
Valid Inequalities and Facets

of the Capacitated Plant Location Problem

by

Janny M.Y. Leung and Thomas L. Magnanti

OR 149-86 May 1986



Valid Inequalities and Facets
of the Capacitated Plant Location Problem *

Janny M.Y. Leung
School of Organization & Management

Yale University

Thomas L. Magnanti

Sloan School of Manangement

MIT

May 31, 1986

*This research was partially supported by Grant # ECS-8316224 from the National Science
Foundation's Program in Systems Theory and Operations Research.

1





Abstract

Recently, several successful applications of strong cutting plane methods

to combinatorial optimization problems have renewed interest in cutting plane

methods, and polyhedral characterizations, of integer programming problems.

In this paper, we investigate the polyhedral structure of the capacitated plant

location problem. Our purpose is to identify facets and valid inequalities for

a wide range of capacitated fixed charge problems that contain this prototype

problem as a substructure.

The first part of the paper introduces a family of facets for a version of

the capacitated plant location problem with constant capacity K for all plants.

These facet inequalities depend on K and thus differ fundamentally from the

valid inequalities for the uncapacitated version of the problem.

We also introduce a second formulation for a model with indivisible cus-

tomer demand and show that it is equivalent to a vertex packing problem on a

derived graph. We identify facets and valid inequalities for this version of the

problem by applying known results for the vertex packing polytope.
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1 Introduction

The plant location problem arises in a variety of settings, ranging from telecommu-

nications to transportation and production planning, and constitutes a major area

of study in operations research. The problem is usually formulated as an integer,

or mixed integer, programming problem. In this paper, we focus on versions of

this problem with capacity restrictions. Our interest is in studying the polyhedral

structure of these problems.

Recently, there has been a resurgence of interest in cutting plane algorithms

for integer programs and combinatorial optimization problems. Papers by Crow-

der, Johnson and Padberg [1983], Van Roy and Wolsey [1983], and Martin and

Schrage [1985]are notable examples. Researchers have devised effective cutting

plane methods for a variety of problems that utilize characterizations of the poly-

hedral structure of the underlying problem. (See, for example Padberg and Hong

[1980], Grbtschel, Jiunger and Reinelt [1984].) Computational studies have shown

that the polyhedral characterization of a substructure of a complex problem also

tightens the problem formulation and yields successful cutting plane algorithms.

(See Crowder, Johnson and Padberg [1983], Johnson, Kostreva and Suhl [1985],

Eppen and Martin [1985].).

Our goal is to investigate the polyhedral structure of the capacitated plant lo-

cation problem. We wish to identify valid inequalities that gives a tighter LP-

relaxation of the problem, and, in particular, facets of the convex hull of feasible

solutions which are the tightest possible inequalities. Valid inequalities and facets

are the foundation stones upon which strong cutting plane algorithms are built.

The purpose of this research is to identify the building blocks for use in developing

cutting plane methods for a wide range of capacitated fixed charge problems that

contain the capacitated plant location problem as a substructure.

In this paper, we will describe different models for the capacitated plant location

problem, and identify families of valid inequalities and facets for each model. Al-

though researchers have devised many insightful algorithms and theoretical results

concerning facility location problems, only recently have results on the polyhedral

structure of these problems emerged. (See Cornuejols and Thizy [1982] and Cho,

Johnson, Padberg and Rao [1983a,bl.) Also, surprisingly little is known about the
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polyhedral structure of capacitated versions of these problems. The results pre-

sented in this paper are intended to be a first step in extending our knowledge in

this area; we hope it will lead to new and effective cutting plane methods for these

capacitated problems.

This paper is organized as follows.

Section Two contains a survey of the literature. We describe some application

areas and outline both heuristic and exact solution approaches that have been used

for the plant location problem.

Section Three introduces a model of the capacitated plant location problem;

it is a direct extension of a well-known model of the uncapacitated plant location

problem and has exactly the same set of variables. The results in this section show

that the defining constraints of the problem describe facets. Section Four identifies a

new family of residual capacity' facets for the capacitated plant location problem.

It also mentions how the facets identified in this analysis relate to some general

results on integer programming polytopes.

Section Five analyzes conditions under which the family of facets introduced in

Section Four remain facets for modified versions of the capacitated plant location

problem.

Section Six introduces a second model of the capacitated plant location problem

and shows that it is equivalent to a vertex packing problem on a derived graph. This

model differs from the one introduced in Section Three since it requires that all of

a customer's demand be served from a single plant; on the other hand, the model

allows plant capacities to vary by location. After stating some results on the facets

of the vertex packing problem, we describe how these results can be applied to the

capacitated plant location problem to identify several families of valid inequalities

and facets. The last part of this section compares the two formulations of the

capacitated plant location problem stated in Sections Three and Six.

Section Seven indicates several directions for future research.
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2 Literature Review

Facility location problems have received widespread attention in the last two decades.

There is a large body of research on just the uncapacitated plant location problem

and its derivatives. This rich literature attests to the practical significance and

theoretical interest of the problem.

2.1 Plant location

According to Krarup and Pruzan [1983], the problem usually referred to as the

uncapacitated plant location problem was first formulated independently by Balin-

ski and Wolfe [1963] (see Balinski [1964]), Kuehn and Hamburger [1963], Manne

[1964] and Stollsteimier [1963]. Manne's work was on plant location and gave the

general problem its current name. Balinski and Kuehn and Hamburger discussed

this problem in the context of warehouse location.

The plant location problem has been used in a variety of application areas be-

yond the scope of distribution planning. Cornuejols, Fisher and Nemhauser [1977a]

discuss an application in financial planning; in this setting, the facilities represent

bank accounts and the objective is to maximize clearing times of cheques. Another

area of application is in the design of telecommunications networks. The problem

of access design, in which concentrators must be located to connect terminals to

a central processor is often modelled and solved as a plant location problem (see

Tanenbaum [1981]). Kochman and McCallum [1981] discuss a capacity expansion

problem for transatlantic cables which they modelled as a plant location problem

with some side constraints. For further discussions on telecommunications network

design, see the papers by Kershenbaum and Boorstyn [1975] and Boorstyn and

Frank [1977]. Dykstra and Riggs [1977] described an application in forestry; they

modelled the design of a timber harvesting system as a hierarchical facility location

problem. Other areas of application of facility location include machine scheduling

and information retrieval (see Fisher and Hochbaum [1980]).

The early algorithms proposed for the uncapacitated plant location problem

were mostly heuristics, the most well known being the ADD heuristic of Kuehn and
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Hamburger [19631 that opens facilities one at a time until the marginal saving for

opening an additional facility becomes negative. Feldman, Lehrer and Ray [1966]

proposed a similar greedy heuristic, DROP, that initially opens all the facilities and

then close them one at a time. Manne [1964] proposed a local search procedure that

moves from one solution to the 'neighbouring' one that give the greatest decrease

in cost. Two solutions are neighbours if some facility j is open in one solution and

not the other while the status of all other facilities are identical. Kuehn and Ham-

burger [1963] also proposed an interchange heuristic (SHIFT). Cornuejols, Fisher

and Nemhauser [1977a] studied the worst case behaviour of greedy heuristics.

The first exact solution method was proposed by Balinski and Wolfe [1963] who

suggested a Benders' decomposition approach. Efroymson and Ray [1966] applied

a branch-and-bound scheme using a weak formulation of the problem. Branch-and-

bound solution methods have since been further refined by the introduction of clever

branching rules. See the papers by Sa [1969], Davis and Ray [1969], Khumawala

[1972] , Akinc and Khumawala [1977], and Nauss [1978]. Spielberg [1969] proposed

a direct search scheme.

Erlenkotter [1978] suggested a dual ascent procedure, DUALOC, which appears

to be the most successful currently available solution method for uncapacitated

problems. Bilde and Krarup [1977]suggested the same approach. Guignard and

Spielberg [1979] proposed a direct dual approach. Nauss [1978] and Christofides

and Beasley [1983] also used dual-based methods, incorporating subgradient opti-

mization for Lagrangian relaxation in the context of a branch-and-bound scheme.

Cornuejols, Nemhauser and Wolsey [1983] give a general survey of the uncapac-

itated plant location problem. Magnanti and Wong [1985] discuss decomposition

methods and modelling issues in depth. Wong [1985] provides an annotated bibli-

ography of facility location problems.

Most solution methods for the capacitated plant location problem are adapta-

tions of the algorithms for the uncapacitated problem. Jacobsen [1983] generalized

the ADD, DROP and SHIFT heuristics of Kuehn and Hamburger to the capacitated

plant location problem. He also proposed two heuristics that were adapted from

the Alternate-Location-Allocation heuristic (Rapp [1962] ) and the Vertex Substi-

tution Method (Teitz and Bart [1968] ) for p-median problems. Branch-and-bound
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procedures suggested for the capacitated problem include those suggested by Davis

and Ray [19691, Sa [1969], Ellwein and Gray [1971], Akinc and Khumawala [1977]
and Nauss [1978].

Geoffrion and McBride [1978] suggested a Lagrangian relaxation approach for
the capacitated plant location problem. Other dual-based methods have been sug-

gested by Guignard and Spielberg [1979], Van Roy and Erlenkotter [1982] and
Christofides and Beasley [1983]. Bitran, Chandru, Sempolinski and Shapiro [1981]
proposed an inverse optimization approach using both Lagrangian and group the-

oretic techniques. Ross and Soland [1977] modelled facility location problems as
generalized assignment problems and applied a branch-and-bound algorithm. Van

Roy [1986] suggested a cross-decomposition approach for the problem.

Computational results on the uncapacitated plant location problem have been
very impressive. One explanation is that integer solutions are often obtained while
solving the linear programming relaxation of the problem. Part of the motivation for
this research is to develop formulations for the capacitated plant location problem
that provide tight LP-relaxations. This research focuses on investigating the facets
of the underlying polytope and identifying valid inequalities.

Compared to the work devoted to algorithmic developments, few papers are de-

voted to characterizing the structure of the feasible solutions of the plant location
problem. Cornuejols, Fisher and NeIhauser [1977b] and Guignard [1980] character-
ized the fractional solutions of the LP-relaxation of the uncapacitated plant location
problem. Both papers also proposed valid inequalities for the problem. Results con-

cerning the facets of the uncapacitated plant location problem are summarized in

three excellent papers by Cornuejols and Thizy [1982] and Cho, Johnson, Padberg
and Rao [1983a,b]. As far as we know, no results on the facets of the capacitated
plant location problem has been published.

2.2 Strong Cutting Plane Algorithms

For references on polyhedral combinatorics, we refer the reader to the excellent
annotated bibliography by Grotschel [1985].
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Cutting planes were used in the solution of a travelling salesman problem by
Dantzig, Fulkerson and Johnson [1954]. More recently, Padberg and Hong [1980]

and Crowder and Padberg [1980] reported very successful implementations of cut-
ting plane algorithms using facet defining inequalities for the travelling salesman

problem. Crowder, Johnson and Padberg [1983] obtained equally impressive results

by using facet-based inequalities for single constraints in the solution of some sparse

zero-one problems. Gr8tschel, Jiinger and Reinelt [1984,1985] developed a strong

cutting plane method (i.e. one using facet defining inequalities) for the linear or-
dering problem. Use of strong cutting plane methods for strategic planning was

reported by Johnson, Kostreva and Suhl [1985] and for vehicle routing by Laporte,
Mercure and Nobert [1986].

As far as we know, no strong cutting plane procedure has been developed for the

facility location problem (either with or without facility capacities). The results in

this paper provide the ingredients for developing strong cutting plane algorithms.

We are currently working on such an algorithm and hope to report on our compu-

tational experience in the near future.
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3 The Capacitated Plant Location Problem

3.1 Terminology

We will first formulate the capacitated plant location problem as a mixed-integer

program. The variables in the problem are

1 if plant j is open
YJ = 0 otherwise

and xij = fraction of the demand of customer i supplied by plant j

and the constraints are

xij < i ViE.M, VijE) (1)

zXij < ViE M (2)

(PI):, x < Kyj V j E (3)
iEM

ii > V iE M (4)

yj <1 VjE (5)

yj integer Vj E V (6)

where

= {1,2,..,M is the set of customers,

= {1, 2,..., N) is the set of plants,

and

di = demand of customer i.

Without loss of generality, we assume that d, > 0 for all i. Let DM denote the total

demand, i.e.,

D, = E d,.
iEM

In this model, we assume that all plants have the same capacity K. If K > DM,

then constraint (3) is redundant and (PI) becomes an uncapacitated plant location
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problem. If NK < D, then the problem is infeasible. In order to rule out cases
not of interest in our development, we make the assumption that D < K < DM.
For simplicity, we also assume that K and all the d4's are integer-valued.

Notice that the constraints (2) of (PI) are inequalities. Thus, our model allows
solutions in which some customers' demand may not be fully met. In Section 5.1,
we will examine a variant of the capacitated plant location problem in which the
demand of all the customers must be met in full.

We identify each feasible solution of (PI) with a point in RMN+N. Let .7pI be
the set of feasible points for the problem (PI), and let P denote the convex hull of

ptI, i.e.,

P = cony { (, y) E RMN+N (X, y) satisfies constraints (1) -(6)}.

An inequality

alz + a 2y < a al E RMN, a E RN, ao E R (t)

is a valid inequality for P if it is satisfied by all the points in Yp, (and hence in P).
The inequality defines an improper face of P if it is satisfied as an equality by all
the points of Ypj (and P).

Let a = (al, a 2, a0) and let

pa = {(z, y) (z, y) E P and a + a 2 y = aO}.

These points are those in P that satisfy (t) as an equality. If pa is not empty, then
the intersection of P and the hyperplane defined by alX + a 2y = ao is a face of the
polyhedron P. Pa describes a k-dimensional face if it contains exactly k + 1 affinely
independent points of P. For example, an extreme point of P is a 0-dimensional
face. A face of dimension (dim P) - 1 is called a facet.

When P is full dimensional, l the inequality defining a facet of P is unique up to
positive scaling. We will use the term facet to refer to both the physical face of the
polyhedron and the inequality defining it.

We are interested in identifying the facets of the polyhedron P.

'P is full dimensional if the affine subspace generated by it is of dimension MN + N. When P is
not full dimensional, the defining inequality for a facet of P is not unique.
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3.2 Trivial Facets

We first note that the polyhedron P is full-dimensional. For each j, we can construct
a point in Ypj in which either yj is set to 1 while all other variables are set to 0, or
each zxi is set to min{1, K} and the corresponding yj = 1 while all other variables

are set to 0. Since (, y) = (0, O0) is also in P, we can see that P spans an (MN + N)-
dimensional space.

Theorem 1

(i) For every i E M, if Ell < N, then Z zii < 1 i a facet of P.
jeW

(ii) For every i E M and j E , if d < K, then xii < yj is a facet of P.

(iii) For every i E M, j E , xii > O is a facet of P.

(iv) For every j E l, yj < 1 is a facet of P.

(v) For every j E , , dizii < K yj is a facet of P.
iEM

This theorem asserts that the inequality constraints (1) - (5) of the capacitated
plant location problem define facets of P. Since the facets (1) - (5) correspond to the
constraints of the standard formulation of the capacitated plant location problem,
they are called the trivial facets of P.

By definition, (1) - (5) must be valid inequalities. In order to show that a valid
equality is a facet of P, it is sufficient to exhibit MN + N affinely independent
points in P that satisfy the inequality as an equality. We will use this approach to
prove that inequalities (1), (2), (4) and (5) are facets. The proof that (3) is a facet
of P will require a different approach which we will develop in more detail in the
next Section. The proof of Theorem 1 is long but relatively straightforward and
will be deferred to Appendix A.
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4 A New Family of Facets for the Capacitated

Plant Location Problem

In this subsection, we introduce a new family of facets for the capacitated plant
location problem. This family contains exponentially many facets. Since (PI) is
NP-hard, a 'simple' complete characterization of the convex hull of its feasible solu-
tions is unobtainable unless P = co-NP. (See Karp and Papadimitriou [1982] and
Gr6tschel, LovAsz and Schrijver [1981].) Our goal is to identify potentially effective
cuts for use in a cutting-plane method for this problem and related capacitated
fixed charge problems.

Consider the family of inequalities

Ex-rEyi < D-r[DJ (RC)

where I C M,JC,D= dandr= D (modK) with 1 < r < K.2

iEI

This is a family of valid inequalities, most of which are facets, for the capacitated
plant location problem (PI). Notice that [- is the minimum number of plants
required to supply the customers in I. If D is a multiple of K, then all [] plants
must produce to capacity. Otherwise, if rD[ - 1 plants produce to capacity, then r
is the residual demand that the last plant must satisfy. For this reason, we refer to
the inequalities (RC) as the residual capacity inequalities (or, for convenience, the
r-inequalities). In the next subsection, we will discuss how the residual capacity
inequalities are derived and provide some intuition on why they define facets.

4.1 Why the residual capacity inequalities are valid

The residual inequalities focus on a subset of the customers and plants and en-
sures that the supply to these customers from these plants satisfies the capacity
restrictions. Let us consider the aggregate variables, z and y, defined as follows:

2 In this paper, we define r -= K instead of r = 0 if D is a multiple of K. This choice differs slightly
from the convention in the literature.

12



z = E dizij = aggregate supply from plants in J to customers in I,
EI jIEJ

y = E Yi = total number of open plants in J.
jEJ

In terms of the aggregate variables z and yI, the capacity constraints (3) and the
demand constraints (2) imply

and

z < Ky

z<D

(7)

(8)

respectively. However, because y is an integer variable, the convex hull of the
feasible solutions is strictly smaller than the region defined by the two inequality
constraints (7) and (8) when r # K. See Figure 1. The figure suggests that the

x

D

K

z<D

7

I

0 1

'K'

Figure 1: Feasible Region of CPLP in aggregate (, ) space.

'facet' that needs to be added is the one marked , which has slope = r and passes
through the point (y, z) = (1, D). The inequality describing this 'facet' is

z-D

<K 1(9)

or

13

.

x--ry 5D-rrr~fl



which is exactly (RC) written in terms of the aggregate variables z and y. Figure 1

also indicates why the coefficient of the term EjEJ i - 1 in (RC) is r. If the

coefficient is greater than r, then the inequality is not valid; if it is smaller, then

the residual capacity inequality is a face but not a facet of P.

4.2 When do the residual capacity inequalities define facets?

In this subsection, we will delineate the conditions under which the residual capacity

inequalities define facets for P.

Proposition 2 (RC) is a valid inequality for (PI). Provided IJI > 1, it defines a

face of P if and only if IJI > L].

Proof. If IJI = 0, (RC) becomes 0 < 0 which is vacuously valid.

For all feasible solutions of (PI), let

d = j E diz,i = the demand of customers in I that (10)
iE jiJ is satisfied by the set of plants J.

Since each plant has capacity K, we must have

E -> (11)
jEJ

and therefore

E di ziij- r E Yj <d-rrkl, (12)
ier .J iSJ

which is an aggregation of (10) and (11). The maximum of the righthand side of

(12) over the interval 0 < d < D is attained when d = D (see Figure 2), so the r-

inequality (RC) is satisfied by all feasible solutions to (PI) and is a valid inequality
for P.

Moreover, for any choice of I and J, provided IJI > L[J, it is clear that we can

find a solution point in P that satisfies (RC) as an equality. (For example, given
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any ordering of the customers in I and plants in J, we can assign the customers in
order to the first plant until it reaches capacity; subsequent customers' demand is
then assigned to the second plant, and so on.) If IJI > r[j, then all the customer
demand can be assigned; If IJI = L[J < F-], then all plants in J are used and

isl dzii = D - r. In both cases, the r-inequality (RC) is satisfied as an equality.
Therefore, the residual capacity inequalities (RC) define a family of faces for P.
When IJI < LjI, the capacity constraints (3) forces the lefthand side of (RC) to

be strictly less than its righthand side; in this case, the inequality (RC) is valid but
not a face.

We would like to determine when the residual capacity inequality (RC) defines
a facet for P.

Let us first explore the question When is (RC) satisfied as an equality?". Con-
sider the function

f (d) = min ,yi yj dii = d, and (z, y) is feasible for (PI)}.
jE J WEl j EJ

d d
Clearly, f(d) = []l. Define g(d) = d - r f(d) = d- r r . The function g(d)

for {d l 0 < d < D} is plotted in Figure 2.

We can see that g(d) attains its maximum value of D - r[] at d = D or

d = D- r, whence E Yj = or r1 - 1 respectively. The following proposition
jEJ

follows directly from this observation.

Proposition 3 If IJI = L[J, then (RC) is a face but not a facet.

Proof. Let

pRC = {(,y) E RMN+N I (z,y) E P and satisfies (RC) as an equality}. (13)

If the residual capacity inequality (RC) were a facet, then the dimension of pRC

must be MN + N - 1. When IJI = [LJ, then all the points in RC must have
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Figure 2: Graph of g(d).

yj = 1 for all j E J. the dimension of pRC is at most (MN + N) - (IJI + 1) and
the residual capacity inequality (RC) cannot be a facet. ·

If D = qK for some q (i.e., when r = K), then the residual capacity inequality
(RC) becomes

E4dij-KZEyj <D-K[ 1 =0.
sEI Jej jEJ

This inequality is a positive linear combination of the following valid inequalities:

>d,.zj < Kyj Vj E J.
iEI

Thus, when D = qK, the r-inequality (RC) cannot be a facet of P.

The only remaining case to consider is when D = qK + r for some q > 0 with
1 <r < K- 1 and IJI > [1.

Theorem 4 When r = D (mod K) satisfies 1 r < K - 1, then, provided

IJI> rD1, the residual capacity inequality (RC) is a facet of P.

SAlthough P is full-dimensional, its intersection with an m-dimensional affine subspace may be of
dimension < m. For example, consider the intersection of the n-dimensional unit cube with the
(n- 1)-dimensional affine subspace zl + z2 +... + z = n. It is a single point and has dimension 0.
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Proof. By Proposition 2, we know that (RC) is a face of P. To show that (RC)
is a facet, we need to prove the following:

1. (RC) is not an improper face.

2. The face pRC, as defined by (13), is of dimension MN + N - 1.

If pRC were a lower-dimensional face but not a facet, then we could find another
valid inequality that is also tight (i.e., satisfied as an equality) for all the points in
pRC. Thus, to establish the second of these conditions, it is sufficient to prove that

(RC) is the only valid inequality that is tight for all the points in pRC. (Since P is
full-dimensional, the facet is uniquely defined by (RC).)

Claim 1: The r-inequality (RC) is not an improper face of P.

Proof of Claim 1: Consider the point in P defined as follows:

y =1 Vj E J( all other variables set to zero.

Substituting these values into (RC), we get

-rlJI < 0 < D-rr[D1.

Therefore, the residual capacity inequality (RC) is not satisfied as an equality by
all points in P and so it is not an improper face of P.

Let

pRC = {(x, y) (x, y) E P and (,y) satisfies (RC) as an equality }

as defined in (13). pRC is not empty since we have already shown that the r-inequality

(RC) is a face.

Claim B: dim PRC = dim P-1 = MN + N-1 .

Proof of Claim 2: To prove this assertion, we need to show that no other
valid inequality is satisfied as an equality by all points in pRC.
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Suppose that cax + ,y < ao is a non-trivial valid inequality for (PI) and

E I:jZi + : #jY = o ()
iEM jEM jE

holds for all (z, y) E pRC. We will show that () is a multiple of

E .dij - rEyi = D-rrD. (RC=)
ijE jEJ jEJ K

We will do so by substituting the coordinate values of the points in pRC into
(:). By comparing coefficients of the resulting equations, we will show that () is
identical to (RC=) up to a multiplicative constant.

For any j E J, choose J C J satisfying

iJ1 = I and ji E J.

Let (z', yx) be the solution defined by

yI={1 if iE J (14)
0 { otherwise4)

and
= 1 _ Vi E I

jEJ1

i)i = 0 i I,Vj E (15)
E d, 2i = r
iEl

This choice is always possible since ,e d = KIJx - (K - r). Moreover, it is clear
that (',y l ) E RC. The set J corresponds to the set of open plants. The xii's
represent an assignment of customers so that plant jI is not at capacity, producing
only r units.

Next consider any i I. We perturb the solution (z,y 1 ) so that plant j
supplies customer i as well. Let 6 = min{1, -;, '. Let (z 2 ,y 2) be defined as in

(Xz, y') except :xj, = 6. Then di1,2x + Edxi, K and (x 2 ,y 2 ) is also in RC.
iEl

18



Evaluating the two solutions in () and comparing the resultant expressions, we see
that 6cxaj, = 0. Since 6 > 0 and the indices were chosen arbitrarily, we get

oi =O Vi I, jE J. (16)

Next define (x 3, y 3) as in (zX, y2) except that yi, = 1 for some js E \ J. Define
(zs , y4 ) as in (z 3, y3) except the demand for customer i I is assigned to plant js
instead, i.e.,

4 3

z~3= 0 s if i=il, =j

z i otherwise.

Comparing (z 3, y 3) and (z 4, y4), we see that a,, = 0. Again since the indices are
arbitrary, we have

aoj = 0 vi I, j J. (17)

Now, consider again (X 2, y2 ) and (z 3, y 3). Substituting their values into () and

comparing, we see that we must have jij = 0, and so, we can conclude that

ji = 0 j V J. (18)

Next consider (zs,y5) in pRC satisfying jET zs6i < 1 for some is E I, and
Ys = 0 for some js J. This assignment is clearly possible. Now modify (zx,y 5 )

so that customer i is assigned to plant js J, i.e.,

= {_ J1 ifj=js
Yj-l yj s otherwise

min{1, d K ) if i = is, j = js

It otherwise.

From these solutions, we see that asj = 0, and similarly

a,> = 0 Vi E I, j J.(19)
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At this point, we have shown that the coefficients oaj's are zero when either j 0 J
or i V I, and the i's are zero when j V J.

Next, for any {jl,j 7 ) C J, choose J, C J so that

IJ11 = [l and {jl,j 7 } C J.

Assign (z 1 ,y') according to (14) and (15) as before. Thus plant j is supplying
only r units. For any i7 E I, we can assume without loss of generality that the

assignment satisfies

xij > 0.

Now we consider modifying the solution by re-assigning customer i to plant jl. Let
= min{Kr,zi, }. Define (z 7 ,y 7 ) by

yj7= VjEJ

X ,7 + if i = i and j = j (20)

7 1f i = i=i and j = j7
IX otherwise.

It is easy to check that both of these points are in pRC. Substituting their values

into () and subtracting, we see that

a, 7il 6 = o7* 6.

Since i7, j1 and j are arbitrarily chosen, we can conclude that

o = ai V i E I, jE J. (21)

Next, for any is,ji E J, choose J C J satisfying

D
js E J1 , jg J1, andlJ = l

Define (zx,y 1) according to (14) and (15) as before. Define ( 8 ,y 8 ) pRC by

20



Yj8 = Io
1

- 1

Ar
'j

if j = js

otherwise

if j = j

if j = j8

otherwise,

which represents swapping the assignments for plant js and jg.

Because of equation (21), the first term on the lefthand side of () is identi-

cal for (z,y l ) and ( 8 ,y 8 ). Hence, substituting (zl,y l ) and ( 8 ,y 8 ) into () and
subtracting, we obtain

pij. = Pj.

which implies that

.pj=;3 VjEJ (22)

since js and j9 were chosen arbitrarily.

Our proof will be complete if we can show that the a's and 8 satisfy the ap-

propriate algebraic relationship.

Consider any i,ig E I and any jl,jlo E J. Choose J1 so that {jl,jl 0} C J1 .
Define (zl,y') by (14) and (15) as before. We can assume that the assignment of

(z l , y) satisfies

r1

1

ishlo

> 0

> 0.

We can check that pRC indeed contains such a solution.

Define ( g , y9) as follows:

= { 0

X:?j = 1
x6j

if j = j
otherwise

if j = i

otherwise.
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(z1 ,y') and (z 9, y9) differ only because the solution corresponding to (z 9, y) opens

one fewer plant and supplies r fewer units from the plants in J.

Substituting (z',y l ) into () and using equations (21) and (22), we find that

Z ai. + rD = O.
$El

Substituting ( 9 , y9) into () , we obtain

ixi4Z + ([ -1 ) = ao
sEl

or
D

aii, - atzj 1 + P([1-1) = ao.
iEI iEI
iE· J

Therefore, we must have
C aifl. = -p. (23)
iEI

Let = min{di z ),, o (1 - , oi,)}. Define (z, z 1by
modifying (x', y') as follows:

Zisjz Zsil + o

Wlso = zisho + ds
10 1 6

ziojl - Zio,1- -

z~3 lo ,1 0 6
st9o10 ojlo '.

This solution shifs the demand for customer i8 from plant jl to j 1o and shifts the
demand for customer ig from plant j10 to jl.
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Define (zx", y") by modifying (zxO,y 1O) as follows:

Y = 0

, {zXi 10
SI i j!

if j = 1

otherwise

if i = A
otherwise,

and repeating the previous argument on ( 10, y1O) and ( 1 1 , y1 1), we find that

Caiz 1, = -a
iE

or

+
aiEix

iEr

6
a 9 o = -.

'4,

(24)

(25)

Comparing equations (23) and (25), we see that

d., d,

and since the indices are arbitrarily chosen, we have

c = adn Vi EI

for some a. Moreover, our choice of (z 1, y') ensures that

E d, x'l, = r
isE

so substituting into (23), we get

p = -ra. (26)

Thus, () is equivalent to

a(EJ
ifE jJ

Since () is non-trivial, cta 0, and so we must have
holds for all points in pRC. Thus we have shown that

= D-rr1, since (RC=)

() is a times (RC=).

At this point, we have established that the residual capacity inequality (RC) is
afacet for P when 1 < r < K - 1. ·
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4.3 Relation to Chvatal's Result

Chvatal [1973] showed that all facets of the integer programming polytope

Q = conv{x I Ax < b, : integer},

where A and b are integer-valued, can be constructed recursively using the following

argument:

Let a < bl , a2x < b2, ... , akx < b be valid inequalities for .
Selecting any set of values A i > 0 so that

i'a i' is an integer vector,
i=l

then

( d < b·

is valid for all b > L k ibi.

Thus, new valid inequalities can be generated by taking positive linear combinations
of previously known valid inequalities and "rounding down" the righthand side.
Moreover, any facet of Q can be generated by a sequence of combinations and
roundings. However, the linear combinations of a fixed set of inequalities might not
generate the complete characterization of the convex hull - the procedure must
be applied recursively to valid inequalities generated at a previous level. (The next
level of inequalities is constructed by applying the previous argument to all possible
linear combinations of inequalities in the current level.)

The fact that the residual capacity facets identified in Section 4 contain the
term []1 suggests that there may be a simply construction via Chvatal's procedure
to generate the r-inequalities (RC). (Notice that Chvatal's construction applies to
integer programs; therefore, our comments in this Section applies to the version of
the capacitated plant location problem where the xj's are also integer variables.)
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When r = 1, the inequality (RC) can indeed be directly constructed in one step
using the following original constraints with the corresponding multipliers indicated

on the left:

d,( - K): E ij < 1 Vi E I
iEI EJ

: 4 jdi - Kyj < O V JJ
iEI

When r > 1, the analogous Chvatal construction generates

rD
E d, xij - rEyj < D- r 1

iEI iEJ iJ

which is not as tight a constraint as the residual capacity inequality (RC). The
direct Chvatal construction for (RC) does not appear to be obvious.
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5 Other Versions of the Capacitated Plant Loca-

tion Problem

In this section, we will examine some variations in the model of the capacitated

plant location problem and investigate whether the inequalities introduced in the

previous section define facets for these modified problems.

5.1 The Capacitated Plant Location Problem with Equality
Demand Constraints

In some applications, the demand of the customers must be met in full. Thus,
instead of (PI), we may consider a modified version of the capacitated plant location

problem that replaces the constraint

1zij < 1 ViE M (2)
ieu

by

CXi = 1 i E M. (28)

Let us call this version of the capacitated plant location problem (PE), and the

corresponding convex hull of solutions PE. (28) defines M non-redundant equality

constraints of (PE), so P cannot be full-dimensional. In fact, provided N >

[-]4, P is of dimension MN + N - M.

Since (PI) can be viewed as a relaxation of the problem (PE), the family of

residual capacity inequalities, introduced in Section 4, must also be valid for (PE).

As in the case for (PI), the following is true for (PE):

1. if IJI < LJ, the r-inequality (RC) is valid but not a face, and

2. if IJI = L-J, (RC) is a face but not a facet.
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Thus, in order for the residual capacity inequality (RC) to be a facet, we must have

IJI > L J- (29)

The intuition is that we must have enough 'degrees of freedom' in the set

p RC = the set of feasible solutions of (PE) that satisfies the

residual capacity inequality (RC) as an equality.

Moreover, the solutions in P£RC correspond to assignments with at least IJI- [r]

plants in J closed. However, because of constraint (28), at most N - [] plants

out of the total of N plants can be closed. Therefore, we must have

IJI-[KD < N-r- 1 (30)

for the residual capacity inequality (RC) to be a facet of PE.

In fact, the two conditions (29) and (30) are sufficient. The proof that (RC)

is a facet for PE under these two conditions parallels that of Theorem 4. In this

case, however, we must be more careful in our choice of feasible points used for

comparing coefficients, since we must ensure that all such points satisfy constraint

(28) of (PE).

The problem (PE) requires that the demand of every customer be completely

met and each plant can supply only K units, Therefore, the number of plants that

are opened must be at least [D], where Dm = E dt. Thus,
iEM

E > D-M 1 (31)
iJE

is a valid inequality for (PE). In fact, if r[D i -# , then (31) is a facet of PE.

5.2 The Capacitated Plant Location Problem with Indivis-

ible Demand

In certain applications of the plant location problem, demand for a customer must

be supplied from a single plant. Thus, in addition to constraints (1) - (6), we also
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impose the constraint
zXi integer. (32)

This model is often used in applications for which the assignment cost is not propor-
tional to demand, but represents a 'fixed' cost in establishing the link between the
customer and the plant. (In telecommunications applications, the assignment cost
reflects the cost of building a cable connection between a household and a switching
facility and does not depend on the volume of traffic generated by the household.)

When the zxi variables are restricted to be 0-1 variables, the capacitated plant
location problem becomes a harder" problem. The residual capacity facets for
(PI), introduced in Section 4, are valid inequalities for this modified problem, but
they may no longer be facets or faces. The following example illustrate this point.

Example

Consider a capacitated plant location problem with M = {1, 2,3} and
A = {1,2,3} and with

dl = 3, d 2 =4, d = 4 and K=6.

The residual capacity inequality (RC) with I = M and J = is

3zxu+3z12+4z21+4X22+4l31+4X32-5(y1+y2+Ys) < 11-5X2 = 1

(33)
which is valid but not binding. There is no feasible solutions to the set
of constraints (1),..., (6) and (32) that satisfies (33) as an equality.

On the other hand, if the demand of all the customers are equal, say, di = d for
all i, the capacitated plant location problem with indivisible demand is equivalent
to the following problem:
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zxj <I yj V iE M, V jE (34)

IX I 1 ViE M (35)

(PI'): i < K'yj V j E (36)
iEM

zii 0 ViE M (37)

O yj < 1 V jE (38)

zi, yj integer ViE M, Vj E X (39)

where K' = LKJ. The residual capacity inequalities (RC) for the problem (PI') is

of the following form:

E Z ,i - r' Z y < - I-lr II1 (40)

with r'= IIl (mod K').4

The valid inequalities (40) are in fact facets for the problem (PI'). Thus, when
the customer demand is equal to one unit for all customers, (RC) define facets
for the version of the capacitated plant location problem when the zx's are con-
strained to be integers as well as for the version when the xj's are allowed to be

fractional. The proof that the residual capacity inequalities (40) define facets for

(PI') is entirely analogous to the proof of Theorem 4. (All the feasible points
(zl,y),..., (, y/ll) used in the proof can be chosen to be integer-valued.)

In the next Section, we study a different formulation of the capacitated plant

location problem for the case when the demand for all customers are equal to one

and each customer can be supplied from only one plant. This formulation also allows

the capacity to be different for different plants. We will show that this problem is

equivalent to a vertex packing problem for a particular graph and derive facets for

this' formulation using graph-theoretic results.
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6 A Vertex Packing Formulation of the Capaci-

tated Plant Location Problem

Suppose the demand of each customer is the same and that the demand of a single
customer cannot be split between two plants. Then, without loss of generality, we
can assume that the capacity of each plant is an integral multiple of the demand.
For simplicity, we can take the demand of each customer to be one unit and the
capacity of each plant to be integer-valued.

An alternative way of modelling the capacity restriction is by viewing the plant
as a collection of plant-units. Each customer is assigned, not to a plant, but to a
particular plant-unit. Each plant-unit can serve only one customer and is unavail-
able unless the plant is open. (We are tacitly assuming that opening a plant incurs a
fixed cost irrespective of the number of plant-units actually assigned to customers.)

This model leads to a formulation of the capacitated plant location problem
with the variables

xijk = 0

and yj = {

and the following constraints:

E E ijk
iE ikEKj

kxqk
iEM

EKji

if customer i is assigned to unit k of plant j
otherwise

if plant j is open
otherwise

<1

< i

< Yj

Yij E {O,1}

ijik E {0,1}

ViE M

VjE E1, k E Kj

ViEM, ViE X

VjEX

ViE M, Vje X, Vk Kj

M = {1,2,...,M) and = {1,2,...,N) and Kj = {1,2,...,Ki}.
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(41)

where

(42)

(43)

(44)

(45)



Since zijk's are integer variables, the constraints (41) forces each customers to be

assigned to at most one plant-unit. Constraints (42) are the capacity constraints for

each plant-unit; only one customer can be assigned to each plant-unit and customers

can be assigned to those plants that are designated open. Constraints (43) stipulates

that a customer is assigned to only one plant-unit in any given plant.

For this model, we allow the capacity of each plant to be different, and denote

the capacity of plant j by Kj. Let P V denote the convex hull of the solution points

of (PV).

6.1 A Vertex Packing Formulation

Substituting the complement p' = 1 - yj of the variables yj into the constraints of

(PV) gives the following formulation:

E E xi < 1 Vi EM (46)
iEM kEKJ

Zijk+p <1 Vj E , kEKj (47)
iE-

(PV): FXijk+ Y 1 ViE M,VVijE (48)
kEK$

ij,, Yj7 E {O,1} ViEM,VjE , VkEKj. (49)

Examining these constraints, we see that (PV) is a set packing problem. The

solution set to this problem is equivalent to the collection of independent sets of

vertices of a related graph, called the intersection graph which we will define next.

This observation will permit us to used results that have been developed for vertex

packing problems to identify facets for problem (PV).

The intersection graph Gpv = (V, E) for problem (PV) has the following struc-

ture:

* There is a vertex for every variable in (PV).

* There is an edge linking vertices (Xijk) and (xijpk) if and only if

1. i = i',or
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2. j = j' and k = k'.

* There is an edge linking vertices (ik) and (,) if and only if j = j'.

The number of vertices in the intersection graph is IVi = M (,Ew Kj) + N. There

is a one-to-one correspondence between the integer solutions of (PV) and the inde-

pendent vertex sets of the intersection graph. By considering the facets and valid

inequalities of the vertex packing polytope, we can identify the facets and valid

inequalities of the problem (PV).

As an example, the intersection graph Gpv derived from the problem (PV) for

M = 3, N = 2 and K = 2 for all j E is depicted in Figure 3.

SE;

Figure 3: A Sample Intersection Graph.

The vertices corresponding to the assignment variables ii,k form a three-dimensional
grid. Each horizontal layer corresponds to a customer i. Each vertical layer corre-

sponds to a plant j and each column corresponds to a plant-unit indexed by jk.
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In the next section, we summarize relevant results concerning the vertex packing

problem. These results will be applied to the intersection graph derived from the

problem (PV) in subsequent sections to identify valid inequalities and facets of P V.

6.2 Facet Producing Subgraphs

Let G = (V, E) be a graph. Let E RIlv be the characteristic vector of a set

V' cV.

An independent set of G is a subset of vertices I C V having the property that

no edge links any two vertices of I. Let

pG = con {az E RiV I x is the characteristic vector of an independent set of G}.

We call pG the vertex packing polytope.

The next theorem identifies facets of P0 .

Theorem 5 (Padberg [1973]) For any C C V, the inequality E xz < 1 is a facet
jEC

of pG if and only if C is a clique of G. (A clique of G is a mazimal complete

subgraph of G.)

The node induced subgraph G' = (V', E') is the subgraph of G such that V' C V
and

E'= {(i,j) i E V',j E V' and (i,j) E}

Consider the vertex packing polytope of G':

pG' = conv{x I x E RIV ' l, x defines an independent set in G'}.

This polytope is equivalent to

cony {z E RIvI I x defines an independent set in G and xz = 0 for all j Z V'} .

Thus we can see that the vertex packing polytope of the subgraph G' is the inter-

section of the vertex packing polytope of G with the subspace of RIVi spanned by

the variables {xj j E V'}.
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Theorem 6 (Nemhauser & Trotter [1974]) Suppose

E rz < ro
jEV'

is a facet for pG' with ri > 0 and Iro > 0. The the inequality can be lifted to give a

facet for pG, i.e., there ezists Pi with 0 < 1Pj < r0 so that

E rjZ + E piZij < ro
jEV' jEV\V'

is a facet of pG. The Pi's are not necessarily unique.

The lifting can be done by a sequential lifting procedure that computes the Pi's

one at a time by solving a related optimization problem. (See Padberg [1973].)

Because of the power of the lifting procedure, facets of the vertex packing polytope

can be readily constructed once we have identified subgraphs of the intersection

graph that have special structure and are so-called facet producing.

The next theorem identifies a class of facet producing graphs.

Theorem 7 (Padberg [1973]) If G' = (V',E') is an odd hole (i.e., an odd cycle

without chords) then

Iv' -1
jEV# 2

is a facet of pG'.

Using Theorems 5 and 7, we can readily generate two classes of facets by iden-

tifying the cliques and odd holes of the intersection graph. The inequlities cor-

responding to odd holes can be 'lifted' to give facets, whereas every clique of the

graph provides a facet inequality directly. We will now return to examine Gpv, the

intersection graph for the problem (PV) and investigate what the cliques and odd

holes of this graph look like and identify the facets and valid inequalities generated

by these subgraphs.
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6.3 Cliques of Gpv

There are three types of cliques, C 1 , C2 and C 3 , of the intersection graph Gpv:

1. Cl = {xzi I i' = i}, for each i E M,

2. C2t = {(ij, W I (j',k') = (j,k)} U {yj}, for each j E JV and each k E Kj,

3. C = {zijk (i, j') = (i,j)} u {yj}, for each i E M and each j E )V.

It is possible to verify that these are the only types of cliques for this graph. Figure
4 illustrates the three types of cliques for the example in Figure 3.

These three types of cliques give rise to three families of facets for (PV), namely,

E Xij<l Y

iEM

E iji < Yj
kEKj

Vi E M

VjeE , k ke K

Vi M, Vj E J1.

These families of facets are exactly constraints (41), (42) and (43) of the problem
(PV). Hence we have shown that some of the original constraints of the problem
(PV) define facets.

6.4 Odd Holes of Gpv

The odd holes of Gpv can be characterized by a zero-one matrix A whose rows and
columns are indexed by I C M and J with

JC Jx U Kj = ({(j,k) jE J, kEKi}
iEJ

with J C , IJI = III-1

having the following properties:
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ci"

Figure 4: Cliques of the Intersection Graph Gpv.
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1. Each row of A has exactly two l's,

2. Each column of A has either one or two l's,

3. IJ - J21 is odd where J2 =set of columns with two l's.

The set of vertices of Gpy corresponding to the set of variables

{,ijki E I, (j,k) E J, aiuA = 1} U {Yi j E J \ J2 })

form an odd hole. An odd hole for our example is shown in Figure 5.

Figure 5: An Odd Hole of the Intersection Graph.

Since the zik nodes appear in pairs, the smallest odd hole is of size 5.

The corresponding valid inequality generated by this odd hole is

'E aL..dxqk + E 2j < 21Il + I(J \ J)- 1 I+ ( J \ J2)- 1

, )fEJ E2J\J 2

or equivalently

, aij,jh- ~ y, < III+ (IJ \ J l) - _ II I(J \ J)l

.e!) ij\.2 2
(,A)EJ J\J
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Notice that if J 2 = 0, then this inequality is a direct extension of the valid inequality
generated by odd holes for the intersection graph of the uncapacitated plant location
problem as introduced by Padberg [19731.

6.5 Other Facet Producing Subgraphs

Other facet producing graphs that have been identified includes webs and anti-webs.
(See Trotter [1975].)

A web W(n, k) is a graph on n nodes {1,2,..., n} with the property that(i,j)
is an edge if and only if j = i + k, i + k + 1,..., i + n - k with the sums computed
modulo n. Webs subsume both the classes of cliques and odd holes since W(n, 1)
is a clique and W(2k + 1, k) is an odd hole. A web is facet producing if N and k
are relatively prime (See Trotter [1975]).

An anti-web is the complement graph of a web. Thus, G' = W(n,k) is an
anti-web if G' = (V',E') with V' = {1,2,... ,n} and

3 edge (i,j) ifandonlyif j=i+1,i+2,...,i+k-1 (modn)

or j=i-1,i-2,...,i-k+1 (modn).

Anti-webs are facet producing if and only if kl + 1 = n (See Trotter [19751).

By examining the adjacency relationship of the graph Gpy, it is possible to show
that, except for cliques and odd holes, Gpv does not contain any facet-producing
webs or anti-webs. Thus, no new facet for P' is generated by these structures.

6.6 Comparison of the Two Formulations of the Capaci-
tated Plant Location Problem

In Section 3 and this section, we have given two different formulations of the capac-
itated plant location problem. These two formulations are related in that there is
a natural surjection from the set of feasible solutions of (PV) to the set of feasible
solutions of (PI'). Setting

Xii = Zxiji
kEKj
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in any solution of (PV) yields a feasible solution to (PI'). On the other hand, given
any solution to (PI'), we can construct at least one solution to (PV) with the same
set of open plants and having zii = 1 in (PI') whenever Xijk = 1 in (PV).

Moreover, equating zx in (PI') with E zij in (PV), we see that
kEK i

xi < Y j E sij < Y
kEKi

indicating that some constraints of the two formulations are EKquivalent', namely,

indicating that some constraints of the two formulations are 'equivalent', namely,
constraints (34) and (41), and (35) and (42). However, constraint (43) cannot be
transformed into any equation of (PI'). In fact, summing the constraints (43) over
k for a particular j, we get

E. 1: I <zii Us) X E EXii KYj E xij < Kjy
EKi iE iEX EKi iEM

and we can view constraint (36) of (PI') as an aggregate version of the constraints
(43) of (PV). For two integer programming formulations with the same set of vari-
ables, it is well-known that disaggregate constraints are preferable in that they give
tighter LP-relaxations which lead to improved algorithmic performance. However,
in this case, we are comparing two integer programs with different sets of variables
and the relative merits of the two formulations are not as clear cut. The prob-
lem (PI') has MN + N variables whereas problem (PV) has M(EN2= 1 Kj) + N,
considerably more.

From this discussion, we can see that the formulations (PI') and (PV) are
completely equivalent as integer programs. In fact, even their linear-programming
relaxations are equivalent via the following correspondence:

For any solution of the LP-relaxation of (PV), setting

Xij = E Xiik
kEKj

gives a solution to the LP-relaxation of (PI').
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Moreover,

for any solution of the LP-relaxation of (PI'), setting

1
xijk T-xiiK·

gives a solution to the LP-relaxation of (PV).

It would be interesting to compare the two formulations in more detail, either
theoretically or computationally. It is often the case that the same underlying
problem can be modelled by two different integer programs and choosing the right
model is still very much an art. Such a study may help in clarifying some issues in
problem formulation.
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7 Conclusion

In this paper, we have presented different formulations of the capacitated plant

location problem and identified valid inequalities and facets for each formulation.

These results are intended as a first step in the investigation of the polyhedral

structure of capacitated facility location, and more generally, fixed charge problems.

The motivation for this work is the search for effective strong cutting plane meth-

ods for these problems. It is important that computational studies be conducted

to assess if the facets identified in this paper are useful as cuts in a cutting plane

algorithm. Additional research in the development of good separation heuristics are

also necessary in building an effective cutting plane algorithm for the capacitated

plant location problem.

Another avenue of research is the generalization of the facets introduced in

Section 4 to other capacitated fixed-charge problems. The plant location problem

can be interpreted as a network design problem, as can many other canonical fixed

charge problems in the area of production/operations management. It is possible

that the facets introduced in this paper can be generalized to these other problems

by exploiting the common network design framework.
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Appendix A

In this appendix, we provide the proof of Theorem 1 stated in Section 3.2.

Proposition 8 For every i E M, if [dl < N, then E z,j < 1 is a facet of P.
je

Proof. Before we launch into the proof, we will first explain why the proviso

[- i < N is necessary. By our assumption that [r _ < N, we know that [ d 1 < N.
If [ d = N, then whenever

E , = 1 (53)
jEM

we must also have

yj= 1 VjE . (54)

Now (54) and (53) form a linear independent set of equations. Hence, the set

(x,zY) I ( Y) E P, E , = 1 (55)

is of dimension at most (MN + N) - (N + 1) = MN - 1 and cannot contain

MN + N affinely independent points. Therefore, E zii < 1 is a face but not a
jEW

facet if [I] = N.

To prove the proposition, we will construct MN + N points that are in P and

that satisfy (53) and show that they are affinely independent. We will prove the

case when i = 1. By re-indexing the variables, we see that the same proof will apply

for all i E M for which the proviso holds.

Let s be the minimum number of plants needed to fully supply the demand of

customer 1, i.e,
di

and define
and define

T dl
K =-
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Define the first 8 + 1 feasible points as follows. For m = 1, 2,..., s + 1, let

if i = 1 and j = m
if i = 1 and j = m

if j $ m or m- 1
otherwise

- 1 (mod (s + 1))
(mod (s + 1)) and i= 1

m.f = 1 ifj = 1,2,...,s+ 1
JY =0 otherwise.

Define the next s + 1 solution points as follows. For n = 1,..., s + 1, let

O if i = 1 and j = n

in= * ifi=landj=n-1 (mod(s+1))
1i = ifi=landj5norn-1 (mod(s+1))

O otherwise

O if j = n
y"= 1 ifj= ,...,+ 1 but j n

otherwise.

Define the next N- (s + 1) solution points as follows. For n = 8 + 2, .. ., N, let

1

z.. =

ifi = 1 and j = 1,2,...,s- 1
if i = 1 and j = 

otherwise

if j = n

if j = 1, 2,...,s

otherwise.

Define the remaining MN - (s + 1) solution points, indexed by m E M and
n E (except for the pairs with m = 1 and n = 1, ... ,s + 1), as follows:

Inn = 
if i = m and j = n
if i = 1 and j = 1, 2,..., s
otherwise

'When m = 1, we define m - 1 (mod (s + 1)) to be s + 1. This differs slightly from convention.

A.2

i -

SI 1

0

1

yj' = 1



mn _=fl if j = n or j = 1,2,...,s
Y--t 0 otherwise.

It is easy to verify that these points are indeed points in the set described by (55).

Letting the vectors representing these feasible points be the rows of a matrix, we

obtain the matrix M as shown in Figure 6.

... Y* Y+I

1

1

... YN

I

0

1 *-* 1
I 

0 O
. . 1 {
1-- 1 0 

-- - o-

1 : II
0

1 o M41

X11 X12 . ' X21 Z1 ,+l l,J+2 ... ' MN
n 1

u *.. 1 *

* 0 -. 1

1 ***. . .

1 **. *-. 0 1

1... * 0

0 1 ... 1*

* 0 *. 1

1 ***. . .

* 0

_1 · · * 0

1 0

Figure 6: Affinely Independent Points on the facet iEje zi < 1.

We want to show that the rows of this matrix are affinely independent. Let 
be a vector of multipliers satisfying

A M = 0 and Js1 = 0

A.3

0

1

1

I

1

I

L_

I

*

s+l

s+1

N-(8+1)

N- (8+1)

*

*

I

I

I

I

I

I

I
I

I
I1



where 1 is a vector of one's. We want to show that = O.

Notice that the matrix M can be partitioned as follows:

I 1

Co

Ml

Ms

0

0

I

M 4

C1

Cl

M2

O 

D 

where I is an identity matrix, 0 is a matrix of zeroes, 1 is a matrix of one's, D is

a diagonal matrix, C1 is a cyclic matrix, Co is a matrix with zeroes on its diagonal

and one's elsewhere, and the M,'s are general matrices.

When restricted to the rightmost columns (corresponding to ( )) the condition

1uM = 0 implies that the multipliers for the rows for the submatrix (M 3 M 4 Ms D)

have to be identically zero. Next, by considering the columns for Yo+2,--. ,Y!N, we

see that the multipliers for the rows for the submatrix (M 1 I M 2 0) must also be

zero. Thus, we have shown that all but the multipliers corresponding to the first

2(s + 1) rows are identically zero. Now, in each of the columns corresponding to

Yl,..., y + 1, the elements in the first 2(s + 1) rows are all l's except for exactly one

row. Each of the (s +2)-nd to the 2(a + 1)-th row contain exactly one of these zeroes,

hence we can conclude that the multipliers for the ( + 2)-nd to the 2(s + 1)-th row
are zero.

What remains to be shown is that the multipliers for the submatrix (1 0 C1 O)

are zero. We need only consider C 1. Let /l1, 2, ... , , and ,+1 be the multipliers

for these rows as indicated below:

X1 1 X1 2 X1 3 ... Xl X1.A+1

0 1 1 ... 1 0

* 0 1 ..-- 1 1

1 * 0 "*. ... 1

1 -.. 1 * 0 1

1 ..- 1 0

A.4

C 1 =

A2

a+1

0

0 [
MA



Since the sum of the multipliers is zero, the first column shows that 1, = (*-
1)A2. Similarly, column m shows that

for m = 1, 2,..., 

The last column then indicates that A.I+l = (*- 1) 1l. The only solution to this set

of equations in A1,..., o+, is

A1 = = ''' = +l = O,

and hence A is identically zero.

Therefore, the points we constructed are affinely independent and the proof is
complete. a

Proposition 9 For every i E M and every j E , if di
facet of P.

< K, then zxU < yj is a

Proof. Define the first N - 1 solutions, indexed by n E .J - {j}, as follows:

,n= 

Y3 

ViE M, jER 

if j = n
otherwise.

Let the solution point corresponding to n = j be (0, 0).

Define the next MN solutions, indexed

If n j, then

yn = {1

0

Ifn = j, then

by m E M and n E as follows.

if i = m and j = n

otherwise,

if j = n

otherwise,

1 ifi=m andj=n
2xr= 1 ifi=iandj=n

O otherwise,

ymn= 1 ifj=n

0 otherwise.

A.5

AMm = ( - 1)IA.+i



Displaying the solution points as the rows of a matrix and permuting the rows

and columns of the matrix, we obtain a lower triangular matrix with l's on the

diagonal except in the j-th row (which is all zero). Hence the matrix has rank
MN + N- 1. Thus the points exhibited above are affinely independent. a

Proposition 10 For every i E M, j E ., zjU > is a facet of P.

Proof. Define N solution points as follows. For n = 1,..., N, let

zX =O Vi E.M, VjE 

yn= ifj=n
0 otherwse.

Define the next MN-1 solution points as follows. For m = 1,... .,M, n = 1,... , N,

except when m = i and n = j simultaneously, let

n= min{1, } if i=mandj=n

3" =tO n l otherwise,

y = 1 if j = n
'Y = 0 otherwise.

Finally, let (0, O) be the solution point corresponding to m = i and n = j.

It is clear that these MN + N solution points satisfy xzu = 0 and are affinely

independent. They span an (MN + N - l)-dimensional face of P and therefore,

xu > 0 is a facet of P. Moreover, since i and j are arbitrary, by re-indexing the sets

M and AI, we can apply the same argument for all other i's and j's. a

Proposition 11 For every j E X, yj 1 is a facet.

Proof. Define the first N solution points, indexed by n = 1,..., N, as follows.

zi = 0 ViEM, jE$1

A.6



,= 1 ifj = n or j =j
} {= O otherwise.

Define the next MN solutions, indexed by m E M and n E X as follows.

Tn _Jmin{1, } if i = m and j = n
Xs) 0 d. otherwise,

yn= 1 ifj=norj=j
,= ll 0 otherwise.

Consider the matrix whose rows correspond to these solution vectors. A permuta-

tion of the rows and columns of this matrix will produce a lower triangular matrix,

with 1's on the diagonal, hence the matrix has full row rank. Thus the solution

points corresponding to the rows are linearly independent. Hence, we have shown

that

yj < 1

is a facet. Moreover, since j is arbitrary, we have covered all the cases. a

Proposition 12 For every j E Jl, E dzxi < Kyj is a facet.
iEM

Proof. We will first show that

i di,x,l Kyl (56)
iE M

is a facet. By re-indexing the set NJ, the same argument can be used for other values

of j, thereby proving the proposition.

First, notice that (56) is not an improper face of P since there is a solution to

(PI) where constraint (56) is not binding (e.g. let yj = 1, all other variables = 0).

Let

P ={(x,) I (,y)E P and E xi = Ky, .
iEM

Secondly, notice that Pt is not empty. Let

s = argmin d > K}
i ,u=l

A.7



then the solution defined by:

Yi = 1
~1 ~if l<i<s - 1,

Xtl= d, K-E du if i = s,

other variables are zerotherwise,
All other variables are zero

belongs to Pt.

Suppose that for every point in P t,

E E ai)Xzi + pjy a. = o)
iEM jEM jEM

We want to show that () is a linear multiple of SiEM dizxi = Kyl.

Since (0, 0) is in Pt, ao must be zero. Next, consider the point in P defined by:

= 1

All other variables are zero

for j # 1. The lefthand side of () is 6j , so we must have Pi = 0 for j E )1,j 1.

Next consider the point in Pt defined by:

z = main{1, }

yj= 1

All other variables are zero

for some j E )J,j 1. The lefthand side of () is aijxi (since 8i3 is zero), so we
must have air = 0 (since xij > 0) for j 1 and i E M.

Next define (zl, y') E pt by:

(x 1 , y) :

1 1xi i ifi=1,2,...,s-= W K- du if i = s,

0 otherwise

yl =1
All other variables are zero.

A.8



Let 6 = min{dl,K - 1 d.} > 0. Define (z 2, y 2 ) E P* as follows:-- Z~_ l /V

(X2 , y2 ) :

- if i= 

= SI/ +£ ifi =s
xsl/ otherwise

y =1

All other variables are zero.

The lefthand sides of (t) for these two solution points differ by exactly 6( 1 l 1 a).
dl d,

Hence we must have - . Now, by re-indexing and considering other pairs
d1 d'

of points in PI that differ only in two zil's, we can show that there is some a 0

such that

ail = da Vi E M.

At this point we have shown that () is of the form

a Z diil + P1lY = 0.
iEM

Substituting in the values for (l,yl), we see that

Ka + 81 = 

so () is a times EiEM dizil = Kyl. Hence the only equation satisfied by all points

in PI is EiEM dizil = Kyl.

This result proves that

Z disil < Ky
iEM

is a facet of P. By substituting another j E in place of the index 1, we can apply

the same approach to complete the proof for the other cases of the proposition. a

Propositions (8) - (12) together give a proof of Theorem 1.
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