Czechoslovak Mathematical Journal

Xiao-Hui Hua; Li Chen

Valency seven symmetric graphs of order $2 p q$

Czechoslovak Mathematical Journal, Vol. 68 (2018), No. 3, 581-599

Persistent URL: http://dml.cz/dmlcz/147353

Terms of use:

© Institute of Mathematics AS CR, 2018

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

VALENCY SEVEN SYMMETRIC GRAPHS OF ORDER $2 p q$

Xiao-Hui Hua, li Chen, Xinxiang

Received October 6, 2015. Published online June 5, 2018.

Abstract

A graph is said to be symmetric if its automorphism group acts transitively on its arcs. In this paper, all connected valency seven symmetric graphs of order $2 p q$ are classified, where p, q are distinct primes. It follows from the classification that there is a unique connected valency seven symmetric graph of order $4 p$, and that for odd primes p and q, there is an infinite family of connected valency seven one-regular graphs of order $2 p q$ with solvable automorphism groups, and there are four sporadic ones with nonsolvable automorphism groups, which is $1,2,3$-arc transitive, respectively. In particular, one of the four sporadic ones is primitive, and the other two of the four sporadic ones are bi-primitive.

Keywords: arc-transitive graph; symmetric graph; s-regular graph
MSC 2010: 05C25, 20B25

1. Introduction

For a finite, simple and undirected graph X, let $V(X), E(X), A(X)$ and $\operatorname{Aut}(X)$ denote the vertex set, edge set, arc set and full automorphism group of X, respectively. Note that an arc is an ordered edge, that is, an ordered pair of adjacent vertices. For $u, v \in V(X),\{u, v\}$ denotes the edge incident to u and v in X. An s-arc in a graph X for some nonnegative integer s is an ordered ($s+1$)-tuple $\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ of $s+1$ vertices such that $\left(v_{i-1}, v_{i}\right) \in A(X)$ for $1 \leqslant i \leqslant s$ and $v_{i-1} \neq v_{i+1}$ for $1 \leqslant i \leqslant s-1$. For a subgroup G of the automorphism group $\operatorname{Aut}(X)$ of a graph X, the graph X is said to be (G, s)-arc-transitive or (G, s)-regular if G acts transitively or regularly on the set of s-arcs of X, and (G, s)-transitive if G acts transitively on the set of s-arcs but not on the set of $(s+1)$-arcs of X. A graph X is said to be s-arc-transitive, s-regular or s-transitive if it is (Aut $(X), s)$-arc-transitive,

[^0](Aut $(X), s)$-regular or $(\operatorname{Aut}(X), s)$-transitive. In particular, 0 -arc-transitive means vertex-transitive, and 1-arc-transitive means arc-transitive or symmetric. A graph is said to be primitive if its automorphism group is primitive on the vertex set, and a graph is said to be bi-primitive if it is a bipartite graph with bi-parts Δ_{1}, Δ_{2}, and the setwise stabilizer of its automorphism group is primitive on both Δ_{1} and Δ_{2}. Throughout this paper, we will denote by \mathbb{Z}_{n} the cyclic group of order n, by \mathbb{Z}_{n}^{*} the multiplicative group of units modulo n, by $D_{2 n}$ the dihedral group of order $2 n$, by F_{n} the Frobenius group of order n, and by A_{n} and S_{n} the alternating group and the symmetric group of degree n, respectively.

It is well known that a graph Γ is G-arc-transitive if and only if G is vertextransitive and the vertex stabilizer G_{v} of $v \in V(\Gamma)$ in G is transitive on $N_{\Gamma}(v)$. Hence the structure of the vertex stabilizer of G_{v} plays an important role in the study of (G, s)-transitive graphs. For example, benefitted from Djoković and Miller [4] result about the vertex stabilizer of cubic symmetric graphs, lots of works about classifications of cubic symmetric graphs were obtained by many authors (see [7], [8], [9], [23], [24]). Due to the vertex stabilizers given in [27], symmetric tetravalent graphs have also been studied extensively in the literature (see [11], [12], [22], [32], [34]). Simlarly, Guo and Feng [14] determined structure of vertex stabilixers of pentavalent symmetric graphs, some works about classifications of pentavalent symmetric graphs were also obtained (see [6], [14], [17], [18], [26]). Naturally, the next step is to characterize valency seven symmetric graphs. Recently, Guo et al. [15] gave the structure of vertex stabilizers of valency seven symmetric graphs, and this encourages us to consider some work on valency seven symmetric graphs. In [16], Guo et al. classified valency seven symmetric graphs of order $4 p$, and in [25], Pan et al. classified primevalent symmetric graphs of square-free order. But, we obtain this result for valency seven symmetric graphs of order $2 p q$ independently. Let p, q be two distinct primes. In this paper, we classify valency seven symmetric graphs of order $2 p q$.

2. Preliminaries

Let X be a graph, and N a subgroup of $\operatorname{Aut}(X)$. Denote by X_{N} the quotient graph corresponding to the orbits of N, that is the graph having the orbits of N as vertices with two orbits adjacent in X_{N} if there is an edge in X between those orbits. In view of [20], Theorem 9, we have the following proposition.

Proposition 2.1. Let X be a connected symmetric graph of prime valency p and G an s-arc-transitive subgroup of $\operatorname{Aut}(X)$ for some $s \geqslant 1$. If a normal subgroup N of G has more than two orbits on $V(X)$ then X_{N} is also a symmetric graph
of valency p and N is the kernel of the action of G on the set of orbits of N. Moreover, N is semiregular on $V(X)$ and G / N is an s-arc-transitive subgroup of $\operatorname{Aut}\left(X_{N}\right)$.

By Guo [15], we have the following statement.

Proposition 2.2. Let X be a connected (G, s)-transitive graph of valency seven for some $G \leqslant \operatorname{Aut}(X)$ and $s \geqslant 1$. Let $v \in V(X)$. Then $s \leqslant 3$ and one of the following holds:
(1) If G_{v} is soluble, then $\left|G_{v}\right| \mid 2^{2} \cdot 3^{2} \cdot 7$. Further, the triple $\left(s, G_{v},\left|G_{v}\right|\right)$ lies in the following table:

$s=1$		$s=2$		$s=3$	
G_{v}	Order	G_{v}	Order	G_{v}	Order
\mathbb{Z}_{7}	7	F_{42}	$2 \cdot 3 \cdot 7$	$F_{42} \times \mathbb{Z}_{6}$	$2^{2} \cdot 3^{2} \cdot 7$
D_{14}	$2 \cdot 7$	$F_{42} \times \mathbb{Z}_{2}$	$2^{2} \cdot 3 \cdot 7$		
F_{21}	$3 \cdot 7$	$F_{42} \times \mathbb{Z}_{3}$	$2 \cdot 3^{2} \cdot 7$		
D_{28}	$2^{2} \cdot 7$				
$F_{21} \times \mathbb{Z}_{3}$	$3^{2} \cdot 7$				

(2) If G_{v} is insoluble, then $s \geqslant 2$ and $\left|G_{v}\right| \mid 2^{24} \cdot 3^{4} \cdot 5^{2} \cdot 7$. Further, the triple $\left(s, G_{v},\left|G_{v}\right|\right)$ lies in the following table:

$s=2$		$s=3$	
G_{v}	Order	G_{v}	Order
$\operatorname{PSL}(3,2)$	$2^{3} \cdot 3 \cdot 7$	$\operatorname{PSL}(3,2) \times S_{4}$	$2^{6} \cdot 3^{2} \cdot 7$
A_{7}	$2^{3} \cdot 3^{2} \cdot 5 \cdot 7$	$A_{7} \times A_{6}$	$2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 7$
S_{7}	$2^{4} \cdot 3^{2} \cdot 5 \cdot 7$	$S_{7} \times S_{6}$	$2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7$
$\mathbb{Z}_{2}^{3} \times \mathrm{SL}(3,2)$	$2^{6} \cdot 3 \cdot 7$	$\left(A_{7} \times A_{6}\right) \rtimes \mathbb{Z}_{2}$	$2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7$
$\mathbb{Z}_{2}^{4} \times \mathrm{SL}(3,2)$	$2^{7} \cdot 3 \cdot 7$	$\mathbb{Z}_{2}^{6} \rtimes(\mathrm{SL}(2,2) \times \mathrm{SL}(3,2))$	$2^{10} \cdot 3^{2} \cdot 7$
		$\left(\left[2^{20}\right] \rtimes(\mathrm{SL}(2,2) \times \mathrm{SL}(3,2))\right.$	$2^{24} \cdot 3^{2} \cdot 7$

From [3], pages 12-14, 3-prime factor simple groups can be found. And by [13], pages 134-136, one can obtain the following proposition by checking the orders of nonabelian simple groups.

Proposition 2.3. Let p, q be distinct odd primes, and let G be a nonabelian simple group of order $|G|=2^{i} \cdot 3^{j} \cdot 5^{k} \cdot 7 \cdot p \cdot q$ with $1 \leqslant i \leqslant 26,0 \leqslant j \leqslant 4,0 \leqslant k \leqslant 2$ and $7||G|$. Then G has 3 -prime factor, 4-prime factor, 5 -prime factor or 6 -prime factor, and is one of the groups in Table 1.

G	Order	G	Order
$\operatorname{PSL}(2,7)$	$2^{3} \cdot 3 \cdot 7$	A_{11}	$2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 11$
$\operatorname{PSL}(2,8)$	$2^{3} \cdot 3^{2} \cdot 7$	A_{12}	$2^{9} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot 11$
$\operatorname{PSU}(3,3)$	$2^{5} \cdot 3^{3} \cdot 7$	M_{22}	$2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$
A_{7}	$2^{3} \cdot 3^{2} \cdot 5 \cdot 7$	$H S$	$2^{9} \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 11$
A_{8}	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7$	$\operatorname{PSL}\left(2,2^{6}\right)$	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13$
A_{9}	$2^{6} \cdot 3^{4} \cdot 5 \cdot 7$	$\operatorname{PSL}\left(2,2^{9}\right)$	$2^{9} \cdot 3^{3} \cdot 7 \cdot 19 \cdot 73$
A_{10}	$2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7$	$\operatorname{PSL}\left(2,5^{3}\right)$	$2^{2} \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 31$
$\operatorname{PSL}(2,13)$	$2^{2} \cdot 3 \cdot 7 \cdot 13$	$\operatorname{PSL}(4,4)$	$2^{12} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 17$
$\operatorname{PSL}(2,27)$	$2^{2} \cdot 3^{3} \cdot 7 \cdot 13$	$\operatorname{PSL}(5,2)$	$2^{10} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31$
$\operatorname{PSL}(3,4)$	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7$	$\operatorname{PSp}(4,8)$	$2^{12} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 13$
$\operatorname{PSL}(3,8)$	$2^{9} \cdot 3^{2} \cdot 7^{2} \cdot 73$	${ }^{2} D_{4}(2)$	$2^{12} \cdot 3^{4} \cdot 5 \cdot 7 \cdot 17$
$\operatorname{PSU}(3,5)$	$2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7$	$G_{2}(4)$	$2^{12} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 13$
$\operatorname{PSU}(3,8)$	$2^{9} \cdot 3^{4} \cdot 7 \cdot 19$	$G_{2}(8)$	$2^{18} \cdot 3^{5} \cdot 7^{2} \cdot 19 \cdot 73$
J_{2}	$2^{7} \cdot 3^{3} \cdot 5^{2} \cdot 7$	M_{23}	$2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 23$
$S z(8)$	$2^{6} \cdot 5 \cdot 7 \cdot 13$	M_{24}	$2^{10} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 23$
$D_{4}(2)$	$2^{12} \cdot 3^{5} \cdot 5^{2} \cdot 7$	J_{1}	$2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19$
${ }^{3} D_{4}(2)$	$2^{12} \cdot 3^{4} \cdot 7^{2} \cdot 13$	$\operatorname{PSL}(3,16)$	$2^{12} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17$
$\operatorname{PSp}(6,2)$	$2^{9} \cdot 3^{4} \cdot 5 \cdot 7$	$\operatorname{PSL}(2, t)$	$t= \pm 1(\bmod 7)$ and $t>13$
$\operatorname{PSp}(8,2)$	$2^{16} \cdot 3^{5} \cdot 5^{2} \cdot 7$		
$\operatorname{PSL}(2,49)$	$2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2}$		

Table 1. Nonabelian simple $\{2,3,5,7, p, q\}$-groups.

Proof. Clearly, we have

$$
\begin{equation*}
2^{27} \nmid G\left|, 3^{6} \nmid\right| G\left|, 5^{4} \nmid\right| G\left|, 7^{3} \nmid\right| G|, 7||G|, t^{2} \nmid|G| \tag{2.1}
\end{equation*}
$$

where $t \in\{q, p\}$ and $t \geqslant 11$.
From [3], pages 12-14, 3-prime factor simple groups can be found. If $7||G|$, one has $G \cong \operatorname{PSL}(2,7), \operatorname{PSL}(2,8)$ or $\operatorname{PSU}(3,3)$. Specially, if $7^{2}| | G\left|, 3^{5}\right||G|$ or $5^{3}| | G \mid$, then $|G|$ has at most five prime divisors. By [31], page 3, each finite nonabelian simple group is isomorphic to A_{n} with $n \geqslant 5$, one of 26 sporadic simple groups, or a classical group or an exceptional group of Lie type. For the orders of these simple groups, one can see [13], Table 2.4, pages 134-136, and for more details, see [31], Sections 3, 4, 5 .

For A_{n} with $n \geqslant 5$, since $3^{6} \nmid|G|$ and $7\left||G|\right.$, we have $G \cong A_{7}, A_{8}, A_{9}, A_{10}, A_{11}$ or A_{12}. For the 26 sporadic simple groups, by equation (2.1) we have $G \cong M_{22}, M_{23}$, $M_{24}, J_{1}, J_{2}, H S$.

For the groups of Lie type, since each odd prime divisor of $|G|$ has power at most 5 , by [13], Table 2.4, pages $134-136, G \cong D_{4}(2),{ }^{2} D_{4}(2),{ }^{3} D_{4}(2), \operatorname{PSL}(n, t)$ with $n \geqslant 2$, $\operatorname{PSU}(n, t)$ with $n \geqslant 3, \operatorname{PSp}(2 n, t)$ with $n \geqslant 2$, or $S z\left(2^{2 n+1}\right)$ with $n \geqslant 1$, where t is a prime power.

Let $G \cong \operatorname{PSL}(n, t)$. Then $|G|=(n, t-1)^{-1} t^{n(n-1) / 2} \prod_{i=2}^{n}\left(t^{i}-1\right)$. First assume $n \geqslant 3$. Then $n(n-1) / 2 \geqslant 3$, and by equation (2.1), we have $n=3$ and $t=3,5$ or 2^{i} with $i<9, n=4$ and $t=2^{i}$ with $i<5$, or $n=5$ and $t=2^{i}$ with $i<3$. For each case, by checking orders with equation (2.1) again, we have $G \cong \operatorname{PSL}(3,4)$, $\operatorname{PSL}(3,8), \operatorname{PSL}(3,16), \operatorname{PSL}(4,2)\left(\cong A_{8}\right), \operatorname{PSL}(4,4)$ or $\operatorname{PSL}(5,2)$. Now assume $n=2$. Then $|G|=(2, t-1)^{-1} t\left(t^{2}-1\right)$. If $t=2^{i}$ then $i \leqslant 26$ by equation (2.1). Similarly, if $t=3^{i}$ then $i \leqslant 5$; if $t=5^{i}$ then $i \leqslant 3$; if $t=7^{i}$ then $i \leqslant 2$; if $t=s^{i}$ with $s>7$ and $s \in\{q, p\}$ then $i=1$. For each case, checking the orders of $\operatorname{PSL}(2, t)$ again, we have $G \cong \operatorname{PSL}\left(2,2^{6}\right), \operatorname{PSL}\left(2,2^{9}\right), \operatorname{PSL}(2,27), \operatorname{PSL}(2,125), \operatorname{PSL}(2,49)$, or $\operatorname{PSL}(2, t)$ with some prime $t \geqslant 13$ and $t \in\{q, p\}$.

Let $G \cong \operatorname{PSU}(n, t)$ with $n \geqslant 3$. Then

$$
|G|=(n, t+1)^{-1} t^{n(n-1) / 2} \prod_{i=2}^{n}\left(t^{i}-(-1)^{i}\right)
$$

Since $n(n-1) / 2 \geqslant 3$, we have $n=3$ and $t=3,5$ or $t=2^{i}$ with $i<9, n=4$ and $t=2^{i}$ with $i<5$, or $n=5$ and $t=2^{i}$ with $i<3$ by equation (2.1). Hence, $G \cong \operatorname{PSU}(3,8), \operatorname{PSU}(3,5)$. For the other two infinite families $\operatorname{PSp}(2 n, t)$ of order $(n, t-1)^{-1} t^{n^{2}} \prod_{i=2}^{n}\left(t^{2 i}-1\right)$ with $n \geqslant 2$ and $S z\left(2^{2 n+1}\right)$ of order $2^{4 n+2}\left(2^{4 n+2}+1\right) \times$ ($2^{2 n+1}-1$) with $n \geqslant 1$, one can similarly obtain that $G \cong \operatorname{PSp}(4,8), S z(8)$.

From [30], page 417, we have the following proposition.

Proposition 2.4. Let p be a prime, and $q=p^{n} \geqslant 5$. Then a maximal subgroup of $\operatorname{PSL}(2, q)$ is isomorphic to one of the following groups:
(1) $D_{2(q-1) / d}$, where $d=(2, q-1)$ and $q \neq 5,7,9,11$;
(2) $D_{2(q+1) / d}$, where $d=(2, q-1)$ and $q \neq 7,9$;
(3) $\mathbb{Z}_{q} \rtimes \mathbb{Z}_{(q-1) / d}$;
(4) A_{4}, when $q=p=5$, or $q=p \equiv 3,13,27,37(\bmod 40)$;
(5) S_{4}, when $q=p \equiv \pm 1(\bmod 8)$;
(6) A_{5}, when $q=p \equiv \pm 1(\bmod 5)$, or $q=p^{2} \equiv-1(\bmod 5)$ with p an odd prime;
(7) $\operatorname{PSL}(2, r)$, when $q=r^{m}$ with m an odd prime;
(8) $\operatorname{PGL}(2, r)$, when $q=r^{2}$.

To extract a classification of connected valency seven symmetric graphs of order $2 p$ for a prime p from Cheng and Oxley [2], we introduce the graphs $G(2 p, r)$. Let V and V^{\prime} be two disjoint copies of \mathbb{Z}_{p}, say $V=\{0,1, \ldots, p-1\}$ and $V^{\prime}=$ $\left\{0^{\prime}, 1^{\prime}, \ldots,(p-1)^{\prime}\right\}$. Let r be a positive integer dividing $p-1$ and $H(p, r)$ the unique subgroup of Z_{p}^{*} of order r. Define the graph $G(2 p, r)$ to have vertex set $V \cup V^{\prime}$ and edge set $\left\{x y^{\prime}: x-y \in H(p, r)\right\}$.

Proposition 2.5. Let p be a prime, and let X be a connected valency seven symmetric graph of order $2 p$. Then one of the following situations occurs:
(1) $X \cong K_{7,7}$, the complete bipartite graph of order 14, and $\operatorname{Aut}\left(K_{7,7}\right)=\left(S_{7} \times\right.$ $\left.S_{7}\right) \rtimes \mathbb{Z}_{2}$;
(2) $X \cong G(2 p, 7)$ with $p \equiv 1(\bmod 7)$, and $\operatorname{Aut}(G(2 p, 7))=\left(\mathbb{Z}_{p} \rtimes \mathbb{Z}_{7}\right) \rtimes \mathbb{Z}_{2}$.

Finally, we introduce the so called Cayley graph. For a finite group G and a subset S of G such that $S=S^{-1}$ and $1 \notin S$, the Cayley graph $\operatorname{Cay}(G, S)$ on G with respect to S is defined to have vertex set G and edge set $\{\{g, s g\}: g \in G, s \in S\}$. Given $g \in G$, right multiplication $x \mapsto x g$ (for $x \in G$) is a permutation $R(g)$ on G, and the homomorphism from G to $\operatorname{Sym}(G)$ taking each g to $R(g)$ is called the right regular representation of G. The image $R(G)=\{R(g): g \in G\}$ of G is a regular permutation group on G, and is isomorphic to G, which can therefore be regarded as a subgroup of the automorphism group $\operatorname{Aut}(\operatorname{Cay}(G, S))$. In particular, the Cayley graph Cay (G, S) is vertex-transitive. Moreover, the group $\operatorname{Aut}(G, S)=\left\{\alpha \in \operatorname{Aut}(G): S^{\alpha}=S\right\}$ is a subgroup of $\operatorname{Aut}(\operatorname{Cay}(G, S))$, indeed of the stabilizer $\operatorname{Aut}(\operatorname{Cay}(G, S))_{1}$ of the vertex 1. Also, a Cayley graph $\operatorname{Cay}(G, S)$ is said to be normal if $R(G)$ is normal in $\operatorname{Aut}(\operatorname{Cay}(G, S))$. By [33], Propositions 1.3 and 1.5, a Cayley graph $\operatorname{Cay}(G, S)$ is normal if and only if $\operatorname{Aut}(\operatorname{Cay}(G, S))_{1}=\operatorname{Aut}(G, S)$, or equivalently, if and only if $\operatorname{Aut}(\operatorname{Cay}(G, S))$ is isomorphic to the semidirect product $R(G) \rtimes \operatorname{Aut}(G, S)$.

Now we introduce an infinite family of one-regular Cayley graphs on the dihedral group $D_{2 n}=\left\langle a, b \mid a^{n}=b^{2}=1, b^{-1} a b=a^{-1}\right\rangle$. Let m and l be integers such that $l^{6}+l^{5}+l^{4}+l^{3}+l^{2}+l+1 \equiv 0(\bmod m)$. Define

$$
\begin{equation*}
\mathcal{C} \mathcal{D}_{2 m}^{l}=\operatorname{Cay}\left(D_{2 m}, S\right) \tag{2.2}
\end{equation*}
$$

where $S=\left\{b, a b, a^{l+1} b, a^{l^{2}+l+1} b, a^{l^{3}+l^{2}+l+1} b, a^{l^{4}+l^{3}+l^{2}+l+1} b, a^{l^{5}+l^{4}+l^{3}+l^{2}+l+1} b\right\}$.
By [10], we have the following propositions.
Proposition 2.6 ([10], Theorem 3.5). Let n be a square-free integer and X a connected valency seven one-regular graph of order n. Then $n=2 \cdot 7^{t} \cdot p_{1} p_{2} \ldots p_{s}$, where $t \leqslant 1, s \geqslant 1$, and p_{i} 's are distinct primes such that $7 \mid\left(p_{i}-1\right)$. Furthermore, X is isomorphic to one of $\mathcal{C D}{ }_{n}^{l}$ and there are exactly 6^{s-1} nonisomorphic such graphs of order n.

Now we introduce the so called coset graph (see [22], [28]) constructed from a finite group G relative to a subgroup H of G and a union D of some double cosets of H in G such that $D^{-1}=D$. Denote by H_{G} the largest normal subgroup of G in H. The coset graph $\operatorname{Cos}(G, H, D)$ of G with respect to H and D is defined to have vertex set $[G: H]$, the set of right cosets of H in G, and edge set $\{\{H g, H d g\}: g \in$ $G, d \in D\}$. The action of G on $V(\operatorname{Cos}(G, H, D))$ by right multiplication induces a vertex-transitive automorphism group, which is faithful if and only if $H_{G}=1$. Furthermore, $\operatorname{Aut}(G, H, D)=\left\{\alpha \in \operatorname{Aut}(G): H^{\alpha}=H, D^{\alpha}=D\right\}$ induces a group of automorphisms, which lies in the stabilizer of H in $\operatorname{Aut}(\operatorname{Cos}(G, H, D))$. Clearly, $\operatorname{Cos}(G, H, D) \cong \operatorname{Cos}\left(G, H^{\alpha}, D^{\alpha}\right)$ for every $\alpha \in \operatorname{Aut}(G)$. Note that the concept of a coset graph is equivalent to the concept of an orbital graph (see [29]). Conversely, by [28] we have the following statement.

Proposition 2.7. Let X be a graph and let G be a vertex-transitive subgroup of $\operatorname{Aut}(X)$. Then X is isomorphic to a coset graph $\operatorname{Cos}(G, H, D)$, where $H=G_{u}$ is the stabilizer of $u \in V(X)$ in G and D consists of all elements of G which map u to one of its neighbors. Further,
(1) X is connected if and only if D generates the group G;
(2) X is G-arc-transitive if and only if D is a single double coset. In particular, if $g \in G$ interchanges u and one of its neighbors, then $g^{2} \in H$ and $D=H g H$;
(3) the valency of X is equal to $|D| /|H|=\left|H: H \cap H^{g}\right|$.

3. Constructions

In this section, we construct valency seven symmetric graphs of order $2 p q$, where p and q are distinct primes.

Example 3.1. Let G be a subgroup of S_{14} such that $G \cong \operatorname{PSL}(2,13)$, and G contains the following elements:

$$
\begin{aligned}
a & =(1,12)(2,6)(3,13)(4,7)(8,9)(10,11), \\
b & =(1,12,2,10,14,11,6)(3,9,5,8,13,4,7), \\
g_{2} & =(1,6)(2,4)(3,8)(5,7)(9,10)(13,14), \\
g_{2} & =(1,8)(3,5)(4,12)(6,7)(9,10)(11,13) .
\end{aligned}
$$

By Magma [1], $G=\left\langle a, b, g_{i}\right\rangle$ for each $1 \leqslant i \leqslant 2$ and $H=\langle a, b\rangle$. Define the following coset graphs:

$$
\mathcal{C}_{78}^{i}=\operatorname{Cos}\left(G, H, H g_{i} H\right), \quad 1 \leqslant i \leqslant 2 .
$$

Again by Magma [1], the two coset graphs $\mathcal{C}_{78}^{i}(i=1,2)$ are pairwise nonisomorphic connected valency seven 1-transitive graphs of order 78 with $\operatorname{Aut}\left(\mathcal{C}_{78}^{1}\right)=\operatorname{PSL}(2,13)$ and $\operatorname{Aut}\left(\mathcal{C}_{78}^{2}\right)=\operatorname{PGL}(2,13)$.

Lemma 3.2. Each connected valency seven symmetric graph X of order 78 admitting $\operatorname{PSL}(2,13)$ as an arc-transitive automorphism group is isomorphic to \mathcal{C}_{78}^{i} $(i=1,2)$. Furthermore, X is 1-transitive and $\operatorname{Aut}(X) \cong \operatorname{PSL}(2,13)$ or $\operatorname{PGL}(2,13)$.

Pro of. Let $G=\operatorname{PSL}(2,13)$. As X is a G-arc-transitive graph of order 78, one has $\left|G_{v}\right|=14$ for any vertex $v \in V(X)$, and by Proposition 2.4, we have $H=G_{v} \cong D_{14}$. The simplicity of G and the maximality of H imply that $H=N_{G}(H)$. Take an involution x in H, and set $\langle x\rangle=L$. Since G has one conjugacy class of involutions, by Proposition 2.4, $N_{G}(L)=D_{12}$. Clearly, $H \cap H^{g}=L$ and $N_{H}(L) \cong L$. Thus, there exists an involution g such that $g \in N_{G}(L)$ and $g \notin N_{H}(L)$. Furthermore, $g \notin H$, $|H g H| /|H|=7$ and $\langle H, g\rangle=G$. This implies that $\operatorname{Cos}(G, H, H g H)$ is a connected valency seven symmetric graph of order 78 .

Let X be a connected valency seven symmetric graph of order 78 admitting $G=\operatorname{PSL}(2,13)$ as an arc-transitive automorphism group. Note that $G_{v} \cong D_{14}$ for any $v \in V(X)$. To complete the proof, it suffices to show that $X \cong \operatorname{Cos}(G, H, H g H)$. By Magma [1], G has one conjugacy class of D_{14} and since G_{v} has seven subgroups isomorphic to \mathbb{Z}_{2}, each of the subgroups fixes a vertex adjacent to v. By Proposition 2.7, one may assume that $X=\operatorname{Cos}(G, H, H f H)$ such that $H \cap H^{f}=L$ and $f \in N_{G}(L)$. By [5], Theorem 2.1, f can be chosen to be a 2 -element, and hence f is an involution in $N_{G}(L) \cong D_{12}$. By the connectivity of $X, f \notin N_{H}(L) \cong \mathbb{Z}_{2}$. Thus, f has six choices and by Magma [1], the six coset graphs $\operatorname{Cos}(G, H, H f H)$ corresponding to the six involutions have two nonisomorphism classes. It follows that $X=\operatorname{Cos}(G, H, H f H) \cong \mathcal{C}_{78}^{1}$ or \mathcal{C}_{78}^{2}, as required.

Example 3.3. Let $G=S_{8}$. Then G has a subgroup $H \cong \mathbb{Z}_{2}^{3} \rtimes \operatorname{SL}(3,2)$ and an involution g such that $|H g H| /|H|=7$ and $\langle H, g\rangle=G$. The coset graph $\operatorname{Cos}(G, H, H g H)$ is denoted by \mathcal{C}_{30}.

Lemma 3.4. Each connected valency seven symmetric graph X of order 30 admitting S_{8} as an arc-transitive automorphism group is isomorphic to \mathcal{C}_{30}. Furthermore, X is 2-transitive and $\operatorname{Aut}(X) \cong S_{8}$.

Proof. Let $G=S_{8}$. Clearly, G has a maximal subgroup $T \cong A_{8}$ containing a maximal subgroup H such that $H \cong \mathbb{Z}_{2}^{3} \rtimes \mathrm{SL}(3,2)$. Let $L=\mathbb{Z}_{2}^{3} \rtimes S_{4}$ be a subgroup of H. By Magma [1], $N_{G}(L)=L \cdot \mathbb{Z}_{2}$ and $N_{T}(L)=L$, and by [19], one has $N_{G}(L)=S_{2}$ 亿 S_{4}. Let $g \in N_{G}(L) \backslash L$ be an involution. Then $N_{G}(L)=L \cup L g$, $L=H \cap H^{g},|H g H| /|H|=7$ and $\langle H, g\rangle=G$. It follows that the coset graph
$\operatorname{Cos}(G, H, H g H)$ is a connected valency seven symmetric graph of order 30. (Note that H has yet another conjugacy class of order $\left|\mathbb{Z}_{2}^{3} \rtimes S_{4}\right|$, which is not isomorphic to $\mathbb{Z}_{2}^{3} \rtimes S_{4}$. By Magma [1], $N_{G}(L)=L$, no graph arises.)

Let X be a connected valency seven symmetric graph of order 30 admitting $G=S_{8}$ as an arc-transitive automorphism group. Then $G_{v} \cong \mathbb{Z}_{2}^{3} \rtimes \mathrm{SL}(3,2)$ for any $v \in V(X)$. To complete the proof, it suffices to show that $X \cong \operatorname{Cos}(G, H, H g H)$. Since G has one conjugacy class of $\mathbb{Z}_{2}^{3} \rtimes \operatorname{SL}(3,2)$ and $\mathbb{Z}_{2}^{3} \rtimes \mathrm{SL}(3,2)$ has seven subgroups isomorphic to $\mathbb{Z}_{2}^{3} \rtimes S_{4}$, by Proposition 2.7, one may assume that $X=\operatorname{Cos}(G, H, H f H)$ such that $H \cap H^{f}=L$ and $f \in N_{G}(L)$. Since $N_{G}(L)=L \cup L g$, one has $f=l g$ for some $l \in L$. It follows that $H f H=H g H$, that is, $X=\operatorname{Cos}(G, H, H f H) \cong \operatorname{Cos}(G, H, H g H)$. By Magma [1], $\operatorname{Aut}(X)=G$.

Example 3.5. Let $G=\operatorname{Aut}(\operatorname{PSL}(5,2))=\operatorname{PSL}(5,2) . \mathbb{Z}_{2}$. Then G has a subgroup $H \cong \mathbb{Z}_{2}^{6} \rtimes(\mathrm{SL}(2,2) \times \mathrm{SL}(3,2))$ and an involution g such that $|H g H| /|H|=7$ and $\langle H, g\rangle=G$. The coset graph $\operatorname{Cos}(G, H, H g H)$ is denoted by \mathcal{C}_{310}.

Lemma 3.6. Each connected valency seven symmetric graph X of order 310 admitting $\operatorname{Aut}(\mathrm{PSL}(5,2))$ as an arc-transitive automorphism group is isomorphic to \mathcal{C}_{310}. Furthermore, X is 3-transitive and $\operatorname{Aut}(X) \cong \operatorname{Aut}(\operatorname{PSL}(5,2))$.
Proof. By Atlas [3], $\operatorname{Aut}(\operatorname{PSL}(5,2))=\operatorname{PSL}(5,2) . \mathbb{Z}_{2}$. Let $G=\operatorname{Aut}(\operatorname{PSL}(5,2))$. Clearly, G has an index two maximal subgroup $T \cong \operatorname{PSL}(5,2)$ containing a maximal subgroup H such that $H \cong \mathbb{Z}_{2}^{6} \rtimes(\mathrm{SL}(2,2) \times \mathrm{SL}(3,2))$. Let $L=\mathbb{Z}_{2}^{6} \rtimes\left(\mathrm{SL}(2,2) \times S_{4}\right)$ be a subgroup of H. By Magma [1], $N_{G}(L)=L . \mathbb{Z}_{2}$ and $N_{T}(L)=L$. Let $g \in N_{G}(L) \backslash L$ be an involution. Then $N_{G}(L)=L \cup L g, L=H \cap H^{g},|H g H| /|H|=7$ and $\langle H, g\rangle=G$. It follows that the coset graph $\operatorname{Cos}(G, H, H g H)$ is a connected valency seven symmetric graph of order 310. (Note that $\mathbb{Z}_{2}^{6} \rtimes(\mathrm{SL}(2,2) \times \mathrm{SL}(3,2)$) has yet another conjugacy class of order $\left|\mathbb{Z}_{2}^{6} \rtimes\left(\mathrm{SL}(2,2) \times S_{4}\right)\right|$, which is not isomorphic to $\mathbb{Z}_{2}^{6} \rtimes\left(\operatorname{SL}(2,2) \times S_{4}\right)$. By Magma [1], $N_{G}(L)=L$, no graph arises.)

Let X be a connected valency seven symmetric graph of order 310 admitting G as an arc-transitive automorphism group. Then $G_{v} \cong \mathbb{Z}_{2}^{6} \rtimes(\mathrm{SL}(2,2) \times \mathrm{SL}(3,2))$ for any $v \in V(X)$. To complete the proof, it suffices to show that $X \cong \operatorname{Cos}(G, H, H g H)$. Since T has two conjugacy classes of maximal parabolic subgroups $\mathbb{Z}_{2}^{6} \rtimes(\mathrm{SL}(2,2) \times$ $\mathrm{SL}(3,2)$), and has a graph automorphism g, which is of order $2, g$ fuses the two conjugacy classes of maximal parabolic subgroups. By Magma [1], $\mathbb{Z}_{2}^{6} \rtimes(\mathrm{SL}(2,2) \times$ $\mathrm{SL}(3,2))$ has a conjugacy class of $\mathbb{Z}_{2}^{6} \rtimes\left(\mathrm{SL}(2,2) \times S_{4}\right)$. By Proposition 2.7, one may assume that $X=\operatorname{Cos}(G, H, H f H)$ so that $H \cap H^{f}=L$ and $f \in N_{G}(L)$. Since $N_{G}(L)=L \cup L g$, one has $f=l g$ for some $l \in L$. It follows that $H f H=H g H$, that is, $X=\operatorname{Cos}(G, H, H f H) \cong \operatorname{Cos}(G, H, H g H)$. By Magma [1], $\operatorname{Aut}(X)=G$.

4. MAIN RESULTS

In this section, we classify valency seven symmetric graphs of order $2 p q$ for p and q primes. First, we consider valency seven symmetric graphs of order $4 p$, where p is a prime.

Theorem 4.1. Let p be a prime. Then X is a connected valency seven symmetric graph of order $4 p$ if and only if $X \cong K_{8}$, a complete graph of order 8 .

Proof. For $p=2, K_{8}$ is a unique symmetric graph of valency seven. For $p=3$, by [21], there is no symmetric graph of valency seven. Thus, in what follows, we assume that $p \geqslant 5$. Let $A=\operatorname{Aut}(X)$ and $v \in V(X)$. By Guo [15], $\left|A_{v}\right| \mid 2^{24} \cdot 3^{4} \cdot 5^{2} \cdot 7$, and hence $|A| \mid 2^{s} \cdot 3^{t} \cdot 5^{r} \cdot 7 \cdot p$ with $2 \leqslant s \leqslant 26,0 \leqslant t \leqslant 4$ and $0 \leqslant r \leqslant 2$. We divide our discussion into the following two cases. Let N be a minimal normal subgroup of A.

Assume that N is solvable. Then N is elementary abelian. By Proposition 2.1, N is semiregular on $V(X)$, and the quotient graph X_{N} of X relative to the orbits of N has valency seven. Since $|V(X)|=4 p, A$ has no normal subgroup of order 4 or p.

It follows that $N \cong \mathbb{Z}_{2}$, forcing that $N \leqslant Z(A)$, the center of A. By Proposition $2.1, X_{N}$ is a connected valency seven symmetric graph of order $2 p$ with A / N as an arc-transitive subgroup of $\operatorname{Aut}\left(X_{N}\right)$. By Proposition 2.5 , either $X_{N} \cong K_{7,7}$ or $X_{N} \cong G(2 p, 7)$ with $7 \mid p-1$. Take a minimal normal subgroup of A / N, say M / N. Let $X_{N} \cong K_{7,7}$. Clearly, $p=7$. Suppose that M / N is solvable. Then $M / N \cong \mathbb{Z}_{2}, \mathbb{Z}_{7}$ or \mathbb{Z}_{7}^{2}. If $M / N \cong \mathbb{Z}_{2}$ or \mathbb{Z}_{7}, then A has a normal subgroup of order 4 or 7 because $N \cong \mathbb{Z}_{2}$, a contradiction. If $M / N \cong \mathbb{Z}_{7}^{2}$ then $M \cong \mathbb{Z}_{2} \times \mathbb{Z}_{7}^{2}$. It is easy to see that M has two orbits on $V(X)$, and since M is abelian and $M_{v} \cong \mathbb{Z}_{7}$, one has $X \cong 2 K_{7,7}$, a union of two copies of $K_{7,7}$, which contradicts the connectivity of X. Suppose that M / N is nonsolvable. Then $M / N \cong A_{7}$ or $A_{7} \times A_{7}$. Obviously, M / N has two orbits on $V\left(X_{N}\right)$. Since $(M / N)_{u} \unlhd(A / N)_{u}$ for any $u \in X_{N}$, by the primitivity of $(A / N)_{u}$ on the neighborhood of u one has $7\left|\left|(M / N)_{u}\right|\right.$, implying that 49$||M / N|$. Thus, $M / N \cong A_{7} \times A_{7}$. Let $B / N \cong A_{7}$ and $B / N \unlhd M / N$. Similarly, B / N has two orbits on $V\left(X_{N}\right)$ and $7\left|\left|(B / N)_{w}\right|\right.$. Thus, 49$||B / N|$, a contradiction. Let $X_{N} \cong G(2 p, 7)$ with $7 \mid p-1$. Then a normal Sylow p-subgroup of $\operatorname{Aut}\left(X_{N}\right)$ must be $P N / N$ because each Sylow p-subgroup of A / N is a Sylow p-subgroup of $\operatorname{Aut}\left(X_{N}\right)$. It follows that $P \unlhd A$ because P is characteristic in $P N$, which is impossible because A has no normal subgroup of order p.

If A has a solvable nontrivial normal subgroup, then A has a solvable minimal normal subgroup isomorphic to $\mathbb{Z}_{2}, \mathbb{Z}_{2}^{2}$ or \mathbb{Z}_{p}, which is impossible by the above
argument. Thus, in what follows we assume that A has no solvable nontrivial normal subgroups.

Now assume that N is nonsolvable. Then $N \cong T^{m}$, where T is a nonabelian simple group. By Proposition 2.1, N has at most two orbits on $V(X)$. Then $|N|$ is divisible by $2 p \cdot 7$, and since $|N| \mid 2^{s} \cdot 3^{t} \cdot 5^{r} \cdot 7 \cdot p$ with $1 \leqslant s \leqslant 26,0 \leqslant t \leqslant 4$ and $0 \leqslant r \leqslant 2$. One has $N=T$ except $p=7$.

If $p=5$, then $|N|$ is a factor of $2^{26} \cdot 3^{4} \cdot 5^{3} \cdot 7$ and $|N|$ is divisible by $2 \cdot 5 \cdot 7$. By Table 1,

$$
\begin{equation*}
N \cong A_{7}, A_{8}, A_{9}, A_{10}, \operatorname{PSL}(3,4), \operatorname{PSU}(3,5), J_{2}, \operatorname{PSp}(6,2) . \tag{4.1}
\end{equation*}
$$

For $p=7$, one has $7^{2}| | N \mid$ and $|N| \mid 2^{26} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2}$. If $N \cong T^{2}$, then $T \cong$ $\operatorname{PSL}(3,4), \operatorname{PSL}(2,7), A_{7}, A_{8}, \operatorname{PSL}(2,8)$ by Table 1. Clearly, N has a normal subgroup isomorphic to T, say S. Since $S \unlhd N$, one has $7\left|\left|S_{v}\right|\right.$ and S has an orbit of length 7,14 or 28 , implying that $49||S|$, a contradiction. Thus, $N=T$. In this case, $|N|$ has at most four primes, and $7^{2}| | N \mid$. Again by Table 1, one has

$$
\begin{equation*}
N \cong \operatorname{PSL}(2,49) . \tag{4.2}
\end{equation*}
$$

Let $p>7$. We first consider $N \cong \operatorname{PSL}(2, p)$, the infinite family listed in Table 1 . By the subgroup structure of $\operatorname{PSL}(2, p)$, one has N_{v} is solvable and $\left|N_{v}\right| \mid 2^{2} \cdot 3^{2} \cdot 7$, and $5 \nmid\left|N_{v}\right|$. Then $|N|$ is a factor of $2^{4} \cdot 3^{2} \cdot 7 \cdot p$ and $|N|$ is divisible by $2 \cdot p \cdot 7$. Hence $|N|=|\operatorname{PSL}(2, p)|=\frac{1}{2} p(p-1)(p+1)$ and $\left(\frac{1}{2} p(p+1), \frac{1}{2}(p-1)\right)=1$. If $7 \mid p-1$, then $p+1=2^{i} \cdot 3^{j}$, where $1 \leqslant i \leqslant 4,0 \leqslant j \leqslant 2$. It follows that $p=71$. Similarly, if $7 \mid p+1$, then $p=13$. Combining with Table $1, N$ is one of the following:
(4.3) $\operatorname{PSL}(2,13), \operatorname{PSL}(2,71), \operatorname{PSL}(2,27), \operatorname{PSU}(3,8), S z(8), A_{11}, \mathrm{M}_{22}, \operatorname{PSL}\left(2,2^{6}\right)$,

$$
\begin{equation*}
\operatorname{PSL}(4,4), \operatorname{PSL}(5,2),{ }^{2} D_{4}(2), G_{2}(4) . \tag{4.4}
\end{equation*}
$$

Since N is nonsolvable, N has at most two orbits. We may assume that N is a group listed in (4.1)-(4.4). Let N be transitive on $V(X)$. By Proposition 2.7, $X \cong \operatorname{Cos}(N, H, H a H)$, where $H=N_{v}, a \in N \backslash H$ and $a^{2} \in H$. By the Atlas [3], $N=A_{7}(p=5)$ has no subgroup of order $|H|=|N| /|V(X)|$. Thus, $N \neq A_{7}$. Similarly, $N \neq \operatorname{PSL}\left(2,2^{6}\right)(p=13)$. For $N=A_{8}(p=5),|N| /|V(X)|$ is not the order of the vertex stabilizer by Proposition 2.2, a contradiction. It follows that $N \neq A_{8}$. Similarly, $N \neq A_{9}(p=5), A_{10}(p=5), \operatorname{PSL}(3,4)(p=5), \operatorname{PSU}(3,5)$ $(p=5), J_{2}(p=5), \operatorname{PSp}(6,2)(p=5), \operatorname{PSL}(2,49), \operatorname{PSL}(2,13)(p=13), \operatorname{PSL}(2,71)$ $(p=71), \operatorname{PSL}(2,27)(p=13), \operatorname{PSU}(3,8)(p=19), S z(8)(p=13), A_{11}(p=11), M_{22}$ $(p=11), \operatorname{PSL}(4,4)(p=17), \operatorname{PSL}(5,2)(p=31),{ }^{2} D_{4}(2)(p=17), G_{2}(4)(p=13)$.

Let N have two orbits on $V(X)$. Then $|H|=|N| / \frac{1}{2}|V(X)|$. For $N=A_{7}(p=5)$, by Proposition 2.2, $|N| / \frac{1}{2}|V(X)|$ is not the order of the vertex stabilizer, a contradiction. It follows that $N \neq \mathrm{A}_{7}$. Similarly, $N \neq A_{9}(p=5), A_{10}(p=5)$, $\operatorname{PSL}(3,4)(p=5), \operatorname{PSU}(3,5)(p=5), J_{2}(p=5), \operatorname{PSp}(6,2)(p=5), \operatorname{PSL}(2,49)$, $\operatorname{PSL}(2,13)(p=13), \operatorname{PSL}(2,71)(p=71), \operatorname{PSL}(2,27)(p=13), \operatorname{PSU}(3,8)(p=19)$, $S z(8)(p=13), M_{22}(p=11), \operatorname{PSL}(4,4)(p=17), \operatorname{PSL}(5,2)(p=31),{ }^{2} D_{4}(2)$ $(p=17), G_{2}(4)(p=13)$. By the Atlas [3], $N=A_{8}$ has no subgroup of order $|H|=|N| / \frac{1}{2}|V(X)|$. Thus, $N \neq \mathrm{A}_{8}(p=5)$. Similarly, $N \neq \operatorname{PSL}\left(2,2^{6}\right)(p=13)$. For $N=A_{11}$, one has $|H|=2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 7$. By Proposition $2.2, H \cong A_{7} \times A_{6}$, and by [19], A_{11} has no subgroup which is isomorphic to $\mathrm{A}_{7} \times \mathrm{A}_{6}$, a contradiction. This completes the proof.

Theorem 4.2. Let X be a connected valency seven symmetric graph of order $2 p q$, where $p>q$ are odd primes. Then X is 1-, 2- or 3-transitive. Furthermore, one of the following situations occurs:
(1) X is 1-transitive, and $X \cong \mathcal{C}_{78}^{i}(i=1,2)$ with $\operatorname{Aut}\left(\mathcal{C}_{78}^{1}\right) \cong \operatorname{PSL}(2,13)$ and $\operatorname{Aut}\left(\mathcal{C}_{78}^{2}\right) \cong \operatorname{PGL}(2,13)$, or $X \cong \mathcal{C D}_{2 p q}^{l}$ (defined in equation (2.2)) with $\operatorname{Aut}(X) \cong D_{2 p q} \rtimes \mathbb{Z}_{7}$ for some l satisfying $l^{6}+l^{5}+l^{4}+l^{3}+l^{2}+l \equiv 0$ $(\bmod p q)$-the number of pairwise nonisomorphic such graphs of order $2 p q$ is

$$
f(p, q)= \begin{cases}1, & q=7 \text { and } 7 \mid p-1 \\ 6, & 7 \mid q-1 \text { and } 7 \mid p-1 \\ 0, & \text { otherwise }\end{cases}
$$

(2) X is 2-transitive, and $X \cong \mathcal{C}_{30}$ is a vertex bi-primitive graph with $\operatorname{Aut}(X) \cong S_{8}$.
(3) X is 3-transitive, and $X \cong \mathcal{C}_{310}$ is a vertex bi-primitive graph with $\operatorname{Aut}(X) \cong$ $\operatorname{PSL}(5,2) \cdot \mathbb{Z}_{2}$.

Proof. Let $A=\operatorname{Aut}(X)$ and $v \in V(X)$. By Guo [15], $\left|A_{v}\right| \mid 2^{24} \cdot 3^{2} \cdot 5^{2} \cdot 7$, and hence $|A|=2^{s} \cdot 3^{t} \cdot 5^{r} \cdot 7 \cdot q \cdot p$ with $1 \leqslant s \leqslant 25,0 \leqslant s \leqslant 4$ and $0 \leqslant r \leqslant 2$. We first prove a claim.

Claim: If A has a normal subgroup of order q then $X \cong \mathcal{C D}_{2 p q}^{l}$.
Let Q be a normal subgroup of A of order q. By Proposition 2.1, Q is semiregular on $V(X)$ and the quotient graph X_{Q} of X relative to Q is a symmetric graph of order $2 p$ and valency seven with A / Q as an arc-transitive subgroup of $\operatorname{Aut}\left(X_{Q}\right)$. By Proposition 2.5, one has $X_{Q} \cong K_{7,7}$ or $X_{Q} \cong G(2 p, 7)$ with $7 \mid p-1$.

Suppose that $X_{Q} \cong K_{7,7}$. Then $p=7$ and $q=3$ or 5 . Take a minimal normal subgroup of A / Q, say M / Q. Assume that M / Q is nonsolvable. Then $M / Q \cong A_{7}$ or $A_{7} \times A_{7}$ because $A / Q \leqslant \operatorname{Aut}\left(K_{7,7}\right) \cong\left(S_{7} \times S_{7}\right) \rtimes \mathbb{Z}_{2}$. Obviously, M / Q has two orbits
on $V\left(X_{Q}\right)$ and $7\left|\left|(M / Q)_{w}\right|\right.$ for any $w \in V\left(X_{Q}\right)$, implying that 49$||M / Q|$. Thus, $M / Q \cong \mathrm{~A}_{7} \times \mathrm{A}_{7}$. Let $B / Q \cong \mathrm{~A}_{7}$ and $B / Q \unlhd M / Q$. Similarly, B / Q has two orbits on $V\left(X_{Q}\right)$ and $7\left|\left|(B / Q)_{w}\right|\right.$. Thus, 49$||B / Q|$, a contradiction. Now assume that M / Q is solvable. Then $M / Q \cong \mathbb{Z}_{2}, \mathbb{Z}_{7}$ or \mathbb{Z}_{7}^{2}. If $M / Q \cong \mathbb{Z}_{2}$ then X_{M} is a symmetric graph of order p and valency seven, a contradiction. If $M / Q \cong \mathbb{Z}_{7}$ then $M \cong \mathbb{Z}_{21}$ or \mathbb{Z}_{35} and M has two orbits on $V(X)$, implying that X is a bipartite graph. Let $R \leqslant M$ and $R \cong \mathbb{Z}_{7}$. Then $R \triangleleft A$, and since $R \leqslant M$, the quotient graph X_{R} is bipartite and of valency seven. However, $\left|X_{R}\right|=6$ or 10 , a contradiction. If $M / Q \cong \mathbb{Z}_{7}^{2}$ then $M \cong Q \times \mathbb{Z}_{7}^{2}$ because $Q \cong \mathbb{Z}_{3}$ or \mathbb{Z}_{5}. Since M is abelian and $M_{v} \cong \mathbb{Z}_{7}$, one has $X \cong 3 K_{7,7}$ or $5 K_{7,7}$, which contradicts the connectivity of X.

Thus, $X_{Q} \cong G(2 p, 7)$ with $7 \mid p-1$. By Proposition $2.5, X_{Q}$ is valency seven and 1-regular graph of order $2 p$. Since A / Q is arc-transitive on X_{Q}, one has $A / Q=\operatorname{Aut}\left(X_{Q}\right)$ and X is a valency seven and 1-regular graph of order $2 p q$. By Proposition 2.6, $X \cong \mathcal{C} \mathcal{D}_{2 p q}^{l}$. This completes the proof of Claim.

If A has a normal subgroup of order 2 , then the quotient graph has valency seven and odd order $p q$, a contradiction.

Let A have a normal subgroup P of order p. By Proposition 2.5, $X_{P} \cong K_{7,7}$ or $G(2 q, 7)$ with $7 \mid q-1$. Let $C:=C_{A}(P)$. Clearly, $P \leqslant C$. If $P=C$ then $A / P \leqslant \operatorname{Aut}(P) \cong \mathbb{Z}_{p-1}$, implying that A is abelian. It follows that A is regular on $V(X)$, which contradicts the fact that X is symmetric. Hence, $P<C$. Take a minimal normal subgroup of A / P, say M / P, in C / P. Suppose that M / P is solvable. By Proposition 2.1, M / P is semiregular on $V\left(X_{P}\right)$. Then $M / P \cong \mathbb{Z}_{2}$ or \mathbb{Z}_{q}, which implies that A has a normal subgroup of order 2 or q respectively; we have done two cases. Thus, M / P is nonsolvable, and hence $X_{P} \cong K_{7,7}$. Then $M / P \cong A_{7}$ or $A_{7} \times A_{7}$. Obviously, M / P has two orbits on $V\left(X_{P}\right)$, and $7\left|\left|(M / P)_{u}\right|\right.$ for any $u \in V\left(X_{P}\right)$, implying that $49\left||M / P|\right.$. Thus, $M / P \cong A_{7} \times A_{7}$. Let $B / P \cong A_{7}$ and $B / P \unlhd M / P$. Similarly, B / P has two orbits on $V\left(X_{P}\right)$ and $7\left|\left|(B / P)_{u}\right|\right.$. Thus, $49||B / P|$, a contradiction.

If A has a solvable nontrivial normal subgroup, then A has a solvable minimal normal subgroup isomorphic to $\mathbb{Z}_{2}, \mathbb{Z}_{p}$ or \mathbb{Z}_{q}, which was done by the above argument. Thus, in what follows we assume that A has no solvable nontrivial normal subgroups.

Let N be a minimal normal subgroup of A. Then $N \cong T^{m}$, where T is a nonabelian simple group. By Proposition 2.1, N has at most two orbits on $V(X)$. Since $p q \cdot 7||N|$ and $|N|\left||A|=2^{s} \cdot 3^{t} \cdot 5^{r} \cdot 7 \cdot q \cdot p\right.$ with $1 \leqslant s \leqslant 25,0 \leqslant t \leqslant 4$ and $0 \leqslant r \leqslant 2$, one has $N=T$ except for $p=7$. Assuming that $p=7$, one has $q=3$ or 5 . Hence $7^{2}| | N \mid$ and $|N| \mid 2^{25} \cdot 3^{5} \cdot 5^{3} \cdot 7^{2}$. If $N \cong T^{2}$, then $T \cong \operatorname{PSL}(2,7), \operatorname{PSL}(2,8), \operatorname{PSL}(3,4), A_{7}$, A_{8} by Table 1. Clearly, N has a normal subgroup isomorphic to T, say S. Since $S \unlhd N$, one has $7\left|\left|S_{v}\right|\right.$ and S has an orbit of length $7,7 q$ or $14 q$, implying that $49||S|$, a contradiction. Thus, $N=T$. In this case, $| N \mid$ has at most four primes
$\{2,3,5,7\}$, and $7^{2}| | N \mid$. Again by Table 1 , one has

$$
\begin{equation*}
N \cong \operatorname{PSL}(2,49) \tag{4.5}
\end{equation*}
$$

Next, we assume that $p \neq 7$ and $N=T$. We first consider $N \cong \operatorname{PSL}(2, p)(p>7)$, the infinite family listed in Table 1. By the subgroup structure of $\operatorname{PSL}(2, p)$, one has N_{v} is solvable, and by Proposition 2.2, $\left|N_{v}\right| \mid 2^{2} \cdot 3^{2} \cdot 7$ and $5 \nmid\left|N_{v}\right|$. Thus $|N| \mid 2^{3} \cdot 3^{2} \cdot 7 \cdot q \cdot p$, implying that N is at most five-prime factor simple group. Hence $|N|=|\operatorname{PSL}(2, p)|=\frac{1}{2} p(p-1)(p+1)$ and $\left(\frac{1}{2}(p+1), \frac{1}{2}(p-1)\right)=1$. For $q \leqslant 7$, if $7 \left\lvert\, \frac{1}{2}(p+1)\right.$, then $p-1=2^{i} \cdot 3^{j} \cdot q$, where $1 \leqslant i \leqslant 3,0 \leqslant j \leqslant 2$. It follows that $p=13,41,181$. Since $\operatorname{PSL}(2,181)$ is a six-prime factor simple group, one has $p=13,41$. Similarly, if $7 \left\lvert\, \frac{1}{2}(p-1)\right.$, then $p=29,71$. For $p>q>7$, if $q \left\lvert\, \frac{1}{2}(p+1)\right.$, then $p-1=2^{i} \cdot 3^{j} \cdot 7$, where $1 \leqslant i \leqslant 3,0 \leqslant j \leqslant 2$. It follows that $p=43,127$. Since $2^{7}| | \operatorname{PSL}(2,127) \mid$, a contradiction. Thus $p=43$. Similarly, if $q \left\lvert\, \frac{1}{2}(p-1)\right.$, then $p=83,97,251,503$. Hence $2^{5}| | \operatorname{PSL}(2,97) \mid$ and $5^{3}| | \operatorname{PSL}(2,251) \mid$, a contradiction. Thus $p=83,503$.

For $q=3$, one has $3 \cdot 7 \cdot p||N|$ and $| N\left|\mid 2^{25} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot p\right.$. By Table $1, N$ is one of the following groups:

$$
\begin{align*}
& A_{7}, A_{8}, A_{9}, A_{10}, \operatorname{PSL}(2,27), \operatorname{PSL}(3,4), \operatorname{PSU}(3,5), \operatorname{PSU}(3,8), J_{2}, \tag{4.6}\\
& D_{4}(2), \operatorname{PSp}(6,2), \operatorname{PSp}(8,2), A_{11}, A_{12}, M_{22}, \operatorname{PSL}\left(2,2^{6}\right), \operatorname{PSL}(4,4), \tag{4.7}\\
& \quad \operatorname{PSL}(4,4), \operatorname{PSL}(5,2),{ }^{2} D_{4}(2), G_{2}(4), \operatorname{PSL}(2, p)(p=13,127) . \tag{4.8}
\end{align*}
$$

For $q=5$, one has $5 \cdot 7 \cdot p||N|$ and $| N\left|\mid 2^{25} \cdot 3^{4} \cdot 5^{3} \cdot 7 \cdot p\right.$. By Table $1, N$ is one of the following groups:

$$
\begin{gather*}
S z(8), A_{11}, M_{22}, H S, \operatorname{PSL}\left(2,2^{6}\right), \operatorname{PSL}\left(2,5^{3}\right), \operatorname{PSL}(5,2), \operatorname{PSL}(4,4), \tag{4.9}\\
{ }^{2} D_{4}(2), G_{2}(4), \operatorname{PSL}(2, p)(p=29,41,71) \tag{4.10}
\end{gather*}
$$

For $q \geqslant 7$, one has $7 \cdot q \cdot p||N|$ and $| N\left|\mid 2^{25} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot q \cdot p\right.$. By Table $1, N$ is one of the following groups:

$$
\begin{gather*}
\operatorname{PSL}(3,8),{ }^{3} D_{4}(2), \operatorname{PSL}\left(2,2^{9}\right), \operatorname{PSp}(4,8), M_{23}, M_{24}, J_{1}, \operatorname{PSL}(3,16), \tag{4.11}\\
\operatorname{PSL}(2, p)(p=43,83,503) . \tag{4.12}
\end{gather*}
$$

We may assume that N is a group listed in (4.5)-(4.12). Let $G \leqslant A$ be a transitive subgroup of X. By Proposition 2.7, $X \cong \operatorname{Cos}(G, H, H g H)$, where $H=G_{v}, g \in G \backslash H$, and $g^{2} \in H$, implying that a normalizes $R=H \cap H^{g}$, that is, $g \in N_{G}(R) \backslash H$. Recall that N has at most two orbits on $V(X)$. First let N be transitive on $V(X)$. Take $G=N$.

If $N=A_{7}(q=3, p=5)$, then N_{v} has order $|N| /|V(X)|=2^{2} \cdot 3 \cdot 7$. However, A_{7} has no subgroups of order $2^{2} \cdot 3 \cdot 7$ by Atlas [3]. Thus, $N \neq A_{7}$. Similarly, $N \neq \operatorname{PSL}(2,127)$ $(q=3, p=127), \operatorname{PSL}(2,29)(q=5, p=29), \operatorname{PSL}(2,41)(q=5, p=41), \operatorname{PSL}(2,71)$ $(q=5, p=71)$ and $\operatorname{PSL}(2,503)(q=251, p=503)$ by Proposition 2.4. If $N=A_{9}$ $(q=3, p=5), A_{10}(q=3, p=5), \operatorname{PSU}(3,8)(q=3, p=19), \mathrm{A}_{11}(q=3, p=11)$ or ${ }^{2} D_{4}(2)(q=3, p=17)$, then $3^{3} \|\left|N_{v}\right|$ and $3^{4} \nmid\left|N_{v}\right|$. By Proposition 2.2, it is not possible. If $N=A_{8}(q=3, p=5)$, then $\left|N_{v}\right|=2^{5} \cdot 3 \cdot 7$. By Proposition 2.2, there exists a vertex stabilizer whose order is $2^{5} \cdot 3 \cdot 7$, a contradiction. Similarly, $N \neq \operatorname{PSL}(2,49)(q=3, p=7), \operatorname{PSL}(2,49)(q=5, p=7), \operatorname{PSL}(2,27)(q=3, p=13)$, $\operatorname{PSL}(3,4)(q=3, p=5), \operatorname{PSU}(3,5)(q=3, p=5), J_{2}(q=3, p=5), \operatorname{PSp}(6,2)$ $(q=3, p=5), \operatorname{PSp}(8,2)(q=3, p=5), A_{11}(p=5, q=11), M_{22}(q=3, p=11)$, $\operatorname{PSL}\left(2,2^{6}\right)(q=3, p=13), \operatorname{PSL}\left(2,2^{6}\right)(q=5, p=13), \operatorname{PSL}(4,4)(q=3, p=17)$, $\operatorname{PSL}(4,4)(q=5, p=17), \operatorname{PSL}(5,2)(q=3, p=31), \operatorname{PSL}(5,2)(q=5, p=31)$, $D_{4}(2)(q=3, p=5), H S(q=5, p=11), \operatorname{PSL}\left(2,5^{3}\right)(q=5, p=31),{ }^{2} D_{4}(2)(q=5$, $p=17), G_{2}(4)(q=3, p=13), G_{2}(4)(q=5, p=13), S z(8)(q=5, p=13)$, $\operatorname{PSL}(2,71)(q=3, p=71), \operatorname{PSL}(3,8)(q=7, p=73),{ }^{3} D_{4}(2)(q=7, p=17)$, $\operatorname{PSL}\left(2,2^{9}\right)(q=19, p=73), \operatorname{PSp}(4,8)(q=7, p=13), M_{23}(q=11, p=23), M_{24}$ $(q=11, p=23), J_{1}(q=11, p=19)$ and $N \neq \operatorname{PSL}(3,16)(q=13, p=17)$.

Suppose that $N=A_{12}(q=3, p=11)$. Then $\left|N_{v}\right|=|N| /|V(X)|=2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7$. By Proposition 2.2, $N_{v} \cong S_{7} \times S_{6}$. By [19], one concludes that N has no subgroup which is isomorphic to $S_{7} \times S_{6}$, a contradiction.

Suppose that $N=\operatorname{PSL}(2,13)(q=3, p=13)$. Then $\left|N_{v}\right|=2 \cdot 7$. By Proposition 2.2, $N_{v} \cong D_{14}$, and by Proposition 2.4, N_{v} is a maximal subgroup. By Example 3.1, $X \cong \mathcal{C}_{78}^{1}$ or \mathcal{C}_{78}^{2}.

Suppose that $N=\operatorname{PSL}(2,43)(q=11, p=43)$. Then $\left|N_{v}\right|=2 \cdot 3 \cdot 7$. By Proposition $2.2, N_{v} \cong F_{42}$, and by Proposition 2.4, one concludes that N has a unique conjugacy class D_{42} which has order 42 . Clearly, it is isomorphic to F_{42}, a contradiction.

Suppose that $N=\operatorname{PSL}(2,83)(q=41, p=83)$. Then $\left|N_{v}\right|=2 \cdot 3 \cdot 7$. By Proposition $2.2, N_{v} \cong F_{42}$. By Proposition 2.4, one concludes that N has a unique maximal subgroup conjugacy class D_{84} which contains subgroups of order 42. Clearly, the subgroups of order 42 of D_{84} are isomorphic to D_{42} or \mathbb{Z}_{42}. They are not isomorphic to F_{42}, a contradiction.

Suppose that $N=M_{22}(q=5, p=11)$. Then $\left|N_{v}\right|=2^{6} \cdot 3^{2} \cdot 7$. By Atlas [3], the unique maximal subgroup class of M_{22} which has order divided by $2^{6} \cdot 3^{2} \cdot 7$ is $L_{3}(4)$; again by Atlas [3], $L_{3}(4)$ has no subgroup of order $2^{6} \cdot 3^{2} \cdot 7$, a contradiction.

Now let N have two orbits on $V(X)$. If $N \neq A_{7}$, then N_{v} has order $|N| / \frac{1}{2}|V(X)|=$ $2^{3} \cdot 3 \cdot 7$. However, A_{7} has no subgroups of order $2^{3} \cdot 3 \cdot 7$ by Atlas [3]. Thus, $N \neq A_{7}$. Similarly, $N \neq \operatorname{PSL}(2,13)(q=3, p=13), \operatorname{PSL}(2,27)(q=3, p=13), \operatorname{PSL}(2,127)$
$(q=3, p=127), \operatorname{PSL}(2,29)(q=5, p=29), \operatorname{PSL}(2,41)(q=5, p=41), \operatorname{PSL}(2,71)$ $(q=5, p=71)$ and $\operatorname{PSL}(2,43)(q=11, p=43)$ by Proposition 2.4. If $N=A_{9}$ $(q=3, p=5), A_{10}(q=3, p=5), A_{11}(q=3, p=11), \operatorname{PSU}(3,8)(q=3, p=19)$ or ${ }^{2} D_{4}(2)(q=3, p=17)$, then $3^{3} \|\left|N_{v}\right|$. By Proposition 2.2 , this is not possible. If $N=A_{12}(q=3, p=11)$, then $\left|N_{v}\right|=2^{9} \cdot 3^{4} \cdot 5^{2} \cdot 7$. By Proposition 2.2 , there exists no vertex stabilizer whose order is $2^{9} \cdot 3^{4} \cdot 5^{2} \cdot 7$, a contradiction. Similarly, $N \neq \operatorname{PSL}(2,49)(q=3, p=7), \operatorname{PSL}(2,49)(q=5, p=7), \operatorname{PSL}(2,503)(q=251$, $p=503), \operatorname{PSL}(3,4)(q=3, p=5), \operatorname{PSU}(3,5)(q=3, p=5), J_{2}(q=3, p=5)$, $\operatorname{PSp}(6,2)(q=3, p=5), \operatorname{PSp}(8,2)(q=3, p=5), S z(8)(q=5, p=13), A_{11}$ $(p=5, q=11), M_{22}(q=3, p=11), M_{22}(q=5, p=11), \operatorname{PSL}\left(2,2^{6}\right)(q=3$, $p=13), \operatorname{PSL}\left(2,2^{6}\right)(q=5, p=13), \operatorname{PSL}(4,4)(q=3, p=17), \operatorname{PSL}(4,4)(q=5$, $p=17), \operatorname{PSL}(5,2)(q=3, p=31), H S(q=5, p=11),{ }^{2} D_{4}(2)(q=5, p=17)$, $D_{4}(2)(q=3, p=5), G_{2}(4)(q=3, p=13), G_{2}(4)(q=5, p=13), \operatorname{PSL}\left(2,5^{3}\right)$ $(q=5, p=31), \operatorname{PSL}(2,71)(q=3, p=71), \operatorname{PSL}(2,71)(q=5, p=71), \operatorname{PSL}(3,8)$ $(q=7, p=73),{ }^{3} D_{4}(2)(q=7, p=17), \operatorname{PSp}(4,8)(q=7, p=13), \operatorname{PSL}\left(2,2^{9}\right)$ $(q=19, p=73), M_{23}(q=11, p=23), M_{24}(q=11, p=23), J_{1}(q=11, p=19)$ and $N \neq \operatorname{PSL}(3,16)(q=13, p=17)$.

Suppose that $N=\operatorname{PSL}(2,83)(q=41, p=83)$. Then $\left|N_{v}\right|=2^{2} \cdot 3 \cdot 7$. By Proposition $2.2, N_{v} \cong F_{42} \times \mathbb{Z}_{2}$. By Proposition 2.4 , one concludes that N has a unique conjugacy class D_{84} which has order 84 . Clearly, it is isomorphic to $F_{42} \times \mathbb{Z}_{2}$, a contradiction.

Suppose that $N=A_{8}(q=3, p=5)$. Then $\left|N_{v}\right|=|N| / \frac{1}{2}|V(X)|=2^{6} \cdot 3 \cdot 7$. By Proposition 2.2, $N_{v} \cong \mathbb{Z}_{2}^{3} \times \mathrm{SL}(3,2)$. In this case, N has two orbits on $V(X)$, and $N_{v} \cap N_{v}^{g} \cong \mathbb{Z}_{2}^{3} \rtimes S_{4}$. Let $C=C_{A}(N)$. Since N is simple, $C \cap N=1$ and $C N=$ $C \times N \unlhd A$. Since $A / C N \lesssim \operatorname{Out}(N)$, we have $A=(C \times N) \cdot O$ with $O \lesssim \operatorname{Out}(N)$, where $\operatorname{Out}(N)$ is the outer automorphism group of N. Hence $|A| \mid 2^{25} \cdot 3^{5} \cdot 5^{3} \cdot 7$ and $|N|=2^{6} \cdot 3^{2} \cdot 5 \cdot 7$. Then $|C| \mid 2^{19} \cdot 3^{3} \cdot 5^{2}$. If C is insolvable, by [3], pages $12-14$, then C has a minimal normal insolvable subgroup $M \cong A_{5}, A_{6}$ or A_{5}^{2}. Then $N M \unlhd C N$ has at most two orbits on $V(X)$. Then $\left|(M N)_{v}\right|=|M N| /|V(X)|=2^{7} \cdot 3^{2} \cdot 5 \cdot 7$ or $|M N| / \frac{1}{2}|V(X)|=2^{8} \cdot 3^{2} \cdot 5 \cdot 7$ for $M \cong A_{5}$. By Proposition 2.2 , there exists no vertex stabilizer whose order is $\left|(M N)_{v}\right|$, a contradiction. For $M \cong A_{6}$ or A_{5}^{2}, one has $3^{3}| |(M N)_{v} \mid$. By Proposition 2.2 , this is a contradiction. Thus, C is solvable. Clearly, C is not semiregular on $V(X)$. If it were, X_{C} would be a connected valency seven graph of order $2 p q /|C|$, yielding that $2 \nmid|C|$. Furthermost, $C \nsubseteq \mathbb{Z}_{3}$ or \mathbb{Z}_{5}, because there is no connected valency seven symmetric graph of order 6 or 10 . If C has at most two orbits on $V(X)$, then $|C|=15$ or 30 . Let $R \cong \mathbb{Z}_{5} \leqslant C$. Then $R \triangleleft A$, and then X_{C} is a connected valency seven graph of order 6 , a contradiction. Thus, $C=1$ and $A \leqslant \operatorname{Aut}\left(A_{8}\right)$. Further, $A=S_{8}$. By Example 3.3, $X \cong \mathcal{C}_{30}$. Hence
N_{v} is a maximal subgroup of N, and N has two orbits on $V(X)$. Then X is a vertex bi-primitive 3 -arc transitive graph.

Suppose that $N=\operatorname{PSL}(5,2)(q=5, p=31)$. Then $\left|N_{v}\right|=2^{10} \cdot 3^{2} \cdot 7$. By Proposition 2.2, $N_{v} \cong \mathbb{Z}_{2}^{6} \rtimes(\mathrm{SL}(2,2) \times \operatorname{SL}(3,2))$. Let $C=C_{A}(N)$. Similarly to the above proof, one has $A=(C \times N) . O$ with $O \lesssim \operatorname{Out}(N)$, where $\operatorname{Out}(N)$ is the outer automorphism group of N. Hence $|A| \mid 2^{25} \cdot 3^{4} \cdot 5^{3} \cdot 7 \cdot 31$ and $|N|=2^{10} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31$. Then $|C| \mid 2^{15} \cdot 3^{2} \cdot 5^{2}$. If C is insolvable, by [3], pages $12-14$, then C has a minimal normal insolvable subgroup $M \cong A_{5}, A_{6}$ or A_{5}^{2}. Then $N M \unlhd C N$ has at most two orbits on $V(X)$. For $M \cong A_{5}$, one has $3^{3}| |(M N)_{v} \mid$. By Proposition 2.2, this is a contradiction. Thus, $M \nsubseteq A_{5}$. If $M \cong A_{6}$, then $\left|(M N)_{v}\right|=|M N| /|V(X)|=$ $2^{13} \cdot 3^{4} \cdot 5 \cdot 7$ or $|M N| / \frac{1}{2}|V(X)|=2^{12} \cdot 3^{4} \cdot 5 \cdot 7$. By Proposition 2.2 , there exists no vertex stabilizer whose order is $\left|(M N)_{v}\right|$, a contradiction. Similarly, $M \not \equiv A_{5}^{2}$. Thus, C is solvable. Clearly, C is not semiregular on $V(X)$. If it were, X_{C} would be a connected valency seven graph of order $2 p q /|C|$, yielding that $2 \nmid|C|$. Furthermost, $C \nsubseteq \mathbb{Z}_{31}$ because there is no connected valency seven symmetric graph of order 10 . If $C \cong \mathbb{Z}_{5}$, by Proposition 2.5 , there is no connected valency seven symmetric graph of order 62 because $7 \nmid p-1$ with $p=31$. Thus C has at most two orbits on $V(X)$, then $|C|=5 p$ or $10 p$. Let $R \cong \mathbb{Z}_{p}<C$. Then $R \triangleleft A$, and then X_{R} is a connected valency seven graph of order 10, a contradiction. Thus, $C=1$ and $A \leqslant \operatorname{Aut}(N)$. Further, $A \cong \operatorname{Aut}\left(\operatorname{PSL}(5,2) \cdot \mathbb{Z}_{2}\right.$ because $\operatorname{Out}(N)=\mathbb{Z}_{2}$. By Example 3.5, $X \cong \mathcal{C}_{310}$. Hence N_{v} is a maximal subgroup of N, and N has two orbits on $V(X)$. Then X is a vertex bi-primitive 3 -arc transitive graph. This completes the proof.

Acknowledgements. The authors are indebted to the anonymous referees for many valuable comments and constructive suggestions.

References

[1] W. Bosma, J. Cannon, C. Playoust: The Magma algebra system. I. The user language. J. Symb. Comput. 24 (1997), 235-265.
zbl MR doi
[2] Y. Cheng, J. Oxley: On weakly symmetric graphs of order twice a prime. J. Comb. Theory, Ser. B 42 (1987), 196-211.
zbl MR doi
[3] J. H. Conway, R.T.Curtis, S. P. Norton, R.A.Parker, R.A. Wilson: Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups. Oxford University Press, Eynsham, 1985.
[4] D. Ž. Djoković, G. L. Miller: Regular groups of automorphisms of cubic graphs. J. Comb. Theory, Ser. B 29 (1980), 195-230.
[5] X. G. Fang, C.E. Praeger: Finite two-arc transitive graphs admitting a Suzuki simple group. Commun. Algebra 27 (1999), 3727-3754.
zbl MR doi
[6] X. Fang, J. Wang, M. Y. Xu: On 1-arc-regular graphs. Eur. J. Comb. 23 (2002), 785-791. Zbl MR doi
[7] Y.-Q. Feng, M. Ghasemi, D.-W. Yang: Cubic symmetric graphs of order $8 p^{3}$. Discrete Math. 318 (2014), 62-70.
[8] Y.-Q. Feng, J. H. Kwak: Cubic symmetric graphs of order a small number times a prime or a prime square. J. Comb. Theory, Ser. B 97 (2007), 627-646.

Zbl MR doi
[9] Y.-Q. Feng, J. H. Kwak, M.-Y. Xu: Cubic s-regular graphs of order $2 p^{3}$. J. Graph Theory 52 (2006), 341-352.
zbl MR doi
[10] Y.-Q. Feng, Y.-T. Li: One-regular graphs of square-free order of prime valency. Eur. J. Comb. 32 (2011), 265-275.

Zbl MR doi
[11] A. Gardiner, C.E. Praeger: On 4-valent symmetric graphs. Eur. J. Comb. 15 (1994), 375-381.

Zbl MR doi
[12] A. Gardiner, C.E. Praeger: A characterization of certain families of 4-valent symmetric graphs. Eur. J. Comb. 15 (1994), 383-397.
zbl MR doi
[13] D. Gorenstein: Finite Simple Groups. An Introduction to Their Classification. The University Series in Mathematics, Plenum Press, New York, 1982.
zbl MR doi
[14] S.-T. Guo, Y.-Q. Feng: A note on pentavalent s-transitive graphs. Discrete Math. 312 (2012), 2214-2216.
zbl MR doi
[15] S. Guo, Y. Li, X. Hua: (G, s s)-transitive graphs of valency 7. Algebra Colloq. 23 (2016), 493-500.
zbl MR doi
[16] S.-T. Guo, J. Shi, Z.-J. Zhang: Heptavalent symmetric graphs of order 4p. South Asian J. Math. 1 (2011), 131-136.
[17] X.-H. Hua, Y.-Q. Feng, J. Lee: Pentavalent symmetric graphs of order 2pq. Discrete Math. 311 (2011), 2259-2267.

Zbl MR doi
[18] Y. Li, Y.-Q. Feng: Pentavalent one-regular graphs of square-free order. Algebra Colloq. 17 (2010), 515-524.
zbl MR doi
[19] M. W. Liebeck, C.E. Praeger, J. Saxl: A classification of the maximal subgroups of the finite alternating and symmetric groups. J. Algebra 111 (1987), 365-383.
zbl MR doi
[20] P. Lorimer: Vertex-transitive graphs: symmetric graphs of prime valency. J. Graph Theory 8 (1984), 55-68.

Zbl MR doi
[21] B. D. McKay: Transitive graphs with fewer than twenty vertices. Math. Comput. 33 (1979), 1101-1121.
zbl MR doi
[22] R. C. Miller: The trivalent symmetric graphs of girth at most six. J. Comb. Theory, Ser. B 10 (1971), 163-182.
zbl MR doi
[23] J.-M. Oh: A classification of cubic s-regular graphs of order 14p. Discrete Math. 309 (2009), 2721-2726.
zbl MR doi
[24] J.-M. Oh: A classification of cubic s-regular graphs of order 16p. Discrete Math. 309 (2009), 3150-3155.
zbl MR doi
[25] J. Pan, B. Ling, S. Ding: One prime-valent symmetric graphs of square-free order. Ars Math. Contemp. 15 (2018), 53-65.
[26] J. Pan, B. Lou, C. Liu: Arc-transitive pentavalent graphs of order 4pq. Electron. J. Comb. 20 (2013), Researh Paper P36, 9 pages.
zbl MR
[27] P. Potočnik: A list of 4-valent 2-arc-transitive graphs and finite faithful amalgams of index (4, 2). Eur. J. Comb. 30 (2009), 1323-1336.
zbl MR doi
[28] G. Sabidussi: Vertex-transitive graphs. Monatsh. Math. 68 (1964), 426-438.
zbl MR doi
[29] C. C. Sims: Graphs and finite permutation groups. Math. Z. 95 (1967), 76-86.
zbl MR doi
[30] M. Suzuki: Group Theory I. Grundlehren der Mathematischen Wissenschaften 247, Springer, Berlin, 1982.
[31] R. A. Wilson: The Finite Simple Groups. Graduate Texts in Mathematics 251, Springer, London, 2009.
zbl MR doi
[32] J. Xu, M. Xu: Arc-transitive Cayley graphs of valency at most four on abelian groups. Southeast Asian Bull. Math. 25 (2001), 355-363.

Zbl MR doi
[33] M.-Y. Xu: Automorphism groups and isomorphisms of Cayley digraphs. Discrete Math. 182 (1998), 309-319.
[34] J.-X. Zhou, Y.-Q. Feng: Tetravalent s-transitive graphs of order twice a prime power. J. Aust. Math. Soc. 88 (2010), 277-288.

Authors' address: Xiao-Hui Hua, Li Chen, College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, P.R. China, e-mail: xhhua@ htu.cn.

[^0]: This work was supported by the National Natural Science Foundation of China (11301159, 11671030, 11601132, 11501176, 11526082), the Education Department of Henan Science and Technology Research Key Project (13A110543).

