2
⊥

4σ

x1+x2
x1x2 . (21)

Thus, there exists a transverse dynamics given by Eq. (18) where the effective 1-dimensional treatment used
here holds, but it does not support the often assumed transverse-longitudinal factorization.
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