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Valid Post-Selection Inference Valid Post-Selection Inference 

Abstract Abstract 
In the classical theory of statistical inference, data is assumed to be generated from a known model, and 
the properties of the parameters in the model are of interest. In applications, however, it is often the case 
that the model that generates the data is unknown, and as a consequence a model is often chosen based 
on the data. In my dissertation research, we study how to achieve valid inference when the model or 
hypotheses are data-driven. We study three scenarios, which are summarized in the three chapters. 

In the first chapter, we study the common practice to perform data-driven variable selection and derive 
statistical inference from the resulting model. We find such inference enjoys none of the guarantees that 
classical statistical theory provides for tests and confidence intervals when the model has been chosen a 
priori. We propose to produce valid "post-selection inference" by reducing the problem to one of 
simultaneous inference. Simultaneity is required for all linear functions that arise as coefficient estimates 
in all submodels. By purchasing "simultaneity insurance" for all possible submodels, the resulting post-
selection inference is rendered universally valid under all possible model selection procedures. This 
inference is therefore generally conservative for particular selection procedures, but it is always more 
precise than full Scheffé protection. Importantly it does not depend on the truth of the selected submodel, 
and hence it produces valid inference even in wrong models. We describe the structure of the 
simultaneous inference problem and give some asymptotic results. 

In the second chapter of this thesis, we propose a different approach to achieve valid post-selection 
inference which corresponds to the treatment of the design matrix predictors as random. Our 
methodology is based on two techniques, namely split samples and the bootstrap. Split-sample 
methodology generally involves dividing the observations randomly into two parts: one part for 
exploratory model building, a.k.a. the training set or planning sample, and the other part for confirmatory 
statistical inference, a.k.a. holdout set or analysis sample. We use a training sample only to seek a subset 
of predictors, and then perform the estimation and inference on the holdout set. As far as inference after 
selection in linear models is concerned, the main advantage of this technique is, roughly speaking, that it 
separates the data for exploratory analysis from the data for confirmatory analysis, thereby removing the 
contaminating effect of selection on inference. We show that the our procedure achieves valid inference 
asymptotically for any selection rule. 

The third part of the thesis is an application of the split samples method to an observational study on the 
effect of obstetric unit closures in Philadelphia. The splitting was successful twice over: (i) it successfully 
identified an interesting and moderately insensitive conclusion, (ii) by comparison of the planning and 
analysis samples, it is clearly seen to have avoided an exaggerated claim of insensitivity to unmeasured 
bias that might have occurred by focusing on the least sensitive of many findings. Under the assumption 
of no unmeasured confounding, we found strong evidence that obstetric unit closures caused birth 
injuries. We also showed this conclusion to be insensitive to bias from a moderate amount of 
unmeasured confounding. 
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ABSTRACT

VALID POST-SELECTION INFERENCE

Kai Zhang

Lawrence D. Brown

In the classical theory of statistical inference, data is assumed to be generated from

a known model, and the properties of the parameters in the model are of interest.

In applications, however, it is often the case that the model that generates the data

is unknown, and as a consequence a model is often chosen based on the data. In

my dissertation research, we study how to achieve valid inference when the model

or hypotheses are data-driven. We study three scenarios, which are summarized in

the three chapters.

In the first chapter, we study the common practice to perform data-driven vari-

able selection and derive statistical inference from the resulting model. We find

such inference enjoys none of the guarantees that classical statistical theory pro-

vides for tests and confidence intervals when the model has been chosen a priori.

We propose to produce valid “post-selection inference” by reducing the problem to

one of simultaneous inference. Simultaneity is required for all linear functions that

arise as coefficient estimates in all submodels. By purchasing “simultaneity insur-

ance” for all possible submodels, the resulting post-selection inference is rendered
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universally valid under all possible model selection procedures. This inference is

therefore generally conservative for particular selection procedures, but it is always

more precise than full Scheffé protection. Importantly it does not depend on the

truth of the selected submodel, and hence it produces valid inference even in wrong

models. We describe the structure of the simultaneous inference problem and give

some asymptotic results.

In the second chapter of this thesis, we propose a different approach to achieve valid

post-selection inference which corresponds to the treatment of the design matrix

predictors as random. Our methodology is based on two techniques, namely split

samples and the bootstrap. Split-sample methodology generally involves dividing

the observations randomly into two parts: one part for exploratory model building,

a.k.a. the training set or planning sample, and the other part for confirmatory

statistical inference, a.k.a. holdout set or analysis sample. We use a training sample

only to seek a subset of predictors, and then perform the estimation and inference

on the holdout set. As far as inference after selection in linear models is concerned,

the main advantage of this technique is, roughly speaking, that it separates the data

for exploratory analysis from the data for confirmatory analysis, thereby removing

the contaminating effect of selection on inference. We show that the our procedure

achieves valid inference asymptotically for any selection rule.

The third part of the thesis is an application of the split samples method to an

observational study on the effect of obstetric unit closures in Philadelphia. The

splitting was successful twice over: (i) it successfully identified an interesting and

moderately insensitive conclusion, (ii) by comparison of the planning and analysis

vii



samples, it is clearly seen to have avoided an exaggerated claim of insensitivity to

unmeasured bias that might have occurred by focusing on the least sensitive of

many findings. Under the assumption of no unmeasured confounding, we found

strong evidence that obstetric unit closures caused birth injuries. We also showed

this conclusion to be insensitive to bias from a moderate amount of unmeasured

confounding.
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Preface

In a series of papers, John Tukey (1980a; 1980b) envisioned the future of statistics

by distinguishing two important aspects: exploratory data analysis and confirmato-

ry data analysis. Indeed, in many modern applications of statistics, data analyses

are guided by both of the following ideas: (1) People want to understand the mech-

anism in the data with a parsimonious model. This model is to be found through

some data-driven model selection; and (2) People want to make valid statistical

inference from the model they select. In light of these ideas, I have been working

on methodologies that achieve valid inference after model selection. My work is

summarized in the three parts of this dissertation.

The first part of this thesis is based on the paper Valid Post-Selection Inference

(2012) which is a joint work with Richard Berk, Lawrence Brown, Andreas Buja,

and Linda Zhao. The second part of this thesis is based on a paper in prepara-

tion that will be a joint work with Richard Berk, Lawrence Brown, Andreas Buja,

Edward George, Emil Pitkin, Mikhail Traskin, and Linda Zhao. The third part of

this thesis is based on the paper Using Split Samples and Evidence Factors in an

Observational Study of Neonatal Outcomes (2011) which is a joint work with Scott

Lorch, Paul Rosenbaum, Dylan Small, and Sindhu Srinivas. I am very thankful for

the inspiration and suggestions from my collaborators. In particular, I am grateful

xv



to Lawrence Brown, Andreas Buja, Paul Rosenbaum, and Dylan Small for their

substantial contributions to the text of the manuscripts.
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Chapter 1

The PoSI Approach

1.1 Introduction — The Problem with Statistical

Inference after Model Selection

Classical statistical theory grants validity of statistical tests and confidence intervals

assuming a wall of separation between the selection of a model and the analysis of

the data being modeled. In practice, this separation rarely exists and more often a

model is “found” by a data-driven selection process. As a consequence inferential

guarantees derived from classical theory are invalidated. Among model selection

methods that are problematic for classical inference, variable selection stands out

because it is regularly taught, commonly practiced, and highly researched as a tech-

nology. Even though statisticians may have a general awareness that the data-driven

selection of variables (predictors, covariates) must somehow affect subsequent clas-

sical inference from F - and t-based tests and confidence intervals, the practice is so

1



pervasive that it appears in classical undergraduate textbooks on statistics such as

Moore and McCabe (2003).

The reason for the invalidation of classical inference guarantees is that a data-

driven variable selection process produces a model that is itself stochastic, and this

stochastic aspect is not accounted for by classical theory. Models become stochastic

when the stochastic component of the data is involved in the selection process. (In

regression with fixed predictors the stochastic component is the response.) Models

are stochastic in a well-defined way when they are the result of formal variable

selection procedures such as stepwise or stagewise forward selection or backward

elimination or all-subset searches driven by complexity penalties (such as Cp, AIC,

BIC, risk-inflation, LASSO, ...) or prediction criteria such as cross-validation, or

recent proposals such as LARS and the Dantzig selector (for an overview see, for

example, Hastie, Tibshirani, and Friedman (2009)). Models are also stochastic but

in an ill-defined way when they are informally selected through visual inspection of

residual plots or normal quantile plots or generally through activities that may be

characterized as “data snooping”. Finally, models become stochastic in the most

opaque way when their selection is affected by human intervention based on post hoc

considerations such as “in retrospect only one of these two variables should be in the

model” or “it turns out the predictive benefit of this variable is too weak to warrant

the cost of collecting it.” In practice, all three modes of variable selection may be

exercised in the same data analysis: multiple runs of one or more formal search

algorithms may be performed and compared, the parameters of the algorithms may

be subjected to experimentation, and the results may be critiqued with graphical

2



diagnostics; a round of fine-tuning based on substantive deliberations may finalize

the analysis.

Posed so starkly, the problems with statistical inference after variable selection

may well seem insurmountable. At a minimum, one would expect technical solutions

to be possible only when a formal selection algorithm is (1) well-specified (1a) in

advance and (1b) covering all eventualities, (2) strictly adhered to in the course of

data analysis, and (3) not “improved” on by informal and post-hoc elements. It may,

however, be unrealistic to expect this level of rigor in most data analysis contexts,

with the exception of well-conducted clinical trials. The real challenge is therefore

to devise statistical inference that is valid following any type of variable selection, be

it formal, informal, post hoc, or a combination thereof. Meeting this challenge with

a relatively simple proposal is the goal of this article. This proposal for valid Post-

Selection Inference, or “PoSI” for short, consists of a large-scale family-wise error

guarantee that can be shown to account for all types of variable selection, including

those of the informal and post-hoc varieties. On the other hand, the proposal is no

more conservative than necessary to account for selection, and in particular it can

be shown to be less conservative than Scheffé’s simultaneous inference.

The framework for our proposal is in outline as follows — details to be elabo-

rated in subsequent sections: We consider linear regression with predictor variables

whose values are considered fixed, and with a response variable that has normal

and homoscedastic errors. The framework does not require that any of the eligible

linear models is correct, not even the full model, as long as a valid error estimate

is available. We assume that the selected model is the result of some procedure

3



that makes use of the response, but the procedure does not need to be fully speci-

fied. A crucial aspect of the framework concerns the use and interpretation of the

selected model: We assume that, after variable selection is completed, the selected

predictor variables — and only they — will be relevant; all others will be eliminat-

ed from further consideration. This assumption, seemingly innocuous and natural,

has critical consequences: It implies that statistical inference will be sought for the

coefficients of the selected predictors only and in the context of the selected model

only. Thus the appropriate targets of inference are the best linear coefficients within

the selected model, where each coefficient is adjusted for the presence of all other

included predictors but not those that were eliminated. Therefore the coefficient

of an included predictor generally requires inference that is specific to the model

in which it appears. Summarizing in a motto, a difference in adjustment implies a

difference in parameters and hence in inference. The goal of the present proposal is

therefore simultaneous inference for all coefficients in all submodels. Such inference

can be shown to be valid following any variable selection procedure, be it formal,

informal, post hoc, fully or only partly specified.

Problems associated with post-selection inference were recognized long ago, for ex-

ample, by Buehler and Fedderson (1963), Brown (1967), Olshen (1973), Sen (1979),

Sen and Saleh (1987), Dijkstra and Veldkamp (1988), Pötscher (1991), Kabaila

(1998). More recently these problems have been the subject of incisive analyses by

Leeb and Pötscher (2003; 2005; 2006a; 2006b; 2008a; 2008b), Kabaila and Leeb

(2006), Leeb (2006), and Pötscher and Leeb (2009).

This article proceeds as follows: Section 1.2 starts by outlining some unsolvable

4



difficulties of post-selection inference as they transpire from the work of Leeb and

Pötscher cited above (Section 1.2.1); we then rethink the assumptions underly-

ing their analyses and lay some groundwork by proposing new (or old) meanings

for regression coefficients (Section 1.2.2); we conclude the section by discussing as-

sumptions with a view towards valid inference in “wrong models” (Section 1.2.3).

Section 1.3 is about estimation and its targets; Section 1.4 develops the methodol-

ogy for PoSI confidence intervals (CIs) and tests. After some structural results for

the PoSI problem in Section 1.5 , we show in Section 1.6 that with increasing num-

ber of predictors p the width of PoSI CIs can range between the asymptotic rates

O(
√

log p) and O(
√
p). We give examples for both rates and, inspired by problems

in sphere packing and covering, we give upper bounds for the limiting constant in

the O(
√
p) case. Some proofs are deferred to the appendix.

1.2 Model Selection Re-Interpreted

1.2.1 Post-Selection Inference for Full Model Parameters —

a Dead End

It is a natural intuition that model selection distorts inference by distorting sam-

pling distributions of parameter estimates: One expects that estimates in selected

models tend to generate more Type I errors than conventional theory would sug-

gest because the typical selection procedure favors models with strong, hence highly

significant predictors. This intuition correctly points toward a multiplicity problem
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which would tend to become more severe as the number of predictors subject to se-

lection increases. This problem will be addressed here with a simultaneous inference

approach.

A second problem with inference after model selection is pointed out by Leeb and

Pötscher in the above referenced series of articles. The problem exists even in a

two-predictor situation, as illustrated by Leeb and Pötscher (2005): They analyze a

case with a predictor that is protected from selection and a covariate that is subject

to selection, and they provide an explicit finite-sample formula for the sampling

distribution of the coefficient estimate of the protected predictor, as the covariate is

randomly selected/deselected according to a BIC-equivalent test to grant consistent

model selection (ibid., p. 29). The analysis reveals in graphic ways (ibid., Figure 2)

that the sampling distribution depends critically on the unknown true coefficient of

the covariate and the sample size, with egregious deviations from the fixed-model

sampling distribution ranging from bi-modality to approximate normality with in-

flated variance. Because the true covariate slope is not known, there is no way of

determining whether the sample size places the sampling distribution in this realm

of deviation from classical theory.

Generalizing to arbitrary linear models Leeb and Pötscher (2003; 2005; 2006a;

2006b; 2008a; 2008b) show that sampling distributions cannot be estimated after

model selection, not even asymptotically. Ironically, the asymptotics that describe

the devious finite sample behavior of sampling distributions best are those based on

consistent model selection. They show that asymptotic normality is riddled with

extreme non-uniformity of convergence and that risk functions behave erratically

6



when telescoping true slopes to zero so as to approach submodels. Leeb and Pötscher

(2005, p. 27) arrive at the following conclusion: “the post-model-selection estimator

... is nothing else than a variant of Hodges’ so-called superefficient estimator.”

It is little comfort that these problems are non-existent for perfectly orthogonal

regression designs (Leeb and Pötscher 2005, p. 43f). In the majority of practical

contexts there is some degree of collinearity, and one of the purposes of model

selection is to weed out predictor redundancies caused by partial collinearity. Leeb

and Pötscher’s analysis is compelling within their framework, but the intractable

situation they expose suggests a need to renegotiate the assumptions that underlie

their framework.

Leeb and Pötscher (ibid.), like many authors in this area, make the fundamental

assumption that all estimation is in the full model. Thus, if a model selection

procedure excludes a predictor, this is interpreted as forcing the estimate of its

slope to zero. Consequently, a slope estimate β̂j of a predictor is always defined,

whether it is selected or not: β̂j is the LS estimate in the selected submodel if the

jth predictor is included, and it is zero otherwise. Either way, the resulting value is

interpreted as an estimate of βj in the full model. A parallel consequence is that in

this interpretation the coefficient of a predictor has always the same meaning as a

full-model parameter, irrespective of which covariates are selected or excluded. It is

under this framework that post-selection estimators can be interpreted as generalized

superefficient Hodges estimators with the ensuing problems of non-uniformity (Leeb

and Pötscher 2005). This problem can also be seen as an inferential analog of the

problem of “omitted variables bias” well-known in econometrics (see, for example,
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Angrist and Pischke 2009).

1.2.2 The Meaning of Regression Coefficients

Our solution to the inferential problem associated with “omitted variables bias” is

to assert that submodels have their own separate parameters, and it is these that

are being estimated in the selected submodels. We start the discussion with the

following questions:

(1) When we select submodels in practice, do we think of excluded predictors as

having a zero slope?

(2) Does the full model necessarily have special status?

(3) Can a slope estimate be interpreted as estimating the same target parameter,

regardless of what the other predictors are?

The short answers are:

(1) The slopes of excluded predictors are not zero; they are not defined and there-

fore don’t exist.

(2) The full model has no special status.

(3) The meaning of a slope depends on which predictors are included in the se-

lected model.

These statements call for elaboration:
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As for (1), assigning a zero value to predictors that are not in the model is an

elegant technical device, but it is not something that describes how we think or

even how we should think about slopes and their estimates. The PoSI framework

we describe in Section 1.3 will not require zero slope fill-ins.

As for (2), the full model cannot be argued to have generally special status because

there is generally a question of predictor redundancy. It is a common experience that

models are proposed on theoretical grounds but found on empirical grounds to have

their predictors hopelessly entangled by collinearities that permit little meaningful

statistical inference. This is best illustrated with a concrete example (inspired by

Mosteller and Tukey (1977), p. 326f): Consider a study of performance of students

in a large school system. Interested in socio-economic factors, investigators wish to

pin down the predictors that are most strongly associated with children’s success

in school: father’s and mother’s highest education levels, their high school GPAs,

their SAT scores, their frequencies of intensive reading, the perceived importance

they each assign to education, and so on. There should be little surprise that, if all

these predictors are included in the model, the overall test rejects but none of the

individual predictors is statistically significant. Informal model selection, however,

may show that each predictor is highly statistically significant if retained alone in

the model. The obvious reason is that these predictors measure essentially the same

trait in parents, hence are highly collinear with each other. As a consequence, the

full model is not viable in the first place. This situation is not limited to the social

sciences: in gene expression studies it may well occur that numerous sites have a

tendency to be expressed concurrently, hence as predictors in disease studies they
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will be hopelessly confounded. The bias in favor of full models may be particularly

strong in econometrics where there is a “notion that a longer regression ... has a

causal interpretation, while a shorter regression does not” (Angrist and Pischke 2009,

p. 59). Even in causal models, however, there is a possibility that included adjustor

variables will “adjust away” some of the causal variables of interest. Generally, in any

creative observational study involving novel predictors it will be difficult to exclude

surprising collinearities that might force a rethinking of the role of predictors. In

conclusion, whenever predictor redundancy is a potential issue, it cannot a priori be

claimed that the full model provides the parameters of primary interest.

As for (3), we do teach that the meaning of a slope depends on what other pre-

dictors are included in the chosen model: “the slope is the average difference in the

response for a unit difference in the predictor, at fixed levels of all other predictors.”

This last condition is sometimes rendered as “adjusted for all other predictors” and

called the “Ceteris Paribus” clause (see, for example, Angrist and Pischke 2009). It

is an essential part of the meaning of a slope. That there is a difference in meaning

when there is a difference in covariates is most drastically evident when there is

a case of Simpson’s paradox. This is again best illustrated with a concrete exam-

ple: A company is introducing a new high-tech device and conducts a consumer

survey that includes a response for self-reported purchase likelihood (PL), as well

as two predictors, Age and Income. We consider a model with Age alone and one

with both Age and Income. [Note that the smaller model cannot be disregarded as

“wrong”. If Income is difficult to measure, it may be useful to rely on the equation

with Age alone. Further, if the variables have a jointly normal distribution, every
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linear submodel is “correct”.] Now, it is sensibly anticipated that younger respon-

dents will rate themselves with higher PL, but a regression of PL on Age alone

produces a significantly positive slope estimate, indicating that older respondents

have higher PL. On the other hand, a regression of PL on both Age and Income

yields a significantly negative slope estimate for Age, indicating that, comparing only

respondents at the same Income level, younger respondents have indeed higher PL.

This instance of Simpson’s paradox is enabled by a positive collinearity between Age

and Income that turns Age into a proxy for Income. Must we use the full model?

Not if the improvement in R2 is practically irrelevant even though Income is sta-

tistically significant (apart from the issue of availability of Income measurements).

Is the marginal slope of PL on Age an estimate of the Income-adjusted slope on

Age? Certainly not — the two slopes answer very different questions, apart from

having opposite signs. In conclusion, differences in adjustment result in different

parameters.

From these considerations follows a framework in which the full model is no longer

the sole provider of parameters, where rather each submodel defines its own. The

consequences of this view will be elaborated in Section 1.3.

In the preceding discussions we assumed a focus on the interpretation of the se-

lected submodel and hence on inference for its coefficients. When the focus is on

prediction, on the other hand, the focus is on predicted values. Yet, even in predic-

tion problems there is sometimes a question of which predictors matter most within

a selected submodel, and here a suitable t-statistic of a coefficient estimate is a

measure of the predictive power of a given predictor above and beyond the other
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predictors in the submodel. In this context the submodel-specific parameters are

the appropriate ones to consider.

1.2.3 Assumptions, “Wrong Models”, and Error Estimates

We state assumptions for estimation and for the construction of valid tests and CIs.

A major goal is to prepare the ground for valid statistical inference after model

selection in “first order wrong models”.

We consider a quantitative response vector Y ∈Rn, assumed random, and a full

predictor matrix X = (X1,X2, . . . ,Xp) ∈ Rn×p, assumed fixed. We allow X to

be of non-full rank, and n and p to be arbitrary. In particular, we allow n < p.

Throughout the article we let

d , rank(X) = dim(span(X)), hence d ≤ min(n, p). (1.2.1)

Due to frequent reference we call d = p (≤ n) “the classical case”.

It is common practice to assume the full model Y∼Nn(Xβ, σ2I) to be correct.

In the present framework, however, first-order correctness, E[Y] = Xβ, will not

be assumed. By implication, first-order correctness of any submodel will not be

assumed either. Effectively,

µ , E[Y] ∈ Rn (1.2.2)

is allowed to be unconstrained and, in particular, need not reside in the column space

of X. In other words, the model given by X is allowed to be “first-order wrong”, and

hence we are in a well-defined sense serious about G.E.P. Box’ famous dictum. What
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he calls “wrong models”, however, we prefer to call “approximations”: All predictor

matrices X provide approximations to µ, some better than others, but the degree

of approximation plays no role in the clarification of statistical inference. We will

echo Box as follows: all models are mere approximations, yet some are useful. The

main reason for elaborating this point is as follows: after model selection the case

for “correct models” is clearly questionable, even for “consistent model selection

procedures” (Leeb and Pötscher 2003, p. 101); but if correctness of submodels is

not assumed, it is only natural to abandon this assumption for the full model also,

in line with the idea that the full model has no special status. As we proceed with

estimation and inference guarantees in the absence of first-order correctness we will

rely on assumptions as follows:

• For estimation (Section 1.3), we will only need the existence of µ=E[Y].

• For testing and CI guarantees (Section 1.4), we will make conventional second

order and distributional assumptions:

Y ∼ N (µ, σ2I). (1.2.3)

The assumptions (1.2.3) of homoscedasticity and normality are as questionable as

first order correctness, and we will report elsewhere on approaches that avoid them.

In the present work, we choose to follow the large model selection literature that

relies on the technical advantages of assuming homoscedastic and normal errors.

Accepting the assumption (1.2.3), we address the issue of estimating the error

variance σ2, because the valid tests and CIs we construct require a valid estimate σ̂2
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of σ2 that is independent of LS estimates. In the classical case, the most common

way to assert such an estimate is to assume that the full model is first order correct,

µ = Xβ in addition to (1.2.3), in which case the mean squared error (MSE), σ̂2
F =

‖Y − Xβ̂‖2/(n − p), of the full model will do. However, other possibilities for

producing a valid estimate σ̂2 exist, and they may allow relaxing the assumption of

first order correctness:

• Exact replications of the response obtained under identical conditions might

be available in sufficient numbers. An estimate σ̂2 can be obtained as the MSE

of the one-way ANOVA of the groups of replicates.

• In general, a larger linear model than the full model might be considered as

correct, hence σ̂2 could be the MSE from this larger model.

• A different possibility is to use another dataset, similar to the one currently

being analyzed, to produce an independent estimate σ̂2 by whatever valid

estimation method.

• A special case of the preceding is a random split-sample approach whereby one

part of the data is reserved for producing σ̂2 and the other part for estimating

coefficients, selecting models, and carrying out post-model selection inference.

• A very different type of estimates σ̂2 may be based on considerations borrowed

from non-parametric function estimation (Hall and Carroll 1989).

The purpose of pointing out these possibilities is to separate at least in principle

the issue of first-order model incorrectness from the issue of valid and independent

error estimation under the assumption (1.2.3). This separation puts the case n<p
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within our framework as the valid and independent estimation of σ2 is a problem

faced by all “n < p” approaches.

1.3 Estimation and its Targets in Submodels

Following Section 1.2.2, the meaning and numeric value of a regression coefficient

depends on what the other predictors in the model are. This statement requires a

qualification: it assumes that the predictors are non-orthogonal/partially collinear.

If they are perfectly pairwise orthogonal, as in some designed experiments or in

function fitting with orthogonal basis functions, a coefficient has the same identity

across all submodels, both in meaning and in value, because adjustment of predictors

for each other and the ceteris paribus clause become vacuous. This article is hence

largely a story of (partial) collinearity.

1.3.1 Multiplicity of Regression Coefficients

We will give meaning to LS estimators and their targets in the absence of any

assumptions other than the existence of µ = E[Y], which in turn is permitted to be

entirely unconstrained in Rn. Besides resolving the issue of estimation in “first order

wrong models”, the major point here is to follow up on the idea that the regression

coefficient of a predictor generates different parameters in different submodels. As

each predictor appears in 2p−1 submodels, the p regression coefficients of the full

model generally proliferate into a plethora of as many as p 2p−1 distinct regression

coefficients according to the submodels they appear in. To describe the situation we
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start with notation.

To denote a submodel we use the (non-empty) index set M = {j1, j2, ..., jm} ⊂

MF = {1, . . . , p} of the predictors Xji in the submodel; the size of the submodel is

m = |M| and that of the full model is p = |MF |. Let XM = (Xj1 , ...,Xjm) denote

the n ×m submatrix of X with columns indexed by M. We will assume that only

submodels M are considered for which XM is of full rank:

rank(XM) = m ≤ d.

We let β̂M be the unique least squares estimate in M:

β̂M = (XT
MXM)−1XT

MY. (1.3.1)

Now that β̂M is an estimate, what is it estimating? A conclusion from Section 1.2.1

is that β̂M does not estimate the coefficients in the full model. Because any larger

model could have been the full model, we generalize by asserting that β̂M does not

estimate parameters in any other model than M itself. In M, it is natural to ask

that β̂M be an unbiased estimate of its target:

βM , E[β̂M] = (XT
MXM)−1XT

M E[Y] (1.3.2)

= argmin
β′∈Rm

‖µ−XMβ
′‖2

This definition requires only the existence of µ= E[Y] but no other assumptions.

In particular there is no need to assume first order correctness of M or MF . Nor
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does it matter to what degree M provides a good approximation to µ in terms of

approximation error ‖µ−XMβM‖2. Asserting that the model M is “correct” would

mean µ∈ span(XM) or equivalently the approximation error vanishes; in this case

βM would be the “true” parameter.

In the classical case d = p ≤ n, we can define the target of the full-model estimate

β̂ = (XTX)−1XTY as a special case of (1.3.2) with M = MF :

β , E[β̂] = (XTX)−1XTE[Y]. (1.3.3)

In the general (non-classical) case, let β be any (possibly non-unique) minimizer of

‖µ−Xβ′‖2; the link between β and βM is as follows:

βM = (XT
MXM)−1XT

MXβ. (1.3.4)

Thus the target βM is an estimable linear function of β, without any first-order

assumptions. Equation (1.3.4) follows from span(XM) ⊂ span(X).

Notation: To distinguish regression coefficients as a function of the model they

appear in, we write βj·M = E[β̂j·M] for the components of βM = E[β̂M] with j ∈M.

An important convention we adopt throughout this article is that the index j of

a coefficient refers to the coefficient’s index in the original full model MF : βj·M

for j ∈ M refers not to the j’th coordinate of βM, but to the coordinate of βM

corresponding to the j’th predictor Xj in the full predictor matrix X. We refer to

this convention as “full model indexing”.

17



1.3.2 “Omitted Variables Bias”

By allowing each β̂j·M to estimate its own target βj·M and thereby relieving β̂j·M of

the burden of estimating the parameter βj in the full model, we sidestep the problem

of “omitted variables bias” and with it a major driver of the problems analyzed by

Leeb and Pötscher (Section 1.2.1). In the present framework βj − βj·M is not a bias

as these are two different parameters that answer two different questions. Just the

same, we consider briefly the difference between βj and βj·M in the classical case

d=p≤n. Compare the following two definitions:

βM , E[β̂M] and βM , (βj)j∈M, (1.3.5)

the latter being the coefficients βj from the full model MF subsetted to the submod-

el M. While β̂M estimates βM, it does not generally estimate βM. The difference

βM − βM is the vectorized “omitted variables bias”.

In general, the definition of βM involves X and all of β, not just βM, through

(1.3.4). A little algebra shows that βM = βM if and only if

XT
MXMcβMc

= 0, (1.3.6)

where Mc denotes the complement of M in the full model MF . Special cases of (1.3.6)

include: (1) the column space of XM is orthogonal to that of XMc , and (2) βMc
= 0,

meaning that the approximation to µ in MF is no better than in M, or if the full

model MF is first-order correct, so is the submodel M.
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1.3.3 Interpreting Regression Coefficients in First-Order In-

correct Models

The regression coefficient βj·M is conventionally interpreted as the “average dif-

ference in the response for a unit difference in Xj, ceteris paribus in the mod-

el M”. This interpretation no longer holds when the assumption of first order

correctness is given up. Instead, the phrase “average difference in the response”

should be replaced with the unwieldy but more correct phrase “average differ-

ence in the response approximated in the submodel M”. The reason is that the

fit in the submodel M is ŶM = HMY (HM = XM(XT
MXM)−1XT

M) whose target

is µM = E[ŶM] = HME[Y] = HMµ. Thus in the submodel M we estimate not

the true µ but the LS approximation µM to µ using XM: µM = XMβM, where

βM = argminβ′‖µ−XMβ
′‖2.

A second interpretation of regression coefficients is in terms of adjusted predic-

tors: For j ∈ M define the M-adjusted predictor Xj·M as the residual vector of

the regression of Xj on all other predictors in M. Multiple regression coefficients,

both estimates β̂j·M and parameters βj·M, can be expressed as simple regression

coefficients with regard to the M-adjusted predictor:

β̂j·M =
XT
j·MY

‖Xj·M‖2
, βj·M =

XT
j·Mµ

‖Xj·M‖2
. (1.3.7)

The left hand formula lends itself to an interpretation of β̂j·M in terms of the well-

known leverage plot which shows Y plotted against Xj·M and the line with slope

β̂j·M. This plot is valid without first-order correctness assumption.
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A third interpretation can be derived from the second: For notational reasons

let x = (xi)i=1...n be any adjusted predictor Xj·M, so that β̂ = xTY/‖x‖2 and

β = xTµ/‖x‖2 are the corresponding β̂j·M and βj·M. Introduce case-wise slopes

through the origin, both as estimates β̂(i) = Yi/xi and as parameters β(i) = µi/xi,

as well as case-wise weights w(i) = x2
i /
∑

i′=1...n x
2
i′ . Equations (1.3.7) are then

equivalent to the following:

β̂ =
∑
i

w(i)β̂(i), β =
∑
i

w(i)β(i).

Hence regression coefficients are weighted averages of case-wise slopes, and this

interpretation holds without first-order assumptions.

1.4 Universally Valid Post-Selection Confidence

Intervals

1.4.1 Test Statistics with One Error Estimate for All Sub-

models

After defining βM as the target of the estimate β̂M, we consider inference for it in

terms of test statistics. Following Section 1.2.3 we require a normal homoscedastic

model for Y, but we leave its mean µ=E[Y] unspecified: Y ∼ N (µ, σ2I). We then

20



have equivalently

β̂M ∼ N (βM, σ
2(XT

MXM)−1) and β̂j·M ∼ N (βj·M, σ
2/‖Xj·M‖2).

Again following Section 1.2.3 we assume the availability of a valid estimate σ̂2 of σ2

that is independent of all estimates β̂j·M, and we further assume σ̂2 ∼ σ2χ2
r/r for r

degrees of freedom. If the full model is assumed correct, n > p and σ̂2 = σ̂2
F , then

r = n−p. In the limit r →∞ we obtain σ̂ = σ, the case of known σ, which will be

used starting with Section 1.6.

Let tj·M denote a t-ratio for βj·M that uses σ̂ irrespective of the submodel M:

tj·M ,
β̂j·M − βj·M

((XT
MXM)−1)

1
2
jj σ̂

=
β̂j·M − βj·M
σ̂/‖Xj·M‖

=
(Y − µ)TXj·M

σ̂‖Xj·M‖
. (1.4.1)

[According to full model indexing, (...)jj refers to the diagonal element corresponding

to Xj.] The quantity tj·M = tj·M(Y) has a central t-distribution with r degrees of

freedom. Essential is that the standard error estimate in the denominator of (1.4.1)

does not involve the MSE σ̂M from the submodel M, for two reasons:

• We do not assume that the submodel M is first-order correct; therefore each

MSE σ̂2
M could have a distribution that is a multiple of a non-central χ2 dis-

tribution with unknown non-centrality parameter.

• More disconcertingly, the MSE would be the result of selection: σ̂2
M̂

. Not much

of real use is known about its distribution (see, for example, Brown 1967 and

Olshen 1973).
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These problems are avoided by using one valid estimate σ̂2 that is independent of

all submodels.

With this choice of σ̂, a marginal 1−α confidence interval for βj·M is

CIj·M(K) ,
[
β̂j·M ± K

[
(XT

MXM)−1
] 1

2

jj
σ̂
]

(1.4.2)

=
[
β̂j·M ± K σ̂/‖Xj·M‖

]
.

where K = tr,1−α/2 is the 1− α/2 quantile of a t-distribution with r degrees of

freedom. This interval is valid, that is,

P[βj·M ∈ CIj·M(K)] ≥ 1− α,

under the assumption that the submodel M is chosen independently of the re-

sponse Y.

1.4.2 Model Selection and Its Implications for Parameters

In practice, the model M tends to be the result of some form of model selection that

makes use of the stochastic component of the data, which is the response vector Y

in the present context (Section 1.2.3). This model should therefore be expressed as

M̂ = M̂(Y). In general we allow a model selection procedure to be any (measurable)

map

M̂ : Y 7→ M̂(Y), Rn →Mall, (1.4.3)
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where

Mall , {M |M ⊂ {1, 2, ..., p}, rank(XM) = |M| } (1.4.4)

is the set of all full-rank submodels. Thus M̂ divides Rn into as many as |M| different

regions with shared outcome of model selection.

Data dependence of the selected model M̂ has strong consequences:

• Most fundamentally, the selected model M̂ = M̂(Y) is now random. Whether

the model has been selected by an algorithm or by human choice, if the re-

sponse Y has been involved in the selection, the resulting model is a random

object because it could have been different for a different realization of the

random vector Y.

• Associated with the random model M̂(Y) is the parameter vector of coefficients

βM̂(Y), which is now randomly chosen also:

(1) It has a random dimension, βM̂(Y) ∈ Rm(Y) for m(Y)= |M̂(Y)|.

(2) For any fixed j, it may or may not be the case that j∈M̂(Y).

(3) Conditional on j∈M̂(Y), the parameter βj·M̂(Y) changes randomly as the

adjustor covariates in M̂(Y) vary randomly.

Thus the set of parameters for which inference is sought is random also.

1.4.3 Valid Post-Selection Confidence Intervals

Unless a predictor is forced to be in the selected model, it is not meaningful to ask

for marginal probability guarantees for CIj·M̂ for a fixed j because the guarantee
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requires j ∈ M̂(Y) whereas the probability P[j ∈ M̂(Y)] all by itself can be easily

less than 1− α even for a strong predictor. One may therefore be tempted to look

for guarantees in terms of conditional probabilities given j∈ M̂, but little is known

about such events and the associated conditional distribution of |tj·M| for common

selection methods. However, a solution in terms of marginal rather than conditional

probability can be found by binding j with a quantifier and requiring a simultaneous

guarantee in terms of P[βj·M̂ ∈ CIj·M̂(K) ∀j ∈ M̂]. For this mathematically well-

defined probability there exists in principle a confidence guarantee through suitable

choice of the constant K such that

P
[
βj·M̂ ∈ CIj·M̂(K) ∀j ∈ M̂

]
≥ 1− α. (1.4.5)

Thus the logical impossibility of a marginal guarantee for any particular j∈M̂ implies

that only a simultaneous guarantee for all j∈M̂ can be given.

1.4.4 Universal Validity for all Selection Procedures

The difficulty with the guarantee (1.4.5) is that the constant would be specific to

the model selection procedure M̂: K = K(M̂). Finding procedure-specific constants

may be a challenge, and this is not what we attempt to do in this article. Rather, the

“PoSI” procedure proposed here produces a constant K that provides universally

valid post-selection inference for all model selection procedures M̂:

P
[
βj·M̂ ∈ CIj·M̂(K) ∀j ∈ M̂

]
≥ 1− α ∀ M̂. (1.4.6)

24



Universal validity irrespective of the model selection procedure M̂ is a strong prop-

erty that raises questions of whether the approach is too conservative. There are,

however, some arguments in its favor:

(1) Universal validity may be desirable or even essential for applications in which

the model selection procedure is not specified in advance or for which the analysis

involves some ad hoc elements that cannot be accurately pre-specified. Even so, we

should think of the actually chosen model as part of a “procedure” Y 7→ M̂(Y), and

though the ad hoc steps are not specified for Y other than the observed one, this is

not a problem because our protection is irrespective of what a specification might

have been. This view also allows data analysts to change their minds, to improvise

and informally decide in favor of a model other than that produced by a formal

selection procedure, or to experiment with multiple selection procedures.

(2) There exists a model selection procedure that requires the full strength of

universally valid PoSI, and this procedure may not be entirely unrealistic as an

approximation to some types of data analytic activities: “significance hunting”, that

is, selecting that model which contains the statistically most significant coefficient;

see Section 1.4.8.

(3) There is a general question about the wisdom of proposing ever tighter confi-

dence and retention intervals for practical use when in fact these intervals are valid

only under tightly controlled conditions. It might be reasonable to suppose that

much applied work involves more data peeking than is reported in published arti-

cles. With inference that is universally valid after any model selection procedure

we have a way to establish which rejections are safe, irrespective of unreported data
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peeking as part of selecting a model.

1.4.5 Restricted Model Selection

The concerns over PoSI’s conservative nature can be alleviated somewhat by intro-

ducing a degree of flexibility to the PoSI problem with regard to the universe of

models being searched. Such flexibility is additionally called for from a practical

point of view because it is not true that all submodels in Mall (1.4.4) are being

searched all the time. Rather, in many applications the search is limited in a way

that can be specified a priori, without involvement of Y. For example, a predictor

of interest may be forced into the submodels, or there may be a restriction on the

size of the submodels. Indeed, if p is large, a restriction to a manageable set of

submodels is a computational necessity. In much of what follows we can allow the

universe M of submodels to be an (almost) arbitrary but pre-specified non-empty

subset of Mall; the only requirement is that every predictor is used in at least one

model: ⋃
M∈M

M = {1, 2, ..., p}. (1.4.7)

Because we allow only non-singular submodels (see (1.4.4)) we have |M|≤d ∀M∈M,

where as always d=rank(X). — Selection procedures are now maps

M̂ : Y 7→ M̂(Y), Rn →M. (1.4.8)
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The following are examples of model universes with practical relevance (see also

Leeb and Pötscher (2008a), Section 1.1, Example 1).

(1) Submodels that contain the first p′ predictors (1 ≤ p′ ≤ p):

M1 = {M∈Mall | {1, 2, ..., p′} ⊂ M}.

Classical: |M1| = 2p−p
′
. Example: forcing an intercept into all models.

(2) Submodels of size m′ or less (“sparsity option”):

M2 = {M∈Mall | |M| ≤ m′}. Classical: |M2| =
(
p
1

)
+ ...+

(
p
m′

)
.

(3) Submodels with fewer than m′ predictors dropped from the full model:

M3 = {M∈Mall | |M| > p−m′}. Classical: |M3| = |M2|.

(4) Nested models: M4 = {{1, ..., j} | j∈{1, ..., p}}. |M4| = p.

Example: selecting the degree up to p−1 in a polynomial regression.

(5) Models dictated by an ANOVA hierarchy of main effects and interactions in a

factorial design.

This list is just an indication of possibilities. In general, the smaller the set M̃ =

{(j,M) | j ∈M ∈M} is, the less conservative the PoSI approach is, and the more

computationally manageable the problem becomes. With sufficiently strong restric-

tions, in particular using the sparsity option (2) and assuming the availability of an

independent valid estimate σ̂, it is possible to apply PoSI in certain non-classical

p > n situations.

Further reduction of the PoSI problem is possible by pre-screening adjusted pre-

dictors without the response Y. In a fixed-design regression, any variable selec-
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tion procedure that does not involve Y does not invalidate statistical inference.

For example, one may decide not to seek inference for predictors in submodels

that impart a “Variance Inflation Factor” (VIF ) above a user-chosen threshold:

VIF j·M = ‖Xj‖2/‖Xj·M‖2 if Xj is centered, hence does not make use of Y, and

elimination according to VIF j·M > c does not invalidate inference.

1.4.6 Reduction of Universally Valid Post-Selection Infer-

ence to Simultaneous Inference

We show that universally valid post-selection inference (1.4.6) follows from simul-

taneous inference in the form of family-wise error control for all parameters in all

submodels. The argument depends on the following lemma that may fall into the

category of the “trivial but not immediately obvious”.

Lemma 1.4.1. (“Significant Triviality Bound”) For any model selection procedure

M̂ : Rn →M, the following inequality holds for all Y ∈ Rn:

max
j∈M̂(Y)

|tj·M̂(Y)(Y)| ≤ max
M∈M

max
j∈M
|tj·M(Y)|

Proof: This is a special case of the triviality f(M̂(Y)) ≤ maxM f(M), where

f(M) = maxj∈M |tj·M(Y)|.

For a model selection procedure M̂ that attains the right hand bound of the lemma,

see Section 1.4.8.

28



Theorem 1.4.1.Let K satisfy

P

[
max
M∈M

max
j∈M
|tj·M| ≤ K

]
≥ 1− α. (1.4.9)

Then the following holds for all model selection procedures M̂ : Rn →M:

P

[
max
j∈M̂
|tj·M̂| ≤ K

]
≥ 1− α. (1.4.10)

Proof: This follows immediately from Lemma 1.4.1.

Although mathematically trivial we give the above the status of a theorem as

it is the central statement of the reduction of universal post-selection inference to

simultaneous inference.

Let K be the minimal constant satisfying (1.4.9). By definition K does not depend

on the selection procedure M̂, but it does depend on the full predictor matrix X,

the set of submodels M, the required coverage 1− α, and the degrees of freedom r

in σ̂. We will ignore the dependence on M if it is understood that M =Mall and

we will variously write

K = K(X,M, α, r), K(X), K(X, p), K(X, α, p, r), (1.4.11)

the last two being useful in the classical case (d = p ≤ n) for asymptotics as p→∞.

We call K(X) the “PoSI constant”, and for M and j ∈M we call CIj·M(K(X)) the

“PoSI simultaneous confidence interval” or simply “PoSI CI”. From (1.4.10) follows

the desired coverage guarantee:
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Theorem 1.4.2.“Simultaneous Post-Selection Confidence Guarantees” hold for any

model selection procedure M̂: Rn→M:

P[ βj·M̂ ∈ CIj·M̂(K(X, α)) ∀j ∈ M̂ ] ≥ 1− α.

Simultaneous inference provides strong family-wise error control, which in turn

translates to strong error control following model selection.

Theorem 1.4.3.“Strong Post-Selection Error Control” holds for any model selection

procedure M̂: Rn→M:

P[∀j∈M̂ : |t(0)

j·M̂| > K(X, α) ⇒ βj·M̂ 6= 0 ] ≥ 1− α,

where t
(0)
j·M is the t-statistic for the null hypothesis βj·M =0.

The proof is in the Appendix. The theorem states that, with probability 1 − α,

in a selected model all PoSI-significant rejections have detected true alternatives.

1.4.7 Scheffé Protection

Realizing the idea that the LS estimators in different submodels generally estimate

different parameters, we generated a simultaneous inference problem involving up to

p 2 p−1 linear contrasts βj·M. In view of the enormous number of linear combinations

for which simultaneous inference is sought, one should wonder whether the problem

is not best solved by Scheffé’s method (1953; 1959) which provides simultaneous
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inference for all linear combinations. To accommodate rank-deficient X, we cast

Scheffé’s result in terms of t-statistics for arbitrary non-zero x ∈ span(X):

tx ,
(Y − µ)Tx

σ̂‖x‖
. (1.4.12)

The t-statistics in (1.4.1) are obtained for x = Xj·M. Scheffé’s guarantee is

P

[
sup

x∈span(X)

|tx| ≤ KSch

]
= 1− α, (1.4.13)

where the Scheffé constant is

KSch = KSch(α, d, r) =
√
dFd,r,1−α. (1.4.14)

It provides an upper bound for all PoSI constants:

Proposition 1.4.1.K(X,M, α, r) ≤ KSch(α, d, r) ∀X,M, d=rank(X).

Thus parameter estimates β̂j·M whose t-ratios exceed KSch in magnitude are u-

niversally safe from invalidation due to model selection. The universality of the

Scheffé constant is a tip-off that it may be too loose for some predictor matrices X,

and obtaining the sharper constant K(X) may be worth the effort. An indication

is given by the following comparison as r →∞:

• For the Scheffé constant it holds KSch ∼
√
d.

• For orthogonal designs it holds Korth ∼
√

2 log d.
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(For orthogonal designs see Section 1.5.6.) Thus the PoSI constant Korth is much

smaller than KSch. The big gap between the two suggests that the Scheffé constant

may be too conservative at least in some cases. We will study the case of certain

non-orthogonal designs for which the PoSI constant is O(
√

log(d)) in Section 1.6.1.

On the other hand, the PoSI constant can approach the order O(
√
d) of the Scheffé

constant KSch as well, and we will study one such case in Section 1.6.2.

Even though in this article we will give asymptotic results for d = p → ∞ and

r → ∞ only, we mention another kind of asymptotics whereby r is held constant

while d = p → ∞: In this case KSch is in the order of the product of
√
d and the

1−α quantile of the inverse-chi-square distribution with r degrees of freedom. In a

similar way, the constant Korth for orthogonal designs is in the order of the product

of
√

2 log d and the 1−α quantile of the inverse-chi-square distribution with r degrees

of freedom.

1.4.8 PoSI-Sharp Model Selection — “SPAR” and “SPAR1”

There exists a model selection procedure that requires the full protection of the

simultaneous inference procedure (1.4.9). It is the “significance hunting” procedure

that selects the model containing the most significant “effect”:

M̂SPAR(Y) , argmax
M∈M

max
j∈M
|tj·M(Y)|.

We name this procedure “SPAR” for “Single Predictor Adjusted Regression.” It

achieves equality with the “significant triviality bound” in Lemma 1.4.1 and is
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therefore the worst case procedure for the PoSI problem. In the selected submodel

M̂SPAR(Y) the less significant predictors matter only in so far as they boost the

significance of the winning predictor by adjusting it accordingly. This procedure

ignores the quality of the fit to Y provided by the model. While our present pur-

pose is to point out the existence of a selection procedure that requires full PoSI

protection, SPAR could be of practical interest when the analysis is centered on

strength of “effects”, not quality of model fit.

Practically of greater interest is a restricted version of SPAR whereby a predictor

of interest is determined a priori and the search is for adjustment that optimizes this

predictor’s “effect”. We name the resulting procedure “SPAR1”. If the predictor of

interest is Xp, say, then the model universe isMSPAR1 = {M∈Mall | p ∈ M } and the

model selection procedure is

M̂SPAR1(Y) , argmax
M∈MSPAR1

|tp·M(Y)|.

Importantly, the SPAR1 guarantee that we seek is not for all coefficients in the

models M ∈MSPAR1 but only for the Xp-coefficient βp·M:

P

[
max

M∈MSPAR1

|tp·M| ≤ KSPAR1

]
≥ 1− α,

where KSPAR1 is the minimal constant satisfying this condition. As MSPAR1 ⊂ Mall

and SPAR1 inference is for j = p only, the unrestricted PoSI constant dominates

the SPAR1 constant: K(X,Mall) ≥ KSPAR1(X). Even so, we will construct in Sec-

tion 1.6.2 an example where the SPAR1 constant increases at the Scheffé rate and is
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asymptotically more than 63% of KSch. This is the technical reason for introducing

SPAR1.

1.4.9 PoSI P-Value Adjustment for Model Selection

Statistical inference for regression coefficients is more often carried out in terms

of p-values than confidence intervals. The usual p-values are for null hypotheses

βj·M = 0, hence the test statistics are

t
(0)
j·M = β̂j·M/(σ̂/‖Xj·M‖), t(0)

max = max
M∈M

max
j∈M
|t(0)
j·M|.

To define marginal and adjusted p-values we introduce two c.d.f.s:

Fj·M(t) = P[ |t(0)
j·M| < t ], Fmax(t) = P[t(0)

max < t]. (1.4.15)

The former measures marginal null coverage of a two-sided retention interval [−t,+t],

while the latter measures simultaneous coverage of a retention cube [−t,+t]k where

k = |{(j,M) | j∈M∈M}| is the number of tests performed, which can be as many

as p 2p−1 in the classical case d = p ≤ n forM=Mall. Denoting by tobsj·M and tobsmax the

observed values of t
(0)
j·M and t

(0)
max, respectively, the following p-values can be defined:

(1) Marginal: pvalj·M = 1− Fj·M( |tobsj·M| )

(2) Global adjusted: pvalPoSIj·M = 1− Fmax(tobsmax)

(3) Individual adjusted: pvalPoSIj·M = 1− Fmax(|tobsj·M|)

34



Comments:

(1) The marginal p-value ignores the fact that k tests are being performed.

(2) The global adjusted p-value establishes whether at least the strongest “effect”

is statistically significant, and it is therefore an overall test similar to, but

more specific than, the overall F -test. Because the latter is derived from

Scheffé protection, the global adjusted PoSI p-value is more powerful and still

protects against any model selection in the model universe M.

(3) The individual adjusted p-value adjusts each |tj·M| as if it were a max statistic,

hence results in an over-adjustment for all but tmax. A sharper method than

this “one-step adjustment” would be a simulation-based “step-down” method,

but the computational expense may be prohibitive and the gain in statistical

efficiency may be small.

The adjusted p-values are recommended because they account universally for any

model selection in the model universe M.

[Note on terminology: “adjustment of a p-value for simultaneity” and “adjustment

of a predictor for other predictors” are two concepts that share nothing except the

partial homonym.]
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1.5 The Structure of the PoSI Problem

1.5.1 Canonical Coordinates

We can reduce the dimensionality of the PoSI problem from n × p to d × p, where

d = rank(X) ≤ min(n, p), by introducing Scheffé’s canonical coordinates. This

reduction is important both geometrically and computationally because the PoSI

coverage problem really takes place in the column space of X.

DEFINITION: Let Q = (q1, ...,qd) ∈ Rn×d be any orthonormal basis of the column

space of X. Note that Ŷ = QQTY is the orthogonal projection of Y onto the

column space of X even if X is not of full rank. We call X̃ = QTX ∈ Rd×p and

Ỹ = QT Ŷ ∈ Rd canonical coordinates of X and Ŷ.

We extend the notation XM for extraction of subsets of columns to canonical coordi-

nates X̃M. Accordingly slopes obtained from canonical coordinates will be denoted

by β̂M(X̃, Ỹ) = (X̃T
MX̃M)−1X̃T

MỸ to distinguish them from the slopes obtained from

the original data β̂M(X,Y) = (XT
MXM)−1XT

MY, if only to state in the following

proposition that they are identical.

Proposition 1.5.1. Properties of canonical coordinates:

(1) Ỹ = QTY.

(2) X̃T
MX̃M = XT

MXM and X̃T
MỸ = XT

MY.

(3) β̂M(X̃, Ỹ) = β̂M(X,Y) for all submodels M .

(4) Ỹ ∼ N (µ̃, σ2Id), where µ̃ = QTµ.
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(5) X̃j·M = QTXj·M, where j ∈ M and X̃j·M ∈ Rd is the residual vector of the

regression of X̃j onto the other columns of X̃M.

(6) tj·M = (β̂j·M(X̃, Ỹ)− βj·M)/(σ̂/‖X̃j·M‖).

(7) In the classical case d = p, X̃ can be chosen to be an upper triangular or a

symmetric matrix.

The proofs of (1)-(6) are elementary. As for (7), an upper triangular X̃ can be

obtained from a QR-decomposition based on a Gram-Schmidt procedure: X = QR,

X̃ = R. A symmetric X̃ is obtained from a singular value decomposition: X =

UDVT , Q = UVT , X̃ = VDVT .

Canonical coordinates allow us to analyze the PoSI coverage problem in Rd. In

what follows we will freely assume that all objects are rendered in canonical coor-

dinates and write X and Y for X̃ and Ỹ, implying that the predictor matrix is of

size d× p and the response is of size d× 1.

1.5.2 PoSI Coefficient Vectors in Canonical Coordinates

The PoSI coverage problem (1.4.9) can be simplified as follows: Due to pivotality

of t-statistics, the problem is invariant under translation of β and rescaling of σ,

and hence it suffices to solve coverage problems for β = 0 and σ = 1. In canonical

coordinates this implies E[Ỹ] = 0d , hence Ỹ ∼ N (0d, Id). For this reason we write

Z instead of Ỹ, so that Z/σ̂ has a d-dimensional t-distribution with r degrees of

freedom and any linear combination uTZ/σ̂ with a unit vector u has a 1-dimensional

t-distribution. Letting Xj·M be the adjusted predictors in canonical coordinates, the
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estimates (1.3.7) and their t-statistics (1.4.1) simplify to

β̂j·M =
XT
j·MZ

‖Xj·M‖2
= lTj·MZ, tj·M =

XT
j·MZ

‖Xj·M‖σ̂
= l̄Tj·MZ/σ̂, (1.5.1)

where we took advantage of the fact that these are linear functions of Z and Z/σ̂,

respectively, with “PoSI coefficient vectors” lj·M and l̄j·M that equal Xj·M up to

scale:

lj·M ,
Xj·M

‖Xj·M‖2
, l̄j·M ,

lj·M
‖lj·M‖

=
Xj·M

‖Xj·M‖
. (1.5.2)

As we now operate in canonical coordinates we have lj·M∈Rd and l̄j·M∈Sd−1, where

Sd−1 is the unit sphere in Rd. To complete the structural description of the PoSI

problem we let

L(X,M) , {l̄j·M | j∈M∈M} ⊂ Sd−1, (1.5.3)

If M=Mall we omit the second argument and write L(X).

Proposition 1.5.2. The PoSI problem (1.4.9) is equivalent to a d-dimensional cov-

erage problem for linear functions of the multivariate t-vector Z/σ̂:

P

[
max
M∈M

max
j∈M
|tj·M| ≤ K

]
= P

[
max

l̄∈L(X,M)
|l̄TZ/σ̂| ≤ K

]
(≥)
= 1− α. (1.5.4)

1.5.3 Orthogonalities of PoSI Coefficient Vectors

The set L(X,M) of unit vectors l̄j·M has intrinsically interesting geometric structure,

which is the subject of this and the following subsections. The next proposition
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(proof in Appendix A.1.2) elaborates in so many ways the fact that l̄j·M is essentially

the predictor vector Xj orthogonalized with regard to the other predictors in the

model M. In what follows vectors are always assumed in canonical coordinates and

hence d-dimensional.

Proposition 1.5.3. Orthogonalities in L(X,M): The following statements hold

assuming that the models referred to are in M (hence are of full rank).

1. Adjustment properties:

l̄j·M ∈ span{Xj| j∈M} and l̄j·M ⊥ Xj′ for j 6= j′ both ∈ M.

2. The following vectors form an orthonormal “Gram-Schmidt” series:

{l̄1·{1}, l̄2·{1,2}, l̄3·{1,2,3}, ..., l̄d·{1,2,...,d}}

Other series are obtained using (j1, j2, ..., jd) in place of (1, 2, ..., d).

3. Vectors l̄j·M and l̄j′·M′ are orthogonal if M⊂M′, j∈M and j′∈M′ \M.

4. Classical case d=p andM=Mall: Each vector l̄j·M is orthogonal to (p−1) 2p−2

vectors l̄j′·M′ (not all of which may be distinct).

The cardinality of orthogonalities in the classical case andM=Mall is as follows:

If the predictor vectors Xj have no orthogonal pairs among them, then |L(X)| =

p 2p−1. If there exist orthogonal pairs, then |L(X)| is less. For example, if there

exists exactly one orthogonal pair, then |L(X)| = (p−1) 2p−1. When X is a fully

orthogonal design, then |L(X)| = p.
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1.5.4 The PoSI Process

An alternative way of looking at the PoSI problem is in terms of a stochastic pro-

cess indexed by (j,M) for j ∈M. We mention this view because it is the basis of

some software implementations used to solve simultaneous inference and coverage

problems, even though in this case it does not result in a practicable approach. In

the PoSI problem the obvious process is W = (tj·M)j∈M∈M, which is a t-process for

finite degrees of freedom r in σ̂ and a Gaussian process in the limit r →∞.

The covariance structure of W exists for r > 2 and is proportional (by a factor

r/(r−2)) to the correlation matrix

Σ = (Σj·M; j′·M′), Σj·M; j′·M′ , l̄Tj·Ml̄j′·M′ . (1.5.5)

The coverage problem (1.5.4) can be written as P[‖W‖∞ ≤ K] = 1 − α. Software

that computes such coverages (for example, Genz et al. (2010)) allows users to

specify a structure such as Σ, intervals such as [−K,+K] for the components, and

error degrees of freedom r. In our experiments this approach worked in the classical

case d = p and M = Mall for up to p = 7, the limiting factor being the space

requirement p 2p−1×p 2p−1 for the matrix Σ. By comparison the approach described

in Buja et al. (2012) works for up to p≈20.

Proposition 1.5.3 above implies that there exist certain necessary orthogonalities

in L(X,M). In terms of the correlation structure Σ, orthogonalities in L(X,M)

correspond to zero correlations in Σ. Part 4. of the proposition states that in the

classical case andM=Mall each “row” of Σ has (p−1) 2p−2 zeros out of p 2p−1 entries,

40



amounting to a fraction (p−1)/(2p)→ 0.5, implying that the overall fraction of zeros

in Σ approaches half for increasing p. Thus Σ, though not sparse, is rich in zeros. It

can be much sparser in the presence of exact orthogonalities among the predictors.

1.5.5 The PoSI Polytope

Coverage problems can be framed geometrically in terms of probability coverage of

polytopes in Rd. For the PoSI problem the polytope with half-width K is defined

by

ΠK = ΠK(X,M) , {z ∈ Rd| |l̄Tz| ≤ K, ∀ l̄ ∈ L(X,M) }, (1.5.6)

henceforth called the “PoSI polytope”. The PoSI coverage problem (1.5.4) is equiv-

alent to calibrating K such that

P[Z/σ̂ ∈ ΠK ] = 1− α.

The simplest case of a PoSI polytope, for d=p=2, is illustrated in Figure 1.1. More

general polytopes are obtained for arbitrary sets L of unit vectors, that is, subsets

L ⊂ Sd−1 of the unit sphere in Rd. For the special case L = Sd−1 the “polytope” is

the “Scheffé ball” with coverage
√
dFd,r →

√
χ2
d as r →∞:

BK , {z ∈ Rd| ‖z‖ ≤ K }, P[Z/σ̂ ∈ BK ] = FFd,r
(K2/d).

Many properties of the polytopes ΠK are not specific to PoSI because they hold for

polytopes (1.5.6) generated by simultaneous inference problems for linear functions
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with arbitrary sets L of unit vectors. These polytopes ...

1. ... form scale families of geometrically similar bodies: ΠK = KΠ1.

2. ... are point symmetric about the origin: ΠK = −ΠK .

3. ... contain the Scheffé ball: BK ⊂ ΠK .

4. ... are intersections of “slabs” of width 2K:

ΠK =
⋂
l̄∈L

{z ∈ Rd| |zT l̄ | ≤ K }.

5. ... have 2 |L| faces (assuming L ∩ −L = ∅), and each face is tangent to the

Scheffé ball BK with tangency points ±K l̄ (l̄ ∈ L).

Specific to PoSI are the orthogonalities described in Proposition 1.5.3.

1.5.6 PoSI Optimality of Orthogonal Designs

In orthogonal designs, adjustment has no effect: Xj·M = Xj for all j∈M, hence

l̄j·M = Xj/‖Xj‖ and L(X,M) = {X1/‖X1‖, ...,Xp/‖Xp‖}. The polytope ΠK is

therefore a hypercube. This simple observation implies an optimality property of or-

thogonal designs if the submodel universesM are sufficiently rich to force L(X,M)

to contain an orthonormal basis of Rd: The polytope generated by an orthonormal

basis is a hypercube, hence the polytope ΠK(X,M) is contained in this hypercube;

thus ΠK(X,M) has maximal extent iff it is equal to this hypercube, which is the

case iff L(X,M) is this orthonormal basis and nothing more, that is, X is an or-

thogonal design. — A simple sufficient condition for M to grant the existence of
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Figure 1.1: The PoSI polytope ΠK=1 tangent to the Scheffé disk (2-D ball) BK=1 for
d = p = 2: The normalized raw predictor vectors are l̄1·{1} ∼ X1 and l̄2·{2} ∼ X2, and
the normalized adjusted versions are l̄1·{1,2} and l̄2·{1,2}. Shown in gray outline are the
two squares (2-D cubes) generated by the o.n. bases (l̄1·{1}, l̄2·{1,2}) and (l̄2·{2}, l̄1·{1,2}),
respectively. The PoSI polytope is the intersection of the two squares.
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an orthonormal basis in L(X,M) is the existence of a maximal nested sequence of

submodels such as {1}, {1, 2},...,{1, 2, ..., d} inM. It follows according to item 2. in

Proposition 1.5.3 that there exists an orthonormal Gram-Schmidt basis in L(X,M).

We summarize:

Proposition 1.5.4. Among predictor matrices with rank(X)=d and model univers-

es M that contain at least one maximal nested sequence of submodels, orthogonal

designs with p=d columns yield

• the maximal coverage probability P[Z/σ̂ ∈ ΠK ] for fixed K, and

• the minimal PoSI constant K satisfying P[Z/σ̂ ∈ ΠK ] = 1 − α for fixed α:

infrank(X)=dK(X,M, α, r) = Korth(α, d, r).

The proposition holds not only for multivariate t-vectors and their Gaussian limits

but for arbitrary spherically symmetric distributions. — Optimality of orthogonal

designs translates to optimal asymptotic behavior of their constant K(X, α) for

large d:

Proposition 1.5.5. Consider the Gaussian limit r → ∞. For X and M as in

Proposition 1.5.4, the asymptotic lower bound for the constant K as d → ∞ is

attained for orthogonal designs for which the asymptotic rate is

inf
rank(X)=d

K(X,M, α) = Korth(d, α) =
√

2 log d+ o(d).

The above facts show that the PoSI problem is bounded on one side by orthogonal

designs: infrank(X)=dK(X, α, r) = Korth(α, d, r), for all α, d and r. On the other
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side, the Scheffé ball yields a loose upper bound: suprank(X)=d,MK(X,M, α, r) <

KSch(α, d, r). The question of how close to the Scheffé bound the PoSI upper bound

suprank(X)=d,MK(X,M, α, r) can get for r → ∞ will occupy us in Section 1.6.2.

Unlike the infimum problem, the supremum problem does not appear to have a

unique optimizing design X uniformly in α, d and r.

1.5.7 A Duality Property of PoSI Vectors

In the classical case d=p andM=Mall there exists a duality for PoSI vectors L(X)

which we will use in Section 1.6.1 below but which is also of independent interest. We

require some preliminaries: Letting MF = {1, 2, ..., p} be the full model, we observe

that the (unnormalized) PoSI vectors lj·MF
= Xj·MF

/‖Xj·MF
‖2 form the rows of the

matrix (XTX)−1XT because β̂F = (XTX)−1XTY. In a change of perspective, we

interpret the transpose matrix

X∗ = X(XTX)−1

as a predictor matrix as well, to be called the “dual design” of X. It is also of size

p× p in canonical coordinates, and its columns are the PoSI vectors lj·MF
. It turns

out that X∗ and X pose identical PoSI problems if M=Mall:

Theorem 1.5.1. L(X∗) = L(X), ΠK(X∗) = ΠK(X), K(X∗) = K(X).

Recall that L(X) and L(X∗) contain the normalized versions of the respective ad-

justed predictor vectors. The theorem follows from the following lemma which es-

tablishes the identities of vectors between L(X∗) and L(X). We extend obvious
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notations from X to X∗ as follows:

X∗j = l∗j·{j} = lj·MF
.

Submodels for X∗ will be denoted M∗, but they, too, will be given as subsets of

{1, 2, ..., p} which, however, refer to columns of X∗. Finally, the normalized version

of l∗j·M∗ will be written as l̄∗j·M∗ .

Lemma 1.5.1. For two submodels M and M∗ that satisfy M ∩M∗ = {j} and M ∪

M∗ = MF , we have

l̄∗j·M∗ = l̄j·M , ‖l∗j·M∗‖ ‖lj·M‖ = 1

The proof is in Appendix A.1.3. The assertion about norms is really only needed to

exclude collapse of l∗j·M∗ to zero.

A special case arises when the predictor matrix (in canonical coordinates) is

chosen to be symmetric according to Proposition 1.5.1 (7.): if XT = X, then

X∗ = X(XTX)−1 = X−1, and hence:

Corollary 1.5.1. If X is symmetric in canonical coordinates, then

L(X−1) = L(X), ΠK(X−1) = ΠK(X), and K(X−1) = K(X)
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1.6 Illustrative Examples and Asymptotic Result-

s

In this section we consider examples in the classical case d=p andM=Mall. Also,

we work with the Gaussian limit r →∞ assuming σ = 1 is known.

1.6.1 Example 1: The PoSI Problem for Exchangeable De-

signs

In exchangeable designs X all pairs of predictor vectors enclose the same angle.

In canonical coordinates a convenient parametrization of a family of symmetric

exchangeable design is

X = Ip + aEp×p, (1.6.1)

where −1/p < a < ∞, and E is a matrix with all entries equal to 1. The range

restriction on a assures that X is positive definite. Writing X = X(a) when the

parameter a matters, we will make use of the fact that

X(a)−1 = X(−a/(1 + pa))

is also an exchangeable design. The function cp(a) = −a/(1 + pa) maps the interval

(−1/p,∞) onto itself, and it holds cp(0) = 0, cp(a) ↓ −1/p as a ↑ +∞, and vice

versa. Exchangeable designs include orthogonal designs for a = 0, and they extend

to two types of strict collinearities: for a ↑ ∞ the predictor vectors collapse to a
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single dimension span(1), and for a ↓ −1/p they collapse to a subspace span(1)⊥ of

dimension (p− 1), where 1 = (1, 1, ..., 1)T .

Figure 1.2: The PoSI constant K(X, α = 0.05) for exchangeable designs X = I+aE
for a ∈ [0,∞). The horizontal axis shows a/(1+a), hence the locations 0, 0.5 and 1.0
represent a = 0, 1, ∞, respectively. Surprisingly, the largest K(X) is not attained
at a =∞, the point of perfect collinearity, at least not for dimensions up to p = 10.
The graph is based on 10,000 random samples in p dimensions for p = 2, ..., 15.

As non-orthogonality/collinearity drives the fracturing of the regression coeffi-

cients into model-dependent quantities βj·M, it is of interest to analyze K(X) as

X = X(a) moves from orthogonality at a = 0 toward either of the two types of

collinearity. Here is what we find:

• Unguided intuition might suggest that the collapse to rank 1 calls for larger

K(X) than the collapse to rank (p− 1). This turns out to be entirely wrong:

collapse to rank 1 or rank p− 1 has identical effects on K(X). The reason is

duality (Section 1.5.7): for exchangeable designs, X(a) collapses to rank 1 iff
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X(a)∗ = X(a)−1 = X(−a/(1 + pa)) collapses to rank p − 1, and vice versa,

while K(X(a)−1) = K(X(a)) according to Corollary 1.5.1.

• A more basic intuition would suggest that K(X) increases as X moves away

from orthogonality and approaches collinearity. Even this intuition is not fully

born out: In Figure 1.2 we depict numerical approximations to K(X(a), α =

0.05) for a ∈ [0,∞) (a ∈ (−1/p, 0] being redundant due to duality). As the

traces show, K(X(a)) increases as X(a) moves away from orthogonality, up

to a point, whereafter it descends as it approaches collinearity, at least for

dimensions p ≤ 10.

In summary, the dependence of K(X) on the design X is not a simple matter. While

duality provides some insights, there are no simple intuitions for inferring from X

the geometry of the sets of unit vectors L(X), their polytopes ΠK , their coverage

probabilities and PoSI constants K(X).

We next address the asymptotic behavior of K = K(X, α, p) for increasing p.

As noted in Section 1.4.7, there is a wide gap between orthogonal designs with

Korth ∼
√

2 log p and the full Scheffé protection with KSch ∼
√
p. The following

theorem shows how exchangeable designs fall into this gap:

Theorem 1.6.1. PoSI constants of exchangeable design matrices X(a) have the

following limiting behavior:

lim
p→∞

sup
a∈(−1/p,∞)

K(X(a), α, p)√
2 log p

= 2.

The proof can be found in Appendix A.1.4. The theorem shows that for exchange-
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able designs the PoSI constant remains much closer to the orthogonal case than the

Scheffé case. Thus, for this family of designs it is possible to improve on the Scheffé

constant by a considerable margin.

The following detail of geometry for exchangeable designs has a bearing on the

behavior of their PoSI constant: The angle between pairs of predictor vectors as

a function of a is cos(Xj(a),Xj′(a)) = a(2 + pa)/(pa2 + 4a + 2). In particular, as

the vectors fall into the rank-(p−1) collinearity at a = −1/p, the cosine becomes

−1/(2p−3), which converges to zero as p → ∞. Thus, with increasing dimen-

sion, exchangeable designs approach orthogonal designs even at their most collinear

extreme.

We finish with a geometric depiction of the limiting polytope ΠK as X(a) ap-

proaches either collinearity: For a ↑ ∞, the predictor vectors fall into the 1-D sub-

space span(1), and for a ↓ −1/p they fall into span(1)⊥. With duality in mind and

considering the permutation symmetry of exchangeable designs, it follows that the

limiting polytope is a prismatic polytope with a p-simplex as its base in span(1)⊥.

In Figure 1.3 we show this prism for p = 3. The unit vectors l̄1·{1}∼X1, l̄2·{2}∼X2

and l̄3·{3}∼X3 form an equilateral triangle. The plane span(1)⊥ also contains the six

once-adjusted vectors l̄j·{j,j′} (j′ 6= j), while the three fully adjusted vectors l̄j·{1,2,3}

collapse to 1/
√
p, turning the polytope into a prism.

1.6.2 Example 2: Where K(X) is close to the Scheffé Bound

We describe a situation in which the asymptotic upper bound for K(X, α, p) is

O(
√
p), hence close to the Scheffé constant KSch in terms of the asymptotic rate.
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l 1⋅1

l 2⋅2

l 3⋅3

l 1⋅123=l 2⋅123=l 3⋅123

Figure 1.3: Exchangeable Designs: The geometry of the limiting PoSI polytope for
p = 3 as a ↓ −1/p or a ↑ +∞ in (1.6.1).

We consider SPAR1 (Section 1.4.8) whereby a predictor of interest has been chosen,

Xp, say. The goal of model selection with SPAR1 is to “boost the effect” of Xp by

adjusting it for optimally chosen predictors Xj (j < p). The search is over the 2p−1

models that contain Xp, but inference is sought only for the adjusted coefficient

βp·M.

The task is to construct a design for which simultaneous inference for all adjusted

coefficients βp·M requires the constant KSPAR1(X) to be in the order of
√
p. To this end
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consider the following upper triangular p×p design matrix in canonical coordinates:

X = (e1, ..., ep−1,1p) , (1.6.2)

where ej are the canonical basis vectors, (ej)i = δij, and 1p = (1, ..., 1)T ∈ Rp. We

have the following theorem:

Theorem 1.6.2. The designs (1.6.2) have SPAR1 simultaneous 1 − α confidence

intervals for Xp of the form
[
β̂p ±KSPAR1(X)

√
(XTX)−1

pp

]
where

lim
p→∞

KSPAR1(X)
√
p

= 0.6363....

A (partial) proof is in Appendix A.1.5 where we show the ≥ part. As always, we

consider the case of “large r,” that is, σ known; for small r the constant is larger.

The theorem shows that even if we restrict consideration to a single predictor Xp and

its adjustments, the constant KSPAR1 to reach valid simultaneous inference against all

submodels containing that coefficient can be much greater than the O(1) t-quantiles

used in common practice. Also, since for the unrestricted PoSI constant K(X) we

have K(X) ≥ KSPAR1(X), the theorem shows that there exist predictor matrices for

which the PoSI constants are of the asymptotic order of the Scheffé constants.

1.6.3 Bounding Away from Scheffé

We provide a rough asymptotic upper bound on all PoSI constants K(X,M, α, d). It

is strictly smaller than the Scheffé constant but not by much. The bound, however,
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is loose because it is based on letting go of the rich structure of the sets L(X,M)

(Section 1.5.3) and only using their cardinality |L| (= p 2p−1 in the classical case

d=p and M=Mall).

Theorem 1.6.3.Denote by Ld arbitrary finite sets of d-dimensional unit vectors,

Ld ⊂ Sd−1, such that |Ld| ≤ ad where a
1/d
d → a (> 0). Denote by K(Ld) the (1−α)-

quantile of supl̄∈Ld |l̄
TZ|. Then the following describes an asymptotic worst-case

bound for K(Ld) and its attainment:

lim
d→∞

sup
|Ld|≤ad

K(Ld)√
d

=

(
1− 1

a2

)1/2

.

The proof of Theorem 1.6.3 (see the Appendix A.1.6) is an adaptation of Wyner’s

(1967) techniques for sphere packing and sphere covering. The worst-case bound (≤)

is based on a surprisingly crude Bonferroni-style inequality for caps on spheres. At-

tainment of the bound (≥) makes use of the artifice of picking the vectors l̄ ∈ L ran-

domly and independently. — Applying the theorem to PoSI sets L=L(Xn×p,Mall)

in the classical case d=p, we have |L|=p 2p−1 =ap, hence a
1/p
p →2, so the theorem

applies with a=2:

Corollary 1.6.1.In the classical case d = p a universal asymptotic upper bound for

the PoSI constant K(Xn×p,Mall) is

lim
p→∞

sup
Xn×p

K(Xn×p,Mall)√
p

≤
√

3

2
= 0.866... .

The corollary shows that the asymptotic rate of the PoSI constant is strictly below
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that of the Scheffé constant, but possibly not by much. We do not know whether

there exist designs for which the bound of the corollary is attained, but the theorem

implies the bound is sharp for unstructured sets L.
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Chapter 2

The Split Samples Approach

2.1 Introduction

It is common practice to apply classical statistical inference to models that have

been selected based on data. Typically, the same data is used for both selection

and the inference after selection. Despite its prevalence, this practice is problematic

because it ignores the fact that the inference is conditional on the model selection

that is itself stochastic. The stochastic nature of the selection process affects and

distorts sampling distributions of the post-selection parameter estimates, leading

to invalid post-selection inference. The problems of post-selection inference have

long been recognized and have been discussed recently by Leeb and Pötscher (2005;

2006b; 2008b) and Berk et al. (2010). Some conservative solutions to achieve valid

post-selection inference are studied in Wang and Lagakos (2009) and Berk et al.

(2012).
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In this study, we propose a different approach to achieve valid post-selection in-

ference for the problem of inference after variable selection in linear models. We

suppose the response and the explanatory variables are generated from some gener-

al joint distribution where their relationship is not necessarily linear. Data is then

gathered and analyzed, and a subset of the explanatory variables is chosen. These

explanatory variables are then used to generate a linear submodel in approximation

to the expected value of the response. We are interested in valid statistical inference

after this process using the selected linear submodel. Our goal is to provide such

valid inference that is universally valid for any variable selection procedure. Our

methodology is based on two techniques, namely split samples and the bootstrap.

2.1.1 Split Samples

Split samples methodology generally involves dividing the observations randomly

into two parts: one part for exploratory model building, a.k.a. the training set,

and the other part for confirmatory statistical inference, a.k.a. holdout set. In a

pioneering paper, Cox (1975) observed that split samples were more flexible, and

perhaps more easily adapted to complex settings. Such data-splitting has been

applied frequently and broadly in past literature on multiple testing problems. For

example, in the statistical learning literature (e.g., Hastie et al. 2009, Chapter

1), the training sample is used to fit different models, and a holdout set is used

for choosing the model with smallest prediction error; and in the causal inference

literature (Heller et al. 2009; Zhang et al. 2011), a planning sample is used to design

a study to be confirmed by the analysis sample.
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Here, we utilize the split samples methodology in a slightly different way. We use

a training sample only to seek a subset of predictors, and then perform both the

estimation and inference on the holdout set.

As far as inference after selection in linear models is concerned, the main advantage

of this data splitting technique is, roughly speaking, that it separates the data for

exploratory analysis from the data for confirmatory analysis, thereby removing the

contaminating effect of selection on inference. Such data-splitting is crucial for valid

inference after model selection. Some qualitatively similar proposals are in Young

and Karr (2011) who proposed the use of a holdout sample to test claims made from

a modeling sample; in Hurvich and Tsai (1990) who studied coverage probabilities

of post-selection confidence intervals via the split samples method; and in Wang

and Lagakos (2009) who studied the potential of a version of this approach in linear

models.

2.1.2 Random Design View

It is important to note that the bootstrap used in our split samples approach implic-

itly corresponds to the treatment of the design matrix predictors as random, where

the training and holdout samples are distinct samples of predictors and responses

from a larger population. In contrast, an approach for a fixed design would require

identical designs in the two split samples.

As we will see, the random-design view changes the parameter space and the

analysis for statistical inference from the conventional view. Further, there are

other good reasons for taking the random-design point of view: (1) it is a proper
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view for observational data: each observation is an i.i.d. sample from a multivariate

joint distribution; and (2) except for designed experiments, the fixed-design view

for conventional inference is a theoretical artifice based on an ancillarity argument

whose main benefit is facilitating inference calculation. With the bootstrap, the need

for such fixed-design inference disappears. Furthermore, the fixed-design inference

justification from ancillarity works only when the selected linear submodel is valid.

We do not assume the response is linear. When nonlinearity is present with random

predictors, the SE of slopes can be severely underestimated by the fixed design point

of view (Will be explained in Section 2.1.3 and in further details in a later section).

We consider data that are n i.i.d. samples from random vectors (X1, . . . , Xp, Y )

with a non-degenerate (p + 1)-dimensional joint distribution Pn (dx1, . . . , dxp, dy) ,

where Y is the response variable and X1 through Xp are potential explanatory

variables. It will be convenient to let ~X = (1, X1, . . . , Xp)
T , with a constant 1

appended. We also assume that the number of predictors, p, is fixed, while the joint

distribution Pn can vary with n.

2.1.3 Nonlinearity and Bootstrap

In conventional inference for linear regression, it is assumed that (1) the relation-

ship between response and explanatory variables is linear; and (2) the errors are

homoscedastic; and (3) the underlying error distribution is independent Gaussian.

Under these assumptions, the predictor values are conventionally treated as fixed

preset constants even when they are random samples. The justification for such con-

ditioning on the design matrix is that any predictor distribution is ancillary for the
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unknown parameters when the above assumptions are correct, hence conditioning

on the design matrix produces valid frequentist inference for the desired parameters.

However, as will be discussed in more details later, when a model has been built

based on the data, it is a fallacy to proceed as if the selected model were “true.”

Furthermore, the ancillarity argument should not be used, as the above assumptions

of a linear model is never verifiable in practice. Indeed, a linear model should only be

considered as an approximation instead. In fact, all linear models are approximations

to generally nonlinear response surfaces, and the slopes are those of the best linear

approximation. This view can be best described by a famous quote from G.E.P.

Box: “all models are wrong, but some are useful.” We take this view and consider

regression models as linear approximations throughout this paper. In particular,

in the context of inference after variable selection, we consider that each submodel

has its own best linear approximation for the predictors it includes. This implies if

a predictor is part of two different submodels, its slopes in the two submodels will

be different in general. Bootstrap inference then frees us from being constrained by

particular model assumptions such as linearity.

The rest of this paper is organized as follows. In Section 2.2 we introduce the

population assumptions. In Section 2.3 we consider the bootstrap inference under

the full linear model. We introduce our proposed split-sample procedure and states

its asymptotic properties in Section 2.4. In Section 2.5 we consider a special case

when the linear model is correct and the errors are homoscedastic.
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2.2 Population

As stated before, we do not assume a linear relationship between the response and

predictors in this paper. Instead, we rely only on our population assumption that the

random vector (X1, . . . , Xp, Y ) has a non-degenerate joint distribution Pn. Under

Pn, we can write out the conditional expectation of Y given ~X, i.e.,

E
[
Y |~X

]
= µn

(
~X
)

(2.2.1)

for some Pn measurable function µn(·).

In general, the “true response surface” or “true response function” µn(~X) need

not to be linear in ~X and can be any Pn measurable function. However, we will

still be interested in inference based on a linear model approximation. Why? The

linear approximation has long been considered an Occam’s razor for its simplic-

ity and effectiveness. Due to its advantages, it serves as the most common and

fundamental method for modern data analysis. In our particular case, this lin-

ear approximation approach entails a linear combination of the components of ~X

which optimally approximates the general response function µn(~X). This set of co-

efficients for this linear combination are determined by the population distribution

Pn (dx1, . . . , dxp, dy) .

Formally, suppose our loss is the mean squared error of prediction E
[
|Y −bT ~X|2

]
for a (p+ 1)-dimensional vector b. The best linear approximation of Y on ~X under
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Pn is a (p+ 1)-vector βn(Pn) = βn = (βn,0, βn,1, . . . , βn,p) such that

βn(Pn) = argminbE
[
|Y − bT ~X|2

]
(2.2.2)

= argminbE
[
|µn(~X)− (b0 + b1X1 + . . .+ bpXp)|2

]

Solving this optimization problem yields

βn(Pn) = E
[
~X~XT

]−1
E
[
~XY
]
. (2.2.3)

Equation (2.2.3) verifies that the vector βn = βn(Pn) is a population parameter.

Furthermore, equation (2.2.3) provides the basis for the least squares (LS) estimator

in linear models.

With the above notation, the nonlinearity of the linear approximation to µn(~X)

is captured by

ηn = ηn(~X) = µn(~X)− βTn ~X. (2.2.4)

We say the linear regression model is first order correct if ηn(~X) = 0 Pn-a.s., which

in general may not be true. Such a nonzero ηn(~X) can nullify the ancillarity of

the predictor distribution, and distort the estimation of the variance of the LS

estimators. This issue and its resolution by utilizing the bootstrap method are

discussed in Buja’s “Conspiracy Blurb” and also in a later section.

Let the “error” εn be the random variable

εn = Y − µn(~X). (2.2.5)
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By construction E
[
εn|~X

]
= 0 and E

[
εnηn(~X)

]
= 0. The conditional variance of

the error is then

Var
[
εn|~X

]
= σ2

n(~X). (2.2.6)

If the errors are conditionally homoscedastic, then the above equation is simplified

to

Var
[
εn|~X

]
= σ2

n. (2.2.7)

Under the above notation, the response Y can be decomposed as

Y = βTn
~X + ηn(~X) + εn. (2.2.8)

This decomposition when p = 1 is illustrated in Figure 1 below.
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Figure 2.1: The decomposition of Y when p = 1.
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We denote our n i.i.d. draws from Pn(dx1, . . . , dxp, dy) by (Xi,1, . . . , Xi,p, Yi) for

i = 1, 2, . . . , n. From these, we form the responses Y = (Y1, . . . , Yn)T , and column

n-vectors Xj = (X1,j, . . . , Xn,j)
T , which we collect into the n × (p + 1) random

predictor matrix X = [1,X1, . . . ,Xp], appended by an intercept vector 1, i.e.,

X = [1,X1, . . . ,Xp] =


~XT

1

...

~XT
n

 =


1 X1,1 . . . X1,p

...
...

. . .
...

1 Xn,1 . . . Xn,p

 (2.2.9)

where ~XT
i = (1, Xi,1, . . . , Xi,p) for i = 1, . . . , n are the transposed row vectors.

We finally collect the values µn,i = µn(Xi,1, . . . , Xi,p), ηn(~Xi) = ηn(Xi,1, . . . , Xi,p),

and εi = Yi−µn,i into random n-vectors denoted by µn = (µn,1, . . . , µn,n)T , ηn(X) =

(ηn(~X1), . . . , ηn(~Xn))T , εn = (ε1, . . . , εn)T , and σn(X) = diag(σ2
n(~X1), . . . , σ2

n(~Xn)),

respectively.

We shall make two remarks here:

1. If not otherwise stated, we consider a fixed p in this manuscript. However,

some results which allow p to grow with n will be given.

2. In asymptotics, we consider βn shrinking to 0 as n → ∞ so that βn is a

function of n.
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2.3 Valid Inference in the Full Model

2.3.1 Least Squares Estimates in the Full Model

The Least Squares estimate of βn based on n observations, β̂n, is given by

β̂n =
(
XTX

)−1
XTY (2.3.1)

We shall first note that in general ηn(~X) is not 0 a.s., and the LS estimate is

biased:

E
[
β̂n
]

= βn + E
[
(XTX)−1XTηn(X)

]
. (2.3.2)

However, the LS estimate is asymptotically consistent, as seen in the following

theorem which is a summary of the marginal properties of β̂n.

Theorem 2.3.1. 1. β̂n is consistent, i.e.,

β̂n − βn
P→ 0. (2.3.3)

2. The variance of β̂n is given by

Var
[
β̂n
]

= E
[
(XTX)−1XTσ2

n(X)X(XTX)−1
]

+ Var
[
(XTX)−1XTηn(X)

]
.

(2.3.4)

In particular, if the error is homoscedastic, then

Var
[
β̂n
]

= σ2
nE
[
(XTX)−1

]
+ Var

[
(XTX)−1XTηn(X)

]
. (2.3.5)
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To compare the above actual properties of β̂n and the assumptions in the tradi-

tional inference, we also consider the conditional distribution of β̂n given X. We

shall illustrate their difference under the homoscedastic case. Note that the random

projection or hat matrix generated by W is

HW = W(WTW)−1WT . (2.3.6)

Let X\j =
[
1,X1, . . . ,Xj−1,Xj+1, . . . ,Xp

]
. Then Xadj

j = (I −HX\j)Xj is the pre-

dictor Xj “adjusted for all other predictors”. The estimate of the j-th coordinate

of β̂n, β̂n,j can then be expressed as follows:

β̂n,j =
〈Y,Xadj

j 〉
‖Xadj

j ‖2
(2.3.7)

Note that also the coordinate-wise conditional expectation of β̂n is

E
[
β̂n,j|X

]
= βn,j +

〈Xadj
j ,ηn(X)〉
‖Xadj

j ‖2
(2.3.8)

and the coordinate-wise conditional variance of β̂n is

Var
[
β̂n,j|X

]
=

σ2
n

‖Xadj
j ‖2

. (2.3.9)

Therefore, the marginal variance of β̂n,j is given by

SEmarg

(
β̂n,j
)2

= Var
[
β̂n,j
]

= E

[
σ2
n

‖Xadj
j ‖2

]
+ Var

[
〈Xadj

j ,ηn(X)〉
‖Xadj

j ‖2

]
. (2.3.10)
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This agrees with the diagonals in the variance-covariance matrix of β̂n in (2.4.5).

Note that the conventional inference uses σ̂n
2 = YT (I−HX)Y

n−p−1
as the estimate for σ2

n

in (2.3.9), i.e., the conventional LS inference is based on

SEconv

(
β̂n,j|X

)2
=

E

[
1

n−p−1

∥∥YT (I−HX) Y
∥∥2

∣∣∣∣X]
‖Xadj

j ‖2

'
σ2
n + n

n−p−1
E
[
ηn(~X)2

]
‖Xadj

j ‖2

(2.3.11)

which implies that

E
[
SEconv

(
β̂n,j|X

)2
]

= E

[
σ2
n

‖Xadj
j ‖2

]
+ E

[∥∥(I−HT
X

)
ηn(X)

∥∥2

‖Xadj
j ‖2

]
. (2.3.12)

Therefore, if ηn(~X) is not 0 a.s., then SEconv 6= SEmarg. In practice, ηn(~X) = 0

a.s. is often not an appropriate assumption to make (Boston Housing Data for

example). Therefore, the conventional approach usually underestimate the true SE

of β̂n,j, leading to less accurate inference. The problem can be severer if the errors

are heteroscedastic.

2.3.2 Bootstrap Inference for LS Estimates in the Full Mod-

el

In this subsection we consider bootstrap confidence intervals under the full model.

We consider the “pair-bootstrap” method, in which we generate a resample of size

w, {(~X∗1, Y ∗1 ), (~X∗2, Y
∗

2 ), . . . , (~X∗w, Y
∗
w)}, from the original data. The resample forms
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the bootstrap design matrix X∗ and the bootstrap response Y∗. The bootstrap LS

estimate is then

β̂∗n =
(
X∗TX∗

)−1
X∗TY∗. (2.3.13)

We use the bootstrap distribution L∗
(√

w
(
β̂∗n − β̂n

))
to approximate the law

L
(√

n
(
β̂n − βn

))
.

A strong result on bootstrap inference can be obtained as a corollary from the

following theorem of Mammen (1993). This theorem considers the case when w = n

and convergence is under the Kolmogorov distance, d∞, where d∞(F,G) = supx |F (x)−

G(x)|.

Theorem 2.3.2. Consider the following data generation process:

1. (~Xi, Yi) are i.i.d. with finite second moments E[Y 2
i ] <∞ and E[‖~Xi‖2] <∞.

2. Let βn = argminbE
[
(Yi − βTn ~Xi)

2
]

and let ξn,i = Yi − βTn ~Xi.

Assuming the following:

1. The eigenvalues of E[~X~XT ] are bounded away from 0 and ∞ for all n.

2. 0 < infn E[ξ2
n] ≤ supn E[ξ2

n] <∞.

3. For some fixed constant b ≥ 1/3, p1+b/n→ 0.

4.

sup
n

sup
‖d‖=1

E
[
|dT ~X|4(1 + ξ2

n)
]
<∞ (2.3.14)

where B is the smallest integer greater than or equal to 2/b.
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5. For cp ∈ Rp+1 with ‖cp‖ = 1,

E
[
(cTp

~X)2ξ2
nI
[
(cTp

~X)2ξ2
n ≥ ζn

]]
→ 0 (2.3.15)

for every fixed ζ > 0.

Then

d∞

(
L∗
(√

ncTp

(
β̂∗n − β̂n

))
,L
(√

ncTp

(
β̂n − βn

)))
P→ 0 (2.3.16)

By (2.2.8), ξn in our case is

ξn,i = Yi − βTn ~Xi = ηn(~Xi) + εi. (2.3.17)

Thus, we have the following corollary for fixed p.

Corollary 2.3.1. Suppose the following conditions hold:

1. The number of predictors p is fixed.

2. (~Xi, Yi) are i.i.d. with finite second moments E[Y 2
i ] <∞ and E[‖~Xi‖2] <∞.

3. The eigenvalues of E[~X~XT ] are bounded away from 0 and ∞ for all n.

4. 0 < infn E[(ηn(~X) + ε)2] ≤ supn E[(ηn(~X) + ε)2] <∞.

5.

sup
n

E
[
‖~X‖4

(
1 + (ηn(~X) + ε)4

)]
<∞ (2.3.18)
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Then

d∞

(
L∗
(√

n
(
β̂∗n,j − β̂n,j

))
,L
(√

n
(
β̂n,j − βn,j

)))
P→ 0. (2.3.19)

One then finds the appropriate quantiles of the bootstrap distribution to construct

asymptotically valid confidence intervals.

We have a remark here: The convergence in distribution is for a particular coor-

dinate. For a fixed p, coordinate-wise convergence implies convergence in the joint

distribution. However, in general this is not true. On the other hand, the PoSI

confidence interval (Berk et al. 2012) provides valid family wise error statements.

2.4 Valid Post-Selection Inference via Split Sam-

ples and Bootstrap

2.4.1 Least Squares Estimates in A Submodel

For a given submodel M ⊂ {1, . . . , p} of cardinality m, we consider the data sampled

from random vectors (1, Xj1 , . . . , Xjm , Y ), where jk ∈ M, ∀k = 1, . . . ,m. We denote

~XM = {1, Xj1 , . . . , Xjm}, and define the slopes under this submodel, βn,M, as the

best linear approximation to Y from ~XM, i.e.,

βn,M = argminbE
[
‖Y − bT ~XM‖2

]
= E

[
~XM

~XT
M

]−1
E
[
~XMµ(~X)

]
. (2.4.1)
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The least squares estimate under M is given by

β̂n,M =
(
XT

MXM

)−1
XT

MY (2.4.2)

If ηn(~X) is not 0 a.s., then the LS estimate is biased:

E
[
β̂n,M

]
= E

[
(XT

MXM)−1XT
Mµn(X)

]
. (2.4.3)

The consistency and variance of β̂n,M are summarized in the following theorem.

Theorem 2.4.1. 1. β̂n,M is consistent

β̂n,M − βn,M
P→ 0. (2.4.4)

2. The variance of β̂n is given by

Var
[
β̂n
]

=E
[
(XT

MXM)−1XT
Mσ

2
n(X)XM(XT

MXM)−1
]

+ Var
[
(XT

MXM)−1XT
Mµn(X)

]
.

(2.4.5)

In particular, if the error is homoscedastic, then

Var
[
β̂n,M

]
= σ2

nE
[
(XT

MXM)−1
]

+ Var
[
(XT

MXM)−1XT
Mµn(X)

]
. (2.4.6)
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2.4.2 Valid Bootstrap Inference under A Submodel

To achieve valid post-selection inference, we first consider the valid inference under

a given submodel M. Mammen’s theorem (Theorem 2.3.2) shows that this valid

inference can be obtained through bootstrap. In fact, similarly as in (2.3.17), if we

define

ξn,i,M = Yi − βTn,M~Xi,M = βTn
~Xi + ηn(~Xi) + εi − βTn,M~Xi,M (2.4.7)

where ~Xi,M is the collection of the variables in M in the i-th observation, or

ξn,M = Y − βTn,M~XM = βTn
~X + ηn(~X) + ε− βTn,M~XM, (2.4.8)

then a sufficient condition for the asymptotically valid bootstrap inference for fixed

p is as follows:

Corollary 2.4.1. Suppose the following conditions hold:

1. The number of predictors p is fixed.

2. (~Xi,M, Yi) are i.i.d. with finite second moments E[Y 2
i ] <∞ and E[‖~Xi,M‖2] <

∞.

3. The eigenvalues of E[~XM
~XT

M] are bounded away from 0 and ∞ for all n.

4. 0 < infn E[ξ2
n,M] ≤ supn E[ξ2

n,M] <∞.

5.

sup
n

E
[
‖~XM‖4(1 + ξ4

n,M)
]
<∞. (2.4.9)
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Then for any j ∈ M,

d∞

(
L∗
(√

n
(
β̂∗n,j·M − β̂n,j·M

))
,L
(√

n
(
β̂n,j·M − βn,j·M

)))
P→ 0. (2.4.10)

2.4.3 A Split Samples Procedure

Based on the results in previous sections, we propose a split samples procedure for

valid post-selection inference. The procedure is done by the following three steps.

1. Randomly split the data {(~Xi, Yi)}ni=1 into a model selection sample of size nS,

{(~XS
i , Y

S
i )nS

i=1}, and an inference sample of size nI , {(~XI
i , Y

I
i )}nI

i=1.

2. In the model selection sample, apply a model selection rule M(·) to choose

submodel M̂ =M(XS,YS).

3. In the inference sample, estimate βn,M̂ by the LS estimate

β̂I
n,M̂

=
(
(XI

M̂
)TXI

M̂

)−1 (
XI

M̂

)T
YI . (2.4.11)

Also, for j ∈ M̂, use the bootstrap distribution to obtain valid (1 − α) confi-

dence intervals CI∗
n,j·M̂(1− α). Denote the bootstrap LS estimate by

β̂∗
n,M̂

=
(
(XI∗

M̂
)T XI∗

M̂

)−1 (
XI∗

M̂

)T
YI∗, (2.4.12)

and denote the bootstrap distribution of
(
β̂∗
n,j·M̂ − β̂n,j·M̂

)
by F ∗

n,j·M̂. A 1− α

confidence interval can be formed from appropriate quantiles of the bootstrap
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distribution:

CI∗
n,j·M̂(1− α) =

[
2β̂I

n,j·M̂ − F
∗
n,j·M̂,1−α/2, 2β̂

I
n,j·M̂ − F

∗
n,j·M̂,α/2

]
. (2.4.13)

We have the following asymptotic result on this procedure for fixed p. It states that

confidence intervals for LS estimates based on the split samples bootstrap procedure

have correct asymptotic coverage probability.

Corollary 2.4.2. Suppose the following conditions hold:

1. The number of predictors p is fixed.

2. (~Xi, Yi) are i.i.d. with finite second moments E[Y 2
i ] <∞ and E[‖~Xi‖2] <∞.

3. The eigenvalues of E[~X~XT ] are bounded away from 0 and ∞ for all n.

4. For ξn,M defined in (2.4.8), 0 < infn infM E[ξ2
n,M] ≤ supn supM E[ξ2

n,M] <∞.

5.

sup
n

sup
M

E
[
‖~XM‖4(1 + ξ4

n,M)
]
<∞. (2.4.14)

6. The inference sample size nI satisfies lim inf(nI/n) > 0 as n→∞.

Then for any j ∈ M̂ =M(XS,YS), as n→∞,

d∞

(
L∗
(√

nI

(
β̂∗
n,j·M̂ − β̂

I
n,j·M̂

))
,L
(√

nI

(
β̂I
n,j·M̂ − βn,j·M̂

)))
P→ 0. (2.4.15)
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Moreover, for CI∗
n,j·M̂(1− α) defined as in (2.4.13), as n→∞,

P
(
βn,j·M̂ ∈ CI∗

n,j·M̂(1− α)
)
→ 1− α. (2.4.16)

Here are some remarks:

1. There is no requirement on sample size on the model selection sample; however,

it is desirable that the size of the inference sample should be large.

2. This result does not depend on the model selection procedure as it requires

the regularity conditions to hold uniformly for every submodel.

2.5 Inference under First-Order Correctness and

Homoscedasticity

This section is organized as follows: The first subsection introduces the general

properties of LS estimates under the first-order correctness and homoscedasticity.

The second subsection focuses on the properties of the nonlinearity term in a fixed

submodel ξn,M. The third subsection describes some properties of the LS estimates

if we further assume the distribution of ~X is Gaussian. With the results from those

three subsections, we derive the theorem that the split samples bootstrap procedure

gives valid post-selection inference.
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2.5.1 The Properties of LS Estimates under First-Order

Correctness and Homoscedasticity

If ηn(~X) = 0 a.s., then by (2.3.2),

E
[
β̂n
]

= βn (2.5.1)

So the LS estimate in the full model is unbiased.

To see if the LS estimate in a submodel is unbiased, we first note that under a

submodel M, by (2.4.1)

βn,M =
(
E
[
~XM

~XT
M

])−1

E
[
~XM

~XT
]
βn. (2.5.2)

With this notation, we have the following theorem on the expectation of the LS

estimate under M, β̂n,M.

Theorem 2.5.1. Suppose the conditional expectation of ~XMc be linear given ~XM:

E
[
~XMc

∣∣~XM

]
= L~XM, (2.5.3)

where L is some matrix of size |Mc| × |M|. Then β̂n,M is an unbiased estimate of

βn,M.

Proof:

Let βn,[M] denote the vector consisting of those components of vector βn with

indices corresponding to variables in model M, let Σ[M,M] = E
[
~XM

~XT
M

]
, and let
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ΣMc|M = Σ[Mc,Mc] −Σ[Mc,M]Σ
−1
[M,M]Σ[M,Mc]. Then we have the following proposition

With the above notation, we have the following decomposition

βn,M = βn,[M] +
(
E
[
~XM

~XT
M

])−1

E
[
~XM

~XT
Mc

]
βn,[Mc]. (2.5.4)

Note that by (2.5.4),

βn,M = βn,[M] +
(
E
[
~XM

~XT
M

])−1

E
[
E
[
~XM

~XT
Mc

∣∣~X]]βn,[Mc] = βn,[M] + Lβn,[Mc].

(2.5.5)

Note also that by (2.4.3),

E
[
β̂n,M

]
= βn,[M] + E

[
E
[(
~XM

~XT
M

)−1~XM
~XT

Mcβn,[Mc]

∣∣~X]] = βn,[M] + Lβn,[Mc].

(2.5.6)

Hence, E
[
β̂n,M

]
= βn,M. �

For condition (2.5.3) to hold we need either

1. E[~X] = 0, or

2. Full model and submodel M both include an intercept.

2.5.2 Gaussian Case

Suppose further that (X1, . . . , Xp) ∼ N (0,Σ). Then we can have the following

result on the conditional distribution of β̂n,M.
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Theorem 2.5.2. Conditional on ~XM,

E
[
β̂n,M

∣∣XM

]
= βn,M (2.5.7)

Var
[
β̂n,M

∣∣XM

]
= κ2

M(XT
MXM)−1 (2.5.8)

where κ2
M = (βTn,[Mc]ΣMc|Mβn,[Mc] + σ2

n).

The unconditional distribution of β̂n,M is obtained as follows.

Theorem 2.5.3.

β̂n,M = βn,M + κMTm,n−m+1,Σ−1
[M,M]

/(n−m+1) (2.5.9)

where Tm,n−m+1,Σ−1
[M,M]

/(n−m+1) is an m-dimensional random vector having multivari-

ate t-distribution with n−m+ 1 degrees of freedom, location parameter 0 and scale

matrix Σ−1
[M,M]/(n−m+ 1).

In particular, the unconditional mean and variance-covariance matrix of β̂n,M are

given by

E
[
β̂n,M

]
= βn,M (2.5.10)

Var
[
β̂n,M

]
=

κ2
M

n−m− 1

(
Σ[M,M]

)−1
(2.5.11)
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2.5.3 Valid Bootstrap Inference in Submodels under the

Gaussian Distribution

Under Gaussian distribution, we can further simplify the conditions in Corollary

2.4.2. This is seen by noting that if (X1, . . . , Xp) ∼ N (0,Σn), then ~X and ξn,M =

βTn
~X − βTn,M~XM + εn have bound fourth moments. Thus, we have the following

corollary of Corollary 2.4.2, which shows that the split samples procedure gives valid

post-selection confidence intervals asymptotically under the normal distribution.

Corollary 2.5.1. Suppose {(~Xi, Yi)}ni=1 are i.i.d. observations from a Gaussian

population Pn(dx1, . . . , dxp, dy) such that the following conditions hold:

1. E
[
~X
]

= 0, E
[
Y |~X

]
= βTn

~X for some βn, and 0 < E
[
(Y − βTn ~X)2|~X

]
=

σ2
n <∞.

2. supn β
T
nE
[
~X~XT

]
βn <∞.

3. The inference sample size nI satisfies lim inf(nI/n) > 0 as n→∞.

Then for any j ∈ M̂ =M(XS,YS), as n→∞,

d∞

(
L∗
(√

n
(
β̂∗
n,j·M̂ − β̂

I
n,j·M̂

))
,L
(√

n
(
β̂I
n,j·M̂ − βn,j·M̂

)))
P→ 0. (2.5.12)
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Chapter 3

Using Split Samples in an

Observational Study

3.1 Introduction: background; methodological out-

line

3.1.1 A wave of closures of hospital obstetrics units

Beginning in 1997, a series of community hospitals in Philadelphia closed their ob-

stetrics units, so mothers who would normally have delivered at these hospitals had

to seek care at the city’s large regional hospitals whose obstetrics units remained

open. Between 1997 and 2007, 12 of 19 hospitals in the city closed their obstetrics

units. Nothing similar happened at this time in other major cities, which expe-

rienced only sporadic changes in the availability of obstetrics units. For instance,
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in Pittsburgh, Los Angeles, San Diego and San Francisco less than 5% of the de-

liveries in 1995 and 1996 were in obstetric units that subsequently closed between

1997-2005. Babies born in these and other cities will serve as controls. By contrast,

in Philadelphia, over 30% of the deliveries in 1995 and 1996 occurred at obstetrics

units that subsequently closed between 1997 and 2005. It is not entirely surprising

that a hospital facing competitive or financial pressures would consider closing its

obstetrics and neonatal units: these fields have unusually high costs associated with

malpractice litigation and malpractice insurance (Kirby et al. 2006). Why closures

should have concentrated in Philadelphia is less clear. In its densely urban cen-

ter, Philadelphia is home to several large hospitals associated with major medical

schools, but beyond its urban center, Philadelphia sprawls at considerable distance

into a variety of diverse neighborhoods served by smaller community hospitals; the

closures occurred here.

Of 19 Philadelphia hospitals with obstetrics units in 1995, 12 closed their obstetrics

units between 1997 and 2007; see Figure 3.1. In part based on a split sample

analysis described below, the analysis presented here focuses on five hospitals that

abruptly closed in 1997-1999, before the City of Philadelphia intervened in 2000 to

organize and slow the pace of subsequent closures and to offer strategies to allow

for the remaining hospitals to accommodate the increased obstetric volume. It is

interesting to note that four of the five closures during 1997-1999 were geographically

close, suggesting a cascade in which each successive closure increased the stress on

near-by units that remained open, perhaps leading to their closure. Conceivably,

the geography of Philadelphia’s closures explain why there was a wave of closures
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in Philadelphia with no similar pattern in other cities.

What was the effect of the 1997-1999 hospital closures on the health of mothers

and their newborn babies? Stories were told — perhaps some were even true —

of women in labor being delivered by ambulance to a hospital that had closed its

obstetrics unit the previous week. Other stories were told — more likely true —

of women in labor, some of them poor, traveling longer distances, perhaps in rush

hour, to reach an open obstetrics unit, of overcrowding and inadequate staffing at

the units that remained open. A closure in one neighborhood may force a mother

who lives in that neighborhood to travel a long distance to a hospital in another

neighborhood, but it may also cause overcrowding in a hospital remote from the

closure, and so it may affect mothers who live near the hospital that remained open.

It is easy to imagine a long trip to an overcrowded obstetrics unit is not beneficial.

Then again, many of the hospitals that remained open have excellent reputations,

better perhaps than the reputations of the hospitals that closed their obstetrics

units. Then again, teaching hospitals are home to the most and least experienced

doctors, professors of medicine and medical residents, who usually work in tandem,

but who found themselves short of staff. Then again, the human race has managed

to reproduce in circumstances considerably more dire than traffic and overcrowding.

It is hard to know what, if anything, to expect from the five closures in 1997-1999.

3.1.2 Matching to build a control Philadelphia

For each birth in Philadelphia in 1995-2003, we used multivariate techniques and an

optimal assignment algorithm to match a control birth from elsewhere in Pennsyl-
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Open
Closed in 1997−1999
Closed in 2000−2007

Figure 3.1: Map of the City of Philadelphia showing hospitals that closed their ob-
stetrics units. The analysis in the current paper focuses on closures in 1997-1999,
before the City intervened to pace and organize the process of closure.
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vania or California or Missouri, the three states for which we had the needed data.

Because there were 132,786 births in Philadelphia and 5,998,111 potential control

births elsewhere, the matching was on an unusually large scale. The matching was

done year-by-year, so a Philadelphia birth in 1995 was matched to a control birth

in 1995, and it controlled not only characteristics of the mother and baby, but also

characteristics of the mother’s neighborhood, such as typical income, the frequency

of poverty, and the level of education in the neighborhood. During this time peri-

od, Philadelphia mothers were quite different from the unmatched potential control

group: they came from neighborhoods with lower income, more poverty, and fewer

high school graduates; however, the mothers themselves (as opposed to their neigh-

borhoods) were more likely than potential controls to have graduated high school.

Philadelphia mothers were somewhat younger with less prenatal care, but their ba-

bies were, on average, slightly smaller. All of these measured differences and many

other measured differences were removed year by year using matching techniques;

see Section 3.2. The control mothers and infants are not only similar as individuals:

as a group, they have similar temporal and measured neighborhood characteristic-

s to births in Philadelphia in 1995-2003. Here, neighborhood characteristics are

measured at the zip-code level and are indicated in Table 3.1.

Why build a control Philadelphia? Because of the geography of Philadelphia, the

closures might be expected to affect certain neighborhoods more than others, and

each neighborhood has its own demographics, income, social and health problems.

A control Philadelphia permits straightforward questions about how mothers and

neighborhoods in Philadelphia changed in comparison with similar mothers and
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Table 3.1: Covariate balance before and after matching. For Zip Code data, zip-fr
means the fraction of the Zip Code with this attribute. An absolute standardized
difference in mean of 0.2 or greater is in bold.

Sample Size 5,998,111 132,786 132,786 Absolute
Potential Philadelphia Matched Standardized
Controls Births Controls Difference

Covariate Covariate Mean or Proportion Before After

Mom’s Neighborhood (Zip code)
Income (K$) 46 30 30 1.16 0.04
Income Missing 0.00 0.00 0.00 0.06 0.00
Poverty (zip-fr) 0.15 0.25 0.23 0.91 0.13
Poverty Missing 0.00 0.00 0.00 0.06 0.00
High School (zip-fr) 0.74 0.68 0.69 0.37 0.07
HS Missing 0.00 0.00 0.00 0.06 0.00
College (zip-fr) 0.22 0.15 0.15 0.51 0.01
College Missing 0.00 0.00 0.00 0.06 0.00

Mom
Mom’s Age 28 26 26 0.21 0.01
Parity 2.10 2.20 2.20 0.07 0.03
Parity Missing 0.00 0.01 0.01 0.09 0.04
Prenatal Care (Month Started) 2.40 2.70 2.60 0.22 0.04
PC Missing 0.02 0.11 0.08 0.37 0.11

Mom’s Education
Below 8th Grade 0.10 0.02 0.02 0.32 0.02
Some High School 0.17 0.21 0.20 0.11 0.04
HS Graduate 0.30 0.38 0.40 0.17 0.05
Some College 0.20 0.19 0.19 0.02 0.01
College Graduate 0.13 0.09 0.10 0.11 0.01
More than College 0.09 0.06 0.06 0.11 0.00
Missing 0.01 0.04 0.04 0.17 0.04

Mom’s Race
White 0.71 0.31 0.32 0.87 0.03
Black 0.07 0.42 0.46 0.88 0.11
Asian 0.07 0.03 0.03 0.18 0.03
Other 0.12 0.06 0.05 0.20 0.05
Missing 0.02 0.17 0.14 0.52 0.13

Mom’s Health Insurance
Government 0.40 0.40 0.39 0.01 0.02
Other Insurance 0.57 0.58 0.60 0.02 0.04
Uninsured 0.03 0.01 0.01 0.11 0.04
Missing 0.00 0.01 0.00 0.11 0.06

Baby
Birth Weight, (grams) 3345 3179 3189 0.26 0.02
Birth Weight Missing 0.00 0.00 0.00 0.04 0.03
Gestational Age (Weeks) 39 38 38 0.14 0.01
Gestational Age Missing 0.05 0.01 0.01 0.22 0.02
Small at Gestational Age 0.09 0.14 0.12 0.16 0.05
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neighborhoods elsewhere.

Abadie and Gardeazabal (2003) and Abadie, Diamond, and Hainmueller (2010)

developed an innovative approach to using aggregate data to synthesize a control for

a region that was subjected to an intervention. Their synthetic control is a weight-

ed combination of actual regions that were not subjected to the intervention. For

example, in their study of the economic impact of terrorism in the Basque Country,

Abadie and Gardeazabal (2003) use a weighted combination of two Spanish regions

to approximate the economic growth that the Basque Country would have experi-

enced in the absence of terrorism. The weighted combination is chosen to match

the region subjected to the intervention in its covariates and trajectory of outcomes

prior to the intervention. Abadie, Diamond and Hainmueller (2010) developed an

inferential approach when using synthetic controls that is akin to permutation infer-

ence. They use placebo tests to examine whether or not the estimated effect of the

actual intervention is large relative to the distribution of the effects estimated for

the regions not exposed to the intervention, where the synthetic control method is

also used to estimate effects for regions not exposed to the intervention. A valuable

feature of Abadie et al.’s synthetic control approach is that it only requires aggre-

gate data on regions, which are often the only type of data available. For our study

of the effect of the obstetric unit closures in Philadelphia, we are fortunate to have

individual data on mothers and babies, which permit, for example, comparisons of

parts of Philadelphia with its control.
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3.1.3 Splitting

Philadelphia mothers and infants may have differed from controls in ways that were

not measured and hence not controlled by matching for observed covariates. After

adjustment for observed covariates, the key source of uncertainty in an observational

study is the possibility that differences in outcomes between treated and control

subjects are not effects of the treatment but rather biases from some unmeasured

way in which treated and control subjects were not comparable. Our analysis is

largely directed at this possibility.

A sensitivity analysis asks how failure to control some unmeasured covariate might

alter the conclusions of a study. Many issues affect the sensitivity of conclusions to

unmeasured biases (Rosenbaum 2004; 2010a, Part III; 2010b), but most of these

issues are difficult to appraise in the absence of data. Heller et al. (2009) made a

formal argument for splitting the sample at random into a small planning sample

of perhaps 10% and a large analysis sample of perhaps 90%. The planning sample

is used to design the study — to frame questions and guide the analytical plan

— whereupon the planning sample is discarded; then, all conclusions are based

on the untouched, unexamined, untainted analysis sample. If one were to perform

several or many analyses of a single data set, noting that a particular conclusion was

insensitive to unmeasured biases, then one would not know whether this judgement

about sensitivity to bias was distorted by capitalizing on chance in picking the most

favorable of these analyses. In contrast, the use of a split sample permits exploration

of unlimited scope in a planning sample, and an independent, untainted, highly

focused analysis of the analysis sample. Cox (1975) evaluated splitting to control
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for multiple testing in randomized experiments, but Heller et al. (2009) find that

splitting is even more useful in sensitivity analyses in observational studies because

the biases from unmeasured covariates do not diminish as the sample size increases.

If one could make decisions that would make the study less sensitive to unmeasured

biases by sacrificing a small portion of the sample, then that sacrifice might be well

worth making. The formal argument in Heller et al. (2009) evaluates power and

design sensitivity in split samples.

As Cox (ibid.) emphasized, splitting has an important advantage over most meth-

ods that address multiple testing, namely it permits human judgement to play an

informed role between exploratory analysis of the planning and focused confirmato-

ry analysis of the analysis sample. Formal or algorithmic procedures that address

multiple testing, such as the Bonferroni inequality, do not leave a role for judgement;

rather, their form must be prespecified. In the current study, this meant that an

extensive analysis of the planning sample was discussed at a meeting of the clinicians

and statisticians, and the analysis plan that emerged from that meeting reflected

results from the planning sample combined with clinical and statistical judgement.

For instance, before looking at any data, we thought that overcrowding in an ob-

stetrics ward might result in an increase in Caesarean sections and birth injuries of

various kinds, but the planning sample strongly suggested a focus on serious birth

injuries (ICD-9 767-3), and not a focus on Caesarean sections. In part, our focus

on serious birth injuries reflects what we saw in the planning sample, but in part

it reflects a judgement about an effect that seems both plausible and clinically in-

teresting. The planning split also revealed that several outcomes were simply too

87



rare to study even with the much larger analysis sample; here, it is not the P -value

but the event rate that provides information relevant to power computations for the

as yet unexamined analysis sample. Although one can mechanize the evaluation of

many P -values, one cannot mechanize an evaluation of many P -values that incor-

porates human judgement about what is plausible and interesting. Because human

judgement cannot be mechanized, it is not typically possible to perform the same

analysis on many repeated splits of the sample, as one might do in cross-validation.

Here, we took a small random sample of the matched pairs, 10% or 13,278 pairs

in this study, and used it to plan the main analysis, which concerned the comple-

mentary 90% of pairs or 119,508 pairs. Among many outcomes examined using the

planning split sample, we were led to focus on birth injuries, specifically ICD code

767.3, and on the years 1997-1999 when five hospitals abruptly closed their obstet-

rics units. Beginning in 2000, the City of Philadelphia intervened to slow down

and organize closures. Before looking at the planning sample, it was not obvious

to us whether the City’s intervention had been more than a symbolic gesture, but

the planning sample suggested that most of the action occurred in 1997-1999, that

is, after the City’s intervention there was no discernable effect of hospital closures.

If this analytic focus had come about after examining many outcomes and various

comparisons for those outcomes using the complete data, then there would naturally

be reason for concern that the focus was distorted by capitalizing on chance events

that only appear to be systematic patterns. However, this analytic focus came about

by examining a random sample of 10% of the pairs, and 90% of the pairs remain to

put this carefully chosen, very specific focus to a proper test. One might imagine
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two investigators, one who early on published a small, informal, exploratory, high-

ly speculative and not particularly convincing study involving many comparisons,

with the second investigator taking the one promising result from the first study

and confirming it in a much larger independent sample. From an inferential point of

view, it makes no difference whether there were two investigators or only one, that

is, no difference between, on the one hand, replicating a promising but speculative

finding by someone else and, on the other hand, generating both the speculative

finding and the confirmation using split samples.

3.1.4 Evidence factors

If we are looking at a treatment effect, not a bias from unmeasured covariates,

then we anticipate several patterns. First, when compared to similar births in

other states, an effect of the closures should be absent in 1995-1996 and present

in 1997-1999. For birth injuries, a binary outcome, this leads to a difference-in-

difference analysis along the lines suggested by Gart (1969) for randomized cross-

over studies; see Section 3.4 where discordant pairs become the counts in a 2 × 2

table that is subjected to a sensitivity analysis. Second, we identified thirteen zip

codes in northern Philadelphia as close to the hospitals with closures (specifically,

19115, 19119, 19121, 19127, 19128, 19129, 19131, 19132, 19135, 19136, 19144, 19149,

19152). Of course, overcrowding occurred in the obstetrics units that remained

open, and many of these were at some distance from the closures; nonetheless,

it is reasonable to contrast zip codes with closures to zip codes without closures

in 1997-1999, anticipating a larger effect on zip codes with closures. Finally, if
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the difference between the Philadelphia-versus control difference in the zip codes

with closures and in zip codes without closures was already apparent in 1995-1996,

before the closures, then that cannot plausibly be an effect of the closures; rather, it

must indicate that our matching and difference-in-differences have failed to compare

comparable mothers under different treatments. The first two comparisons are an

example of evidence factors, that is, of (nearly) independent tests of the hypothesis

of no treatment effect that are susceptible to different kinds of unmeasured biases

(Rosenbaum 2010c), whereas the third comparison is a test for unmeasured bias

(Rosenbaum 1984).

The method of difference-in-differences has a long history; see, for instance, Camp-

bell (1957, 1969), Meyer (1995), Angrist and Krueger (2000), Shadish, Cook and

Campbell (2002) and Athey and Imbens (2006). A conventional description of

difference-in-differences follows, although Proposition 3.4.1 departs from this de-

scription by studying sensitivity to biases that can affect difference-in-difference

studies. In a nonrandomized treatment-versus-control comparison the treatment ef-

fect is aliased with stable but unmeasured baseline differences between treated and

control groups, whereas in a before-versus-after comparison, the treatment effect

is aliased with trends over time. In contrast, in a difference-in-differences study,

the treatment effect is aliased neither with stable unmeasured baseline differences

between treated and control groups nor with trends over time that affect all groups

in the same way, but it is aliased with the interaction of those two sources of bias.

Proposition 3.4.1 examines sensitivity of inferences about effects to biases from such

interactions. Although difference-in-differences is conventionally defined in terms of
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the passage of time, it is more generally relevant to situations in which a treatment

effect is aliased with the interaction of two sources of bias, and this generality is

exploited here in the second evidence factor, where time is replaced by Philadelphia

zip codes near closures.

For a recent review of matching techniques, see Stuart (2010). For discussion of the

importance of anticipated patterns in observational studies, see Campbell (1957),

Trochim (1985), Shadish, Cook and Campbell (2002) and West et al. (2008). Various

methods of sensitivity analysis in observational studies are discussed by Cornfield

et al. (1959), Rosenbaum and Rubin (1983), Yanagawa (1984), Gastwirth(1992),

Gastwirth, Krieger, and Rosenbaum (1998), Rosenbaum (1995; 2002, Section 4),

Marcus (1997), Lin et al. (1998), Robins et al. (1999), Copas and Eguchi (2001),

Imbens (2003) and DiPrete and Gangl (2004).

3.2 Matching

3.2.1 Philadelphia and elsewhere, before and after matching

We obtained birth certificates from all deliveries occurring in Pennsylvania, Cali-

fornia and Missouri between 1/1/1995 and 6/30/2005. Each state’s department of

health linked these birth certificates to death certificates using name and date of

birth, and then de-identified the records. We then linked over 98% of birth cer-

tificates to maternal and newborn hospital records. Over 80% of the remaining

unlinked birth certificate records failed to identify a hospital, suggesting a birth at

home or a birthing center. The unlinked records had similar gestational age and
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racial/ethnic distributions to the linked records. For the maternal and newborn

hospital records, California, Missouri, and Pennsylvania routinely collect informa-

tion on all hospital admissions within each state. Each patient record contains the

UB-92 form submitted by each hospital to the state, with 15 to 25 fields for princi-

pal diagnoses and procedures occurring during the hospital stay. Birth certificates

contain information on birth weight, gestational age, and patient-level demographic

variables and obstetric risk factors. Sociodemographic information on the mother’s

zip code is obtained from the Bureau of the Census.

Each baby born in Philadelphia was matched with a baby born in other regions

of Pennsylvania or California or Missouri. In each year, the match balanced 59

observed covariates. Of these, 34 covariates are listed in Table 3.1, which gives

their means among potential controls outside Philadelphia, in Philadelphia, and

in the matched controls. These covariates describe the socioeconomic status of

mom’s neighborhood, mom’s own age, parity, prenatal care, education, race, and

health insurance, and baby’s birth weight and gestational age, two key measures of

a newborn’s health status. Because we are interested in the effects of the hospitals

at the time of delivery, we adjust for quantities such as gestational age and birth

weight that are essentially determined prior to admission to the hospital. These

factors are associated with different risks of many neonatal outcomes (Stoll et al.

2010). A study of prenatal care, as opposed to care around the time of delivery,

would not adjust for gestational age and birth weight, although in fact there is little

compelling evidence that prenatal medical care has much effect on preterm delivery

(American College of Gynecology 2003, Hollowell et al. 2011). Babies were also
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matched exactly for year of birth.

For each of the 34 covariates, Table 3.1 also gives the standardized absolute dif-

ference in means before and after matching, that is, Philadelphia-versus-potential

controls and Philadelphia-versus-matched controls. The pooled standard deviation

used in this measure is calculated as the square root of the equally weighted average

of the sample variances inside and outside Philadelphia before matching, so match-

ing changes the numerator, that is the difference in means, but it does not change

the denominator, the pooled standard deviation. See Rosenbaum and Rubin (1985)

for discussion of this conventional measure of covariate imbalance. In addition to the

covariates in Table 3.1, there are 25 other covariates, 59 = 34 + 25, which describe

rare congenital anomalies or problems in the pregnancy that existed long before the

start of labor.

Before matching, compared to potential controls, Philadelphia mothers were, on

average, more likely to live in a low income neighborhood in which fewer people had

college degrees, slightly younger with a little less prenatal care, more likely to have

completed 8th grade, more often black, and gave birth to somewhat smaller babies.

Figure 3.2 displays all 59 absolute standardized differences in means in each of

five years, 1995-1999. Before matching several covariates differed by more than

0.8 standard deviations. After matching, all 295 = 5 × 59 standardized differences

in means after matching are less than 0.2 standard deviations. Before matching,

the maximum and upper quartile of the 295 absolute standardized differences were

1.19 and 0.18, whereas after matching they were 0.19 and 0.06, respectively. For

comparison, a Normal distribution has 95% of its probability on an interval that is
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Figure 3.2: Covariate balance before (B) and after (A) matching for 59 covariates in
each of five years, measured as the absolute difference in means in units of a pooled
standard deviation.
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approximately four standard deviations in length, so 0.19 and 0.06 of a standard

deviation are approximately 5% and 2% of such an interval. In brief, Figure 3.2

shows that after matching, all of the 59 covariate means were in reasonable balance

in every year; that is, Philadelphia and control-Philadelphia were similar in terms

of these covariates year by year. Figure 3.3 displays balance for four continuous

covariates.

3.2.2 How the matching was done

There were 132,786 births in Philadelphia and 5,998,111 potential control births

to choose from in building the matched comparison. In matching, a large sample

size should be a luxury, but if inappropriate methods are used, it can appear to

be a hindrance. A 132786× 5998111 distance matrix would contain approximately

7.96 × 1011 numbers, and this is well beyond what can be handled with current

combinatorial optimization techniques on current computers. There is a simple

solution, however: match exactly for some important covariates, thereby reducing

one large problem to a series of smaller problems; see Rosenbaum (2010a, Section

9.3).

We ordered the covariates by priority, year of birth being first because of the

structure of the study, followed by gestational age in weeks (0, 33], (33, 36], (36, 38],

(38, 40] and (40,∞), categories based on an estimated propensity score for the

propensity to be born in Philadelphia, mother’s age in years (0, 18], (18, 34], (34,∞),

mother’s education in four groups by degree. The algorithm first looked at the size

of the distance matrix within a given year; if that was too large, it looked at the size

95



Potential
Controls

Philadelphia
Births

Matched
Controls

0
20

40
60

80

In
co

m
e 

(K
$)

 

Potential
Controls

Philadelphia
Births

Matched
Controls

10
20

30
40

M
at

er
na

l A
ge

Potential
Controls

Philadelphia
Births

Matched
Controls

20
00

25
00

30
00

35
00

40
00

45
00

B
ir

th
 W

ei
gh

t (
gr

am
s)

Potential
Controls

Philadelphia
Births

Matched
Controls

36
38

40
42

G
es

ta
tio

na
l A

ge
 (

w
ee

ks
)

Figure 3.3: Covariate imbalance before and after matching for four continuous co-
variates, namely income, maternal age, birth weight, and gestational age.
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of the distance matrix within a given year and gestational age; if that was too large,

it looked within a given year, gestational age and propensity score group, and so

on. Once the size of the distance matrix was manageable, the distance matrix was

computed using a rank-based Mahalanobis distance within calipers for an estimated

propensity score (Rosenbaum and Rubin 1985; Rosenbaum 2010a, Section 8), and

an optimal match was determined to minimize the total distance within matched

pairs (Rosenbaum 1989; 2010a, Section 8). Calipers on the propensity score ensure a

close match on a unidimensional summary sufficient to remove bias from imbalances

in observed covariates; see Rosenbaum and Rubin (1985) and Abadie and Imbens

(2011) for discussion of calipers and unidimensionality in matching. The compu-

tations used Hansen’s (2007) optmatch package in R; see also Hansen and Klopfer

(2006).

3.3 Splitting

3.3.1 A 10%-90% random split for design and analysis

As proposed by Heller et al. (2009), within each year, the planning sample was a 10%

sample of pairs drawn at random without replacement. The analysis sample was

the complementary 90% of pairs. As noted in Section 3.1.2, the base period, 1995-

1996 had no closures of obstetrics units, 1997-1999 had five abrupt closures, whereas

beginning in 2000 the City of Philadelphia intervened to prevent abrupt closures so

that closures followed some delay and reorganization among open hospitals. The

planning sample looked at 38 outcomes in each of two time periods defined by the
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City’s intervention in the process of closure, 1997-1999 and 2000-2003, for all zip

codes, for zip codes close to closures and for zip codes remote from closures, so a

total of 38 × 2 × 3 = 228 significance levels were computed. Consistent with the

discussion by Cox (1975) and Heller et al. (2009), sample splitting served as a

substitute for a correction for multiple testing.

The planning sample suggested several interesting hypotheses, and here we focus

on one of these, namely birth injury ICD-9 767.3. Unlike some of the other 767

codes, code 767.3 is a serious injury, such as fracture of long bones or the skull, not

a routine abrasion of a normal birth. The planning sample suggested an increase

in such birth injuries in Philadelphia in 1997-1999 with a return to normal in 2000-

2003, with some indication that the increase was more pronounced for mothers who

lived in zip codes affected by closures.

The planning sample is used informally to suggest interesting hypotheses and ap-

propriate analyses. To motivate and clarify the theoretical discussion in Section 3.4,

we present an analysis of birth injury for the 10% planning sample in the same form

that will be used in the final analysis of the complementary 90% sample. Actually,

we did quite a bit of analysis of the planning sample before settling upon this form.

Having selected this form, the analysis of the complementary 90% sample simply

used this one form on this outcome. The analysis of the 90% sample incorporates a

sensitivity analysis developed in Section 3.4.
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3.3.2 Birth injury in the planning sample: the largest dif-

ference, two nearly independent tests for effect and a

test for unmeasured bias

Table 3.2 is the analysis of birth injury for the 10% planning sample. It has four

panels labeled “ a comparison focused on the most affected groups,”“ factor 1,”“

factor 2,”“ bias test.”Factor 1 is the simplest comparison, so it is described first; then

the other parallel comparisons are described briefly. Table 3.2 counts Philadelphia-

control pairs discordant for birth injury, that is, pairs in which exactly one baby

experienced a birth injury. Factor 1 compares Philadelphia to control in 1997-1999

versus 1995-1996. In 1995-1996, there were 85 pairs containing one birth injury,

and in 43 pairs it was the Philadelphia baby who was injured and in 42 pairs it

was the control baby who was injured. In contrast, during the period of closures,

1997-1999, there were 184 pairs with birth injuries, and in 141 of the 184 pairs

it was the Philadelphia baby who experienced the injury. The odds ratio in this

2× 2 table is 3.19, so it looks as if there was an increase in the risk of birth injury

in Philadelphia during the period of hospital closures. Because of this observation

in the planning sample, the analysis in the complementary 90% sample will look

for an increase in risk for this same outcome. Our data do not locate the birth

injury as occurring either in the hospital or prior to reaching the hospital, say in an

ambulance. The most affected group contrasts Philadelphia zip codes near closures

to matched controls in 1995-1996 and in 1997-1999; both a priori and as indicated

in this planning split sample, it seems reasonable to think that if a strong effect is
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Table 3.2: Results for birth injury in the planning component of the split sample. The
table counts discordant pairs in which exactly one baby in the pair was injured. Factor
1 contrasts the affected years (1997-1999) with hospital closures in Philadelphia to
the base years (1995-1996) without closures. Factor 2 looks within the affected years
(1997-1999) and contrasts zip codes with (W) closures to zip codes without (W/O)
closures. The bias test contrasts the same zip codes, but in the years (1995-1996)
prior to closures, so a difference there cannot be an effect caused by hospital closures,
and would instead indicate a failure to control some unmeasured bias. The P -values
and odds ratios are from Gart’s (1969) procedure.

A comparison focused on the most affected groups
Birth Outcomes in Zip Codes With Closures
Discordant Pairs 1995-1999

Philadelphia Control Affected Base
Baby Baby 1997-1999 1995-1996 Total (+)

Injured Not Injured 52 8 60
Not Injured Injured 12 11 23

Total (+) 64 19 83
Odds Ratio 5.80
Alternative 1-sided
P -value 0.0016

95% Interval [2.03, ∞)

Factor 1 Factor 2 Bias Test
Birth Outcome 1995-1999 1997-1999 1995-1996

Discordant Pairs Time Period Zip Code Zip Code
Philadelphia Control Affected Base Closures Closures

Baby Baby 97-99 95-96 + W W/O + W W/O +
Injured Not Injured 141 43 184 52 89 141 8 35 43

Not Injured Injured 43 42 85 12 31 43 11 31 42
Total (+) 184 85 269 64 120 184 19 66 85

Odds Ratio 3.19 1.51 0.65
Alternative 1-sided 1-sided 2-sided
P -value 0.000023 0.19 0.44

95% Interval [1.95, ∞) [0.76, ∞) [0.20, 2.03]

to be found, it will be found here.

Gart (1969) proposed an analysis for a randomized, two-period cross-over exper-

iment with a binary outcome which we generalize for use here. His analysis is

suggested by a logit model with additive pair and time effects plus a treatment ef-

fect. In such a model, the nuisance parameters are eliminated by conditioning on

sufficient statistics, so that the treatment effect is tested by comparing two sets of
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discordant matched pairs to the hypergeometric distribution in a 2 × 2 table anal-

ysis. In Table 3.2, we perform this analysis several times, and in Section 3.4 we

examine the analysis in the context of a non-randomized observational study and

generalize it to permit a sensitivity analysis. Happily, after a few steps, the sensitiv-

ity analysis for binary difference-in-differences turns out to be an almost standard

sensitivity analysis for a 2× 2 table, so the situation in observational studies devel-

ops in parallel with Gart’s (1969) analysis for a randomized cross-over study. There

is, however, a curious transformation of the magnitude of the sensitivity parameter;

see Proposition 3.4.1.

Judged by Gart’s test, the increase in risk of birth injury in “ factor 1”in the

planning sample is significantly different from an odds ratio of 1, with one-sided

significance level 0.000023 and one-sided 95% confidence interval [1.95, ∞). In the

planning sample alone, if one did a Bonferroni correction for 228 two-sided tests,

the significance level would be approximately 0.01.

In Table 3.2, factor 2 looks just at the years of closures, 1997-1999, and contrasts

zip codes near closures in 1997-1999 to zip codes remote from closures. As mentioned

in Section 3.1.2, the overcrowding did not occur at the closed obstetrics units but

at the ones that remained open, so mothers in zip codes remote from closures may

have been affected by sharing an overcrowded obstetrics unit with mothers who

came from zip codes with closures. On the other hand, mothers in zip codes with

closures faced a newly lengthened trip to the obstetrics unit and may have been

unexpected there. In any event, factor 2 is another difference-in-difference analysis

in the manner of Gart (1969) but now contrasting Philadelphia-control pairs for
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zip codes near closures to pairs for zip codes remote from closures. The odds ratio

is 1.51, consistent with increased risk, but it does not differ significantly from 1

in this 10% planning sample. The panel labeled “ bias test” in Table 3.2 is the

same comparison but done in the years before closures: any systematic difference

here could not be an effect of the closures and must reflect some uncontrolled bias.

The odds ratio is 0.65 and is not significantly different from 1 in this 10% planning

sample.

The analysis for the most affected group in Table 3.2 looks just at zip codes

near closures, comparing 1997-1999 to 1995-1996. It is in this comparison that we

might anticipate the largest effect. The odds ratio is 5.8 with a one-sided 95%

confidence interval of [2.03, ∞). Because this is one of the largest of hundreds of

estimated odds ratios in the 10% planning sample, we have reason to suspect that

it is biased upwards; nonetheless, this seems like a promising comparison to make

in the independent 90% analysis sample which will be examined in Section 3.5.

There is an important difference between, on the one hand, factors 1 and 2 and,

on the other hand, the analysis of the most affected groups. Factors 1 and 2 are

not redundant; indeed, they are nearly independent tests when the hypothesis of no

treatment effect is true, that is, they are approximate evidence factors. If the null

hypothesis of no effect were true, then exact evidence factors would be statistically

independent (Rosenbaum 2010c) and, strictly speaking, factors 1 and 2 in Table

3.2 do not qualify; however, they are nearly independent and so are approximate

evidence factors (Rosenbaum 2011, Lemma 4 and Section 7). Moreover, the unmea-

sured biases that affect these two comparisons are different — in factor 1, unmea-
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sured ways Philadelphia changed over time differently than control-Philadelphia, in

factor 2 unmeasured ways that the difference between Philadelphia moms and con-

trols in zip codes with closures in 1997-1999 differed from the pairs for zip codes

without closures. In this sense, the two factors are providing separate, not redun-

dant, information about birth injuries possibly caused by abrupt hospital closures.

In contrast, the most affected analysis in Table 3.2 is heavily redundant with the

other two analyses; it expresses the same evidence in a different way.

What does it mean to say that two evidence factors are “ nearly independent”

?It means that under the null hypothesis, the two P -values for the two factors are

stochastically larger than the uniform distribution on the unit square, so viewing

them as independent P -values would not lead to inflation of the type-1 error rate.

For example, in a 2× 3 contingency table, the null hypothesis of independence may

be tested by computing a chi-square for independence with one degree of freedom

comparing column one to the total of columns two and three, and another chi-square

for independence comparing columns two and three (Lancaster 1949, expression 18).

These two P -values are not independent, because the second column of the first table

is the marginal row total of the second table; however, the pair of resulting P -values

are stochastically larger than uniform under the null hypothesis of independence.

For detailed discussion of approximate evidence factors together with associated

sensitivity analyses, see Rosenbaum (2011).

It was a given that we would look at infant mortality, so that decision was made

without reference to the planning sample, and the entire data set was used. Although

we do not present that analysis here, it is worth mentioning that for death there
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were no significant differences in the four analyses that parallel Table 3.2 and the

point estimates suggest that nothing dramatic had occurred.

3.4 Observational studies with binary outcome and

difference-in-differences

3.4.1 Notation: base and intervention periods; exposed and

unexposed regions

There are I pairs, i = 1, . . . , I, of two mothers, k = 1, 2, who gave birth in the

same year, one giving birth in Philadelphia, denoted Zik = 1, the other giving birth

elsewhere, denoted Zik = 0, so Zi1 + Zi2 = 1 for each i. The mothers have been

matched for an observed covariate xik, so xi1 = xi2, but there is concern also about

an unobserved covariate uik that was not matched, so possibly ui1 6= ui2. Because

we match for year of birth, year is included in xik.

In using mothers outside Philadelphia as controls for mothers inside Philadelphi-

a, we are contemplating what would have happened to paired mothers had they

interchanged roles, the Philadelphia mother living and delivering in Pittsburgh,

say, and the Pittsburgh mother with whom she is paired delivering in Philadel-

phia. That is to say, each mother (or her newborn baby) has two potential bi-

nary responses, rT ik if mother ik delivered in Philadelphia or rCik if mother ik

delivered elsewhere; see Neyman (1923) and Rubin (1974). Fisher’s (1935) sharp

null hypothesis of no treatment effect asserts H0 : rT ik = rCik for i = 1, . . . , I,
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k = 1, 2. In Table 3.2, (rT ik, rCik) refers to birth injury of type ICD-9 767.3, and

(rT ik, rCik) = (1, 0) indicates that baby ik would have experienced a birth injury in

Philadelphia but not in, say, Pittsburgh. Under Fisher’s H0, (rT ik, rCik) = (0, 0) or

(rT ik, rCik) = (1, 1), so some babies had birth injuries and others did not, but chang-

ing where mother ik delivered would not change whether a birth injury occurred.

Write Rik = Zik rT ik + (1− Zik) rCik for the observed response of mother ik. Also,

write F = {(rT ik, rCik,xik, uik) , i = 1, . . . , I, k = 1, 2}.

3.4.2 Model for sensitivity analysis

Even if Fisher’s null hypothesis H0 were true, birth outcomes might be different

in Philadelphia and elsewhere because mothers in Philadelphia differ from mothers

elsewhere. This may be expressed in terms of a model that relates delivery in

Philadelphia to characteristics of mothers and their neighborhoods in F . This model

begins by describing the situation prior to matching. The model says that prior to

matching, the Zik were conditionally independent given Fwith

Pr (Zik = 1| F) =
exp {κ (xik) + γuik + %rCik}

1 + exp {κ (xik) + γuik + %rCik}
, 0 ≤ uik ≤ 1 (3.4.1)

where κ (·) is an unknown function. In (3.4.1), by Bayes theorem, the term κ (xik)

permits the distribution of observed covariates xik in Philadelphia to differ from the

distribution among potential controls before matching, as indeed is seen to be the

case in Table 3.1; moreover, because year is in xik, (3.4.1) permits this difference in

observed covariates to be different in different years.

105



In (3.4.1), if % 6= 0 then the response rCik the mother or baby would exhibit

outside Philadelphia is related to whether the mother delivers in Philadelphia; that

is, by Bayes theorem under (3.4.1), birth injuries may be more or less common

in Philadelphia than elsewhere. A bias of the form % 6= 0 would be the worst

type of bias if one were comparing Philadelphia to matched control, but the study

compares Philadelphia in two time periods to control in two time periods, and for

this comparison % 6= 0 is less of a problem. Of course, we cannot estimate % because

we observe Rik not rCik; in particular, we never observe rCik when Zik = 1, so we

could not fit (3.4.1) even if we somehow knew that γ = 0.

If γ 6= 0 in (3.4.1), then the unobserved (and hence unmatched) covariate uik is

related to whether a mother delivers in Philadelphia. Because 0 ≤ uik ≤ 1 in (3.4.1),

two mothers ik and ik′ with (xik, rCik) = (xik′ , rCik′) may differ in their odds of

delivering in Philadelphia by a factor of at most Γ = exp (γ) because uik and uik′

differ. Because uij is otherwise unconstrained, it may be different in Philadelphia

and control in a different way before and after hospital closures. The term γuik

with 0 ≤ uik ≤ 1 introduces a bias of entirely unspecified form but of a magnitude

determined by the magnitude of the sensitivity parameter Γ.

To aid interpretation, it is sometimes convenient to unpack the single parameter

Γ into two parameters (∆,Λ) as Γ = (1 + ∆Λ) / (∆ + Λ) where Λ controls the

relationship between ui1−ui2 and Zi1−Zi2 and ∆ controls the relationship between

ui1−ui2 and rCi1−rCi2. Here, YCi = (Zi1 − Zi2) (rCi1 − rCi2) is 1 if the Philadelphia

baby would have had a birth injury if delivery had occurred outside Philadelphia

but the control would not, Yi = −1 if the situation were reversed, and Yi = 0 if both
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babies would have had the same outcome outside Philadelphia. If % = 0 so that

McNemar’s test may be used in a sensitivity analysis comparing Philadelphia babies

to controls, a value of Γ = 1.25 unpacks into the curve 1.25 = (1 + ∆Λ) / (∆ + Λ),

which includes, for example, (∆,Λ) = (2, 2) for a uik that doubles the odds of

delivering in Philadelphia and doubles the odds of a birth injury, but it also includes

(∆,Λ) = (1.4, 5) and (∆,Λ) = (5, 1.4). Analogously, Γ = 2 unpacks into (∆,Λ) =

(3, 5) and (∆,Λ) = (5, 3) and other values on the curve Γ = (1 + ∆Λ) / (∆ + Λ).

For discussion of various aspects of this interpretation of the magnitude of Γ, see

Gastwirth, Krieger and Rosenbaum (1998, Section 2) and Rosenbaum and Silber

(2009a).

Our analysis eliminates % in (3.4.1) as a nuisance parameter; see Proposition 3.4.1.

In one sense the value of % does matter because it affects the patterns of data we see,

but in another sense it does not matter because no matter what value % takes on, the

difference-in-differences analysis will fully account for it. Because of this and because

(3.4.1) is linear in uik and rCik on the logit scale, we may assume without loss of

generality that the unobserved covariate, uik, is uncorrelated with birth injuries in

the absence of closures, rCik, because if this were not the case, we could replace uik

by its least squares residual ŭik = uik− (ϑ+ ηrCik), so ŭik and rCik are uncorrelated,

and κ (xik) + γuik + %rCik in (3.4.1) equals {κ (xik) + ϑ} + γŭik + (%+ η) rCik. In

other words, an unobserved covariate uik cannot bias the analysis by virtue of being

related to birth injuries; it must instead in Factor 1 be related to birth injuries in

a different way in different years, or in Factor 2 it must be related to birth injuries

in a different way in different zip codes. Although this appears to be an attractive
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feature of the difference-in-differences analysis, there is a nontrivial price to be paid

for it. If % were known to be zero, then Philadelphia and control-Philadelphia could

be compared directly, say using McNemar’s test for binary responses in matched

pairs, and the bias from uik would be of magnitude γ on the logit scale or Γ =

exp (γ) in terms of odds; see Rosenbaum (2002, Section 4.3.2). In contrast, although

the difference-in-differences analysis may take uik to be uncorrelated with rCik, the

analysis faces a bias from uik of magnitude 2γ on the logit scale or Θ = Γ2 = exp (2γ)

in terms of odds; again, see Proposition 3.4.1. In brief, the difference-in-difference

analysis is completely unaffected by certain unmeasured biases perfectly correlated

with rCik, but is twice as sensitive to certain other unmeasured biases uncorrelated

with rCik. A mathematically distinct yet conceptually related phenomenon has been

noted previously, with difference-in-differences studies being more severely affected

by errors-of-measurement (Freeman 1984, Griliches and Hausman1986).

After matching for xik, so that xi1 = xi2 and Zi1 + Zi2 = 1, the model (3.4.1)

implies

Pr (Zi1 = 1| F , Zi1 + Zi2 = 1) =
exp (γui1 + %rCi1)

exp (γui1 + %rCi1) + exp (γui2 + %rCi2)
. (3.4.2)

In particular, (3.4.2) is 1
2

if γ = % = 0, but otherwise treatment assignment is biased.

An alternative but nearly equivalent formulation of the model would omit reference

to the population prior to matching — that is, omit reference to (3.4.1) — and

take (3.4.2) as the starting point, that is, take (3.4.2) as a model for treatment

assignment Zik within a given matched pair i. Our sense is that the step from
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(3.4.1) to (3.4.2) is useful in making it clear what matching for xik does and what

it fails to do. There is, however, one advantage in beginning with (3.4.2). Once a

matched pair is formed, there is one Philadelphia zip code attached to that pair,

and by including that zip code in F as an attribute of the pair i (not the mother k),

we may understand (3.4.2) as a model for the identity k of the Philadelphia mother

in pair i. That is, in this formulation, (3.4.2) asks: Given that pair i contains

two mothers, one from Philadelphia zip-code xxxxx and the other from a zip code

with similar attributes elsewhere in Pennsylvania, California or Missouri, and given

specific values of (ui1, rCi1) and (ui2, rCi2) for these two mothers, what is the chance

that mother i1 is the Philadelphia mother and i2 is the mother from elsewhere?

This distinction between starting with (3.4.1) and starting with (3.4.2) is relevant

only to comparisons of pairs with a zip code near a hospital closure versus pairs

with a zip code remote from closures — in such comparisons, zip code is treated as

a fixed attribute of the pair, as year is treated as a fixed attribute of the pair in

temporal comparisons.

3.4.3 Sensitivity analysis with binary outcomes in difference-

in-differences analysis

We wish to focus on a set S ⊆ {1, . . . , I} of the pairs, and to contrast two subsets

of the pairs in S, denoted by vi = 1 and vi = 0. In the first evidence factor in Table

3.2, all pairs are used, S = {1, . . . , I}, and vi = 1 for birth pairs in years 1997-

1999 and vi = 0 for pairs in 1995-1996. In the second evidence factor in Table 3.2,
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S ⊂ {1, . . . , I} are the pairs in 1997-1999, and vi = 1 for pairs with a Philadelphia

mother in a zip code near a closure and vi = 0 for pairs with a Philadelphia mother

not near a closure.

Consider testing Fisher’s null hypothesis H0 : rT ik = rCik using the conditional

distribution of T ′ =
∑

i∈S
∑2

k=1 vi Zik Rik given W ′ =
∑

i∈S
∑2

k=1 Zik Rik. In the

first evidence factor in Table 3.2, this is the conditional distribution of T ′, the number

of birth injuries in Philadelphia during the years 1997-1999 of abrupt closures, given

the total W ′ of birth injuries in Philadelphia in all years 1995-1999. If H0 is true,

then rT ik = rCik = Rik, and T ′ and W ′ receive only constant contributions from

concordant pairs with 0 = Ri1−Ri2 = rCi1− rCi2. Renumber the pairs so that pairs

j = 1, . . . , J are both in S and are discordant pairs in the sense that Rj1 6= Rj2,

and pairs j + 1, . . . , I are either not in S or are concordant pairs with Rj1 = Rj2.

Let T =
∑J

j=1

∑2
k=1 vj Zjk Rjk and W =

∑J
j=1

∑2
k=1 Zjk Rjk and notice that, given

F and Zi1 + Zi2 = 1, i = 1, . . . , I, they differ from T ′ and W ′ by a constant

when H0 is true. Write Z = (Z11, Z12, . . . , ZJ2)T and rC = (rC11, rC12, . . . , rCJ2)T

for the 2J-dimensional vectors, and write Z for the set containing the 2J vectors

z = (z11, z12, . . . , zJ2)T with each zjk = 0 or zjk = 1 and zj1 + zj2 = 1. With a

slight abuse of notation, conditioning on the event Z ∈ Z will be abbreviated to

conditioning on Z. Write v+ =
∑J

j=1 vj.

In Proposition 3.4.1, the case (3.4.5) of Γ = 1 is essentially due to Gart (1969).

In (3.4.4) conditioning on W has eliminated the potential bias in (3.4.2) from %rCi1,

leaving only the potential bias from γui1.
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Table 3.3: General form of the table under H0 after renumbering within the J dis-
cordant pairs so that rCj1 = 1 and rCj2 = 0 for each j.

vj = 1 vj = 0 Total

zj1 = 1
∑J

j=1 vjzj1
∑J

j=1 (1− vj) zj1 w

zj1 = 0
∑J

j=1 vj (1− zj1)
∑J

j=1 (1− vj) (1− zj1) J − w
Total v+ J − v+ J

Proposition 3.4.1. Let Θ = Γ2. Under H0 and the sensitivity model (3.4.1),

Υ

(
J, w, v+, t,

1

Θ

)
≤ Pr (T ≥ t| F , Z, W = w) ≤ Υ (J, w, v+, t, Θ) (3.4.3)

where

Υ (J, w, v+, t, Θ) =

min(w,v+)∑
k=max(t,w+v+−J)

(
v+
k

)(
J−v+
w−k

)
Θk

min(w,v+)∑
k=max(0,w+v+−J)

(
v+
k

)(
J−v+
w−k

)
Θk

(3.4.4)

is the extended hypergeometric distribution. In particular, if γ = 0 in (3.4.1), so

that Γ = 1, then

Pr (T ≥ t| F , Z, W = w) =

min(w,v+)∑
k=max(t,w+v+−J)

(
v+
k

)(
J−v+
w−k

)(
J
w

) (3.4.5)

is the hypergeometric distribution.

Proof. The proof consists in transforming a sensitivity analysis for 2 × 2 tables

counting discordant pairs, such as the 2 × 2 tables in Table 3.2, into a sensitivity

analysis for unrelated events in 2 × 2 tables, and then applying standard methods

for the latter situation. Throughout the proof, assume H0 is true for the purpose of
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testing it, so rT ik = rCik = Rik. Using (3.4.2), we have

Pr (Z = z| F , Z ∈ Z) =
exp

(
γ
∑J

j=1

∑2
k=1 zjkujk + %

∑J
j=1

∑2
k=1 zjkrCjk

)
∏J

j=1 {exp (γuj1 + %rCj1) + exp (γuj2 + %rCj2)}
.

(3.4.6)

Let Zw =
{

z ∈ Z : w =
∑J

j=1

∑2
k=1 zjkrCjk

}
. Then |Zw| =

(
J
w

)
. Conditioning on

W = w or equivalently on Z ∈ Zw yields

Pr (Z = z| F , Z ∈ Zw) =
exp

(
γ
∑J

j=1

∑2
k=1 zjkujk

)
∑

b∈Zw
exp

(
γ
∑J

j=1

∑2
k=1 bjkujk

)
which no longer depends upon %. Because the J pairs are discordant, 1 = |rCj1 − rCj2|

for every j, we may without loss of generality renumber the two subjects in each pair

j so that rCj1 = 1 and rCj2 = 0; then vj
∑2

k=1 zjkrCjk = vjzj1 and T =
∑J

j=1 vjzj1

and W =
∑J

j=1 zj1; see Table 3.3. Also, write ũj = uj1 − uj2, so that −1 ≤ ũj ≤ 1.

Define the J-dimensional vectors ũ = (ũ1, . . . , ũJ)T , v = (v1, . . . , vJ)T and 1 =

(1, . . . , 1)T . Let χ (A) = 1 if event A occurs and χ (A) = 0 otherwise. Then using∑2
k=1 zjkujk = uj2 + zj1 (uj1 − uj2) and simplifying

Pr (T ≥ t| F , Z ∈ Zw)

=

∑
z∈Zw

χ
(∑J

j=1 vj
∑2

k=1 zjkrCjk ≥ t
)

exp
(
γ
∑J

j=1

∑2
k=1 zjkujk

)
∑

b∈Zw
exp

(
γ
∑J

j=1

∑2
k=1 bjkujk

)
=

∑
z∈Zw

χ
(∑J

j=1 vjzj1 ≥ t
)

exp
(
γ
∑J

j=1 zj1ũj

)
∑

b∈Zw
exp

(
γ
∑J

j=1 bj1ũj

) = λt (ũ) , say.

(3.4.7)
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Then to prove (3.4.3) it suffices to show

λt (1− 2v) ≤ λt (ũ) ≤ λt (2v − 1) , (3.4.8)

because w =
∑J

j=1 zj1 is fixed for z ∈ Zw, so that, for example,

λt (2v − 1) =

∑
z∈Zw

χ
(∑J

j=1 vjzj1 ≥ t
)

exp
{
γ
∑J

j=1 zj1 (2vj − 1)
}

∑
b∈Zw

exp
{
γ
∑J

j=1 bj1 (2vj − 1)
}

=

∑
z∈Zw

χ
(∑J

j=1 vjzj1 ≥ t
)

exp
(

2γ
∑J

j=1 zj1vj

)
∑

b∈Zw
exp

(
2γ
∑J

j=1 bj1vj

) = Υ
(
J, w, v+, t, Γ2

)
.

(3.4.9)

The proof of (3.4.8) is identical to the proof of Proposition 1 in Rosenbaum (1995),

except in that proof, 0 ≤ uj ≤ 1 whereas here −1 ≤ ũj ≤ 1, so the upper bound in

(3.4.3) is attained with ũj = 2vj − 1 rather than with uj = vj (or with uj = rj in

the notation of that proof).

3.5 Confirmatory analysis using the 90% sample

Table 3.4 is for the analysis sample of 90% of pairs but is otherwise parallel to

Table 3.2 for the 10% planning sample. The initial impression of Table 3.4 is that

it exhibits many of the same patterns as Table 3.2, albeit sometimes in a more

muted form. For instance, in Table 3.2, the odds ratio for the most affected groups

was 5.80, whereas in Table 3.4 it is 2.19. This is not surprising given that Table

3.2 was selected as the most promising of many possible analyses, while Table 3.4
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Table 3.4: Results for birth injury in the analysis component of the split sample.
This table, which is the basis for conclusions rather than hypothesis generation, has
the same structure as Table 3.2 but is based on an independent sample of pairs that
is approximately nine times larger.

A comparison focused on the most affected groups
Birth Outcomes in Zip Codes With Closures
Discordant Pairs 1995-1999

Philadelphia Control Affected Base
Baby Baby 1997-1999 1995-1996 Total (+)

Injured Not Injured 475 131 606
Not Injured Injured 137 83 220

Total (+) 612 214 826
Odds Ratio 2.19
Alternative 1-sided
P -value 3.71× 10−6

95% Interval [1.63, ∞)

Factor 1 Factor 2 Bias Test
Birth Outcome 1995-1999 1997-1999 1995-1996

Discordant Pairs Time Period Zip Code Zip Code
Philadelphia Control Affected Base Closures Closures

Baby Baby 97-99 95-96 + W W/O + W W/O +
Injured Not Injured 1231 505 1736 475 756 1231 131 374 505

Not Injured Injured 514 339 853 137 377 514 83 256 339
Total (+) 1745 844 2589 612 1133 1745 214 630 844

Odds Ratio 1.61 1.73 1.08
Alternative 1-sided 1-sided 2-sided
P -value 4.37× 10−8 9.33× 10−7 0.69

95% Interval [1.39, ∞) [1.42, ∞) [0.78, 1.51]
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is an independent replication of that one most promising analysis. As in Table

3.2, Table 3.4 provides several pieces of information consistent with an increase in

birth injuries caused by abrupt hospital closures. First, in Factor 1, there is an

increase from 1995-1996 to 1997-1999 in the relative frequency of birth injuries in

Philadelphia when contrasted with control-Philadelphia. Second, in Factor 2, in

the years 1997-1999, there is a greater excess of birth injuries in zip codes near

hospital closures than in zip codes remote from hospital closures when contrasted

with matched pairs in control-Philadelphia. The test for bias looks at these same

zip code groups but in the years before closures, yielding an odds ratio of 1.08 which

does not differ significantly from 1. That is to say, zip codes with closures look

different after the closures but did not look different before the closures. These

pieces of information are not greatly redundant with each other; that is, the first

two pieces are approximate evidence factors. The most affected group contrasts

zip codes near closures in 1995-1996 to 1997-1999 to matched controls in control-

Philadelphia; this yields the largest estimated odds ratio of 2.19. In the absence of

bias from unmeasured covariates, this would suggest roughly a doubling of the odds

of birth injuries in the affected regions of Philadelphia during the period of abrupt

closures.

Unlike Factor 1 in Table 3.2, in Table 3.4 there is strong evidence that birth

injuries were more common in Philadelphia than in control-Philadelphia in 1995-

1996 when there were no closures. Specifically, if McNemar’s test is applied to the

844 = 505+339 pairs discordant for birth injury in 1995-1996, the two-sided P -value

is 1.2×10−8. Expressed in terms of (3.4.1), it appears that % 6= 0, so the elimination
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of % by conditioning is essential. We could not reasonably apply McNemar’s test

to the 1745 = 1231 + 514 discordant pairs in 1997-1999, because the comparison in

1995-1996 suggests that at least part of the difference in birth injuries in 1997-1999

was already present in 1995-1996 when there were no closures.

Table 3.5 is the sensitivity analysis based on Table 3.4 using Proposition 3.4.1.

Table 3.5 eliminates % by conditioning and worries about an unobserved covariate

uik uncorrelated with birth injuries in the absence of closures, rCik, but possibly

related to changes or differences in the frequencies of birth injuries. In Table 3.5,

the analysis is reported in terms of Γ, but from Proposition 3.4.1 the sensitivity

bound is calculated using the extended hypergeometric distribution with parameter

Θ = Γ2.

Table 3.5: Sensitivity analysis in the 90% analysis sample. The table gives the upper
bound on the one-sided P -value testing the null hypothesis of no effect of closures
on birth injuries for the three effect comparisons in Table 3.4 for departures from
random assignment of various magnitudes Γ.

Γ Upper bound on 1-sided P -value
Most Affected Factor 1 Factor 2

1.0 0.0000 0.0000 0.0000
1.1 0.0003 0.0007 0.0012
1.15 0.0019 0.0145 0.0118
1.2 0.0083 0.1126 0.0636
1.25 0.0277 0.3892 0.2066
1.3 0.0730 0.7301 0.4445

Birth injuries were more common in Philadelphia than among matched controls

even before Philadelphia hospitals began to close their obstetrics units; however,

there was a substantial increase in the relative frequency of birth injuries during

the years 1997-1999 of abrupt closures, and this increase was substantially more
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pronounced in zip codes served by hospitals that closed. Moreover, zip codes served

by hospitals that closed did not exhibit any relative excess of birth injuries in the

years 1995-1996 prior to closures. A moderate bias from an unobserved covariate uik

of magnitude Γ = 1.3 (or Λ = 2 and ∆ = 2.3 in Section 3.4.2) could produce any one

of these associations, but this uik would need to be somewhat unusual: it would need

to be uncorrelated with birth injuries rCik (see Section 3.4.2) yet strongly correlated

with the change in birth injuries over time and with the post-closure difference in zip

codes with closures. Such unobserved covariate is logically possible, but is rendered

somewhat less plausible by the need to explain the results in factor 1, factor 2 and

the bias test, no one of which is redundant with another.

Table 3.4 permits two other informative analyses. Although one expects an effect

of closures in zip codes with closures, as discussed earlier it is less clear what one

should expect for mothers living in zip codes without closures. Comparing pairs

discordant for birth injuries in zip codes without closures in 1997-1999 and 1995-

1996, the point estimate of the odds ratio is 1.35 with 95% confidence interval [1.11,

1.63], suggesting a small increase in birth injuries for mothers in zip codes without

closures. In addition, in the 2×2×2 table in Table 3.4 recording pairs discordant for

birth injuries, time interval, and with or without closures, the three factor interaction

in a log-linear model is not plausibly zero, with likelihood ratio chi-square of 6.27

on 1 degree of freedom, P -value = 0.012, so the increase in birth injuries appears

to have been larger in zip codes with closures than in zip codes without closures.

This pattern of results is not inconsistent with overcrowding at the hospitals that

remained open, with mothers remote from the closures being nonetheless affected
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by the influx of mothers from zip codes with closures.
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Chapter 4

Conclusion and Discussion

4.1 Conclusion and Discussion of the PoSI Ap-

proach

In Chapter 1, we investigated the Post-Selection Inference or “PoSI” problem for

linear models whereby valid statistical tests and confidence intervals are sought after

variable selection, that is, after selecting a subset of the predictors in a data-driven

way. We adopted a framework that does not assume any of the linear models un-

der consideration to be correct. We allowed the response vector to be centered at

an arbitrary mean vector but with homoscedastic and Gaussian errors. We further

allowed the full predictor matrix Xn×p to be rank-deficient, d=rank(X)<p, and we

also allowed the set M of models M under consideration to be largely arbitrary. In

this framework we showed that valid post-selection inference is possible via simul-

taneous inference. An important enabling factor is the principle that the regression
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coefficient of a given predictor as distinct when it occurs in different submodels:

βj·M and βj·M′ are generally different parameters if M 6=M′. We showed that simul-

taneity protection for all parameters βj·M provides valid post-selection inference. In

practice this means enlarging the constant t1−α/2,r used in conventional inference

to a constant K(Xn×p, α, r) that provides simultaneity protection for up to p 2p−1

parameters βj·M. We showed that the constant depends strongly on the predictor

matrix X as the asymptotic bound for K(X, α, r) with d = rank(X) ranges between

the minimum of
√

2 log d achieved for orthogonal designs on the one hand, and a

large fraction of the Scheffé bound
√
d on the other hand. This wide asymptotic

range suggests that computation is critical for problems with large numbers of pre-

dictors. In the classical case d= p our current computational methods are feasible

up to about p≈20.

We carried out post-selection inference in a limited framework. Several problems

remain open, and many natural extensions are desirable:

• Among open problems is the quest for the largest fraction of the asymptotic

Scheffé rate
√
d attained by PoSI constants. So far we know this fraction to

be at least 0.6363 but no more than 0.8660... in the classical case d=p.

• Computations for p > 20 are a challenge. Straight enumeration of the set of up

to p 2p−1 linear combinations should be replaced with heuristic shortcuts that

yield practically useful upper bounds on K(Xn×p, M, α, r) that are specific

to X and the set of submodels M, unlike the 0.8660 fraction of the Scheffé

bound which is universal.
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• The methodology is easily adapted to practically useful variations by suitable

choice of the set of models M: (1) Data analysts might be interested only

in small submodels, |M| ≤ 5, say, when p is large. (2) We introduced SPAR

(“Single Predictor Adjusted Regression”, Section 1.4.8) defined as “significance

hunting” or the search for the strongest adjusted “effect” in any predictor.

In practice one might be more interested in SPAR1 or the search for strong

adjusted effects in one predetermined focal predictor. — Any limitation to a

lesser number of submodels or regression coefficients to be searched increases

the computationally accessible number of predictors.

• Among models to which the PoSI framework should be extended next are

generalized linear models and mixed effects models.

R code for computing the PoSI constant for up to p = 20 can be obtained from the

authors’ webpages (manuscript describing the computations is available from the

authors).

4.2 Conclusion and Discussion of the Split Sam-

ples Approach

In Chapter 2, we studied the problem of inference after model selection for random-

design matrices. In this study, we neither assumed linearity nor homoscedasticity.

Instead, we only assumed that the observations are i.i.d. from a fixed dimensional

multivariate joint distribution. We showed that under mild conditions on the mo-
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ments of the joint distribution, we can achieve valid post-selection inference via split

samples and bootstrap. The proposed procedure suggested randomly split the data

into a model selection sample and an inference sample. The model selection sample

was used to choose a submodel by some selection criteria, whereupon the sample

was discarded; then, bootstrap inference was produced for the selected set of vari-

ables based on the inference sample. We showed that for any explanatory variable in

the selected model, its bootstrap confidence interval has proper coverage probability

asymptotically. Furthermore, this coverage probability is universally valid for any

the model selection rule.

The split-sample approach has been shown to be very effective in protecting valid

confirmatory inference from exploratory model building by ruling out conditional

inference. However, several fundamental questions are to be answered: (1) What

is the “sweet spot” of the proportion of the exploratory sample in maximizing the

power of the inference afterwards? (2) We can literally build the model using the

exploratory sample by any procedure. What would be a suitable criterion to compare

the procedures, and what is the optimal procedure among all of them under such

criterion? (3) A potential extension of the split-sample method is to allow sequential

splitting, in which we can keep splitting more observations into the exploratory

sample, using the new splits for model assessment and model revision, until reaching

a satisfactory model. Will there be any general guidance for this method? (4) How

does the split-sample method relate to Bayesian methods by viewing the exploratory

sample as the a priori information?
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4.3 Conclusion and Discussion of the Real Data

Application of the Split Samples Method

In Chapter 3, our study built a control Philadelphia with some of the temporal

and sociodemographic structure of Philadelphia thereby framing and simplifying

questions about how Philadelphia might have changed in the absence of widespread

closures of obstetrics units.

Because this series of hospital closures is a unique event, it will never be possible to

replicate this study using a new independent sample. Motivated by considerations of

improved design sensitivity (Heller et al. 2009), we created an internal replication,

a small planning sample of about 13,000 pairs of mothers, and an independent

confirmatory analysis sample of about 120,000 pairs. The planning sample suggested

a focus on serious birth injuries (ICD-9 767.3), with a relative increase in injuries in

the years 1997-1999 of abrupt closures, especially in zip codes served by obstetrics

units that abruptly closed. This led to two evidence factors, one test for bias from

unmeasured covariates, and a sensitivity analysis.

In a scientific report, what is the appropriate way to report a split sample anal-

ysis? In our methodological discussion here, we have focused on one confirmatory

analysis. Our sense is that both exploratory and confirmatory analyses should be

presented (Tukey 1980b), but that these two types of analyses should be distin-

guished based on their different histories. That is, a table might present parallel

analyses for many interesting outcomes with a bright red line separating confirma-

tory from exploratory analyses. Above the red line are a few analyses suggested by
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the planning sample, with independent confirmation or not from the much larger

analysis sample. Below the line are exploratory analyses of many outcomes, per-

haps aided by some interpretive guidance from multiple testing procedures, such as

the Bonferroni inequality, and their associated sensitivity analyses (e.g., Heller et

al. 2009, Section 3.3; Rosenbaum and Silber 2009b, Section 4.5). Though perhaps

interesting and worthy of further study, hypotheses that are first suggested by the

analysis sample or the complete data would inevitably be regarded as speculative

unless confirmed by multiple testing procedures.

4.4 Thoughts about Future Research

Statistics is about learning, and statisticians strive to learn from both exploratory

and confirmatory analysis of the historical data. My Ph.D. research on valid post-

selection inference is aimed at providing a bridge between exploratory data analysis

and confirmatory data analysis, and I would like to devote myself to the pursuit of

more general and more efficient inference procedures under this framework.
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Appendix A

Appendix

A.1 Proofs in Chapter 1

A.1.1 Proof of Theorem 1.4.3

We start with the statement of strong family-wise error control by defining the true

null hypotheses and true alternatives for the true β = (XTX)−1XTµ, as well as the

sets of insignificant and significant tests for the observed Y:

H0 , { (j,M) | βj·M = 0, j∈M∈M},

H1 , { (j,M) | βj·M 6= 0, j∈M∈M},

Ĥ0 , { (j,M) | |t(0)
j·M| ≤ K(X, α), j∈M∈M},

Ĥ1 , { (j,M) | |t(0)
j·M| > K(X, α), j∈M∈M}.

where t
(0)
j·M , β̂j·M/(σ̂/‖Xj·M‖) has the parameter set to βj·M =0.
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Lemma A.1.1. “Strong Family-Wise Error Control” holds for K(X, α):

P[H0 ⊂ Ĥ0] = P[H1 ⊃ Ĥ1] ≥ 1− α.

Proof: Standard; just the same: H0 ⊂ Ĥ0 ⇔ H1 ⊃ Ĥ1 implies the equality of

the two probabilities. Further, using t
(0)
j·M = tj·M ⇔ (j,M)∈H0,

P[H0 ⊂ Ĥ0 ] = P[ max
(j,M)∈H0

|tj·M| ≤ K(X, α) ]

≥ P[ max
M∈M

max
j∈M
|tj·M| ≤ K(X, α) ] ≥ 1− α

by the definition of K(X, α) (1.4.11).

THEOREM 1.4.3. “Strong Post-Selection Error Control” holds for any model

selection procedure M̂ : Rn →M:

P[∀j∈M̂ : |t(0)

j·M̂| > K(X, α) ⇒ βj·M̂ 6= 0 ] ≥ 1− α.

Proof: Define M̂′ , {(j, M̂) | j ∈ M̂}. The event H1 ⊃ Ĥ1 implies the event

H1 ∩ M̂′ ⊃ Ĥ1 ∩ M̂′, hence, using Lemma A.1.1:

1− α ≤ P[H1 ⊃ Ĥ1 ] ≤ P[H1 ∪ M̂′ ⊃ Ĥ1 ∪ M̂′ ].
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A.1.2 Proof of Proposition 1.5.3

1. The matrix X∗M = XM(XT
MXM)−1 has the vectors lj·M as its columns. Thus

lj·M ∈ span(Xj : j ∈ M). Orthogonality lj·M ⊥ Xj′ for j′ 6= j follows from

XT
MX∗M = Ip. The same properties hold for the normalized vectors l̄j·M.

2. The vectors {l̄1·{1}, l̄2·{1,2}, l̄3·{1,2,3}, ..., l̄p·{1,2,...,p}} form a Gram-Schmidt series

with normalization, hence they are an o.n. basis of Rp.

3. For M ⊂ M′, j ∈ M, j′ ∈ M′ \M, we have l̄j·M ⊥ l̄j′·M because they can be

embedded in an o.n. basis by first enumerating M and subsequently M′ \M,

with j being last in the enumeration of M and j′ last in the enumeration

of M′ \M.

4. For any (j0,M0), j0 ∈ M0, there are (p − 1) 2p−2 ways to choose a partner

(j1,M1) such that either j1 ∈ M1 ⊂ M0 \ j0 or M0 ⊂ M1 \ j1, both of which

result in l̄j0·M0 ⊥ l̄j1·M1 by the previous part.

A.1.3 Proof of Duality: Lemma 1.5.1 and Theorem1.5.1

The proof relies on a careful analysis of orthogonalities as described in Proposi-

tion 1.5.3, part 3. In what follows we write [A] for the column space of a matrix

A, and [A]⊥ for its orthogonal complement. We show first that, for M ∩M∗ = {j},

M∪M∗ = MF , the vectors l̄∗j·M∗ and l̄j·M are in the same one-dimensional subspace,
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hence are a multiple of each other. To this end we observe:

l̄j·M ∈ [XM] , l̄j·M ∈ [XM\j]
⊥, (A.1.1)

l̄∗j·M∗ ∈ [X∗M∗ ] , l̄∗j·M∗ ∈ [X∗M∗\j]
⊥, (A.1.2)

[X∗M∗ ] = [XM\j]
⊥, [X∗M∗\j]

⊥ = [XM] . (A.1.3)

The first two lines state that l̄j·M and l̄∗j·M∗ are in the respective column spaces of their

models, but orthogonalized with regard to all other predictors in these models. The

last line, which can also be obtained from the orthogonalities implied by XTX∗ = Ip,

establishes that the two vectors fall in the same one-dimensional subspace:

l̄j·M ∈ [XM] ∩ [XM\j]
⊥ = [X∗M∗ ] ∩ [X∗M∗\j]

⊥ 3 l̄∗j·M∗ .

Since they are normalized, it follows l̄∗j·M∗ = ±l̄j·M. This result is sufficient to imply

all of Theorem 1.5.1. The lemma, however, makes a slightly stronger statement

involving lengths which we now prove. In order to express lj·M and l∗j·M∗ according

to (1.5.2), we use PM\j as before and we write P∗M∗\j for the analogous projection

onto the space spanned by the columns M∗ \ j of X∗. The method of proof is to

evaluate lTj·M l
∗
j·M∗ . The main argument is based on

XT
j (I−PM\j)(I−P∗M∗\j)X

∗
j = 1, (A.1.4)
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which follows from these facts:

PM\jP
∗
M∗\j = 0, PM\jX

∗
j = 0, P∗M∗\jXj = 0, XT

j X∗j = 1,

which in turn are consequences of (A.1.3) and XTX∗ = Ip. We also know from

(1.5.2) that

‖lj·M‖ = 1/‖(I−PM\j)Xj‖ , ‖l∗j·M∗‖ = 1/‖(I−P∗M∗\j)X
∗
j‖ . (A.1.5)

Putting together (A.1.4), (A.1.5), and (1.5.2), we obtain

lTj·M l
∗
j·M∗ = ‖lj·M‖2 ‖l∗j·M∗‖2 > 0. (A.1.6)

Because the two vectors are scalar multiples of each other, we also know that

lTj·M l
∗
j·M∗ = ± ‖lj·M‖ ‖l∗j·M∗‖. (A.1.7)

Putting together (A.1.6) and (A.1.7) we conclude

‖lj·M‖ ‖l∗j·M∗‖ = 1, l̄∗j·M∗ = l̄j·M,

This proves the lemma and the theorem.
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A.1.4 Proof of Theorem 1.6.1

The parameter a can range from −1/p to ∞, but because of duality there is no

loss of generality in considering only the case in which a ≥ 0, and we do so in the

following. Let M ⊂ {1, . . . , p} and j ∈ M. If M = {j} then lj·M = Xj, the j-th

column of X, and l̄j·M = lj·M/
√
pa2 + 2a+ 1. It follows that for Z ∼ N (0p, Ip),

|l̄Tj·MZ| ≤ |
∑
k 6=j

Zk|/
√
p+ |Zj| ≤

√
2 log p(1 + op(1)) (A.1.8)

because ‖Z‖∞ = (1 + op(1))
√

2 log p.

Because of (A.1.8) we now need only consider model selection sets, M, that contain

at least two indices. For notational convenience, consider the case that j = 1 and

M = {1, . . . ,m} with 2 ≤ m ≤ p. The following results can then be applied to

arbitrary j and M by permuting coordinates.

When m ≥ 2 the projection of X1 on the space spanned by X2, . . . ,Xm must be

of the form

Proj =
c

m− 1

m∑
k=2

Xk =

ca, ca+
c

m− 1
, . . . , ca+

c

m− 1︸ ︷︷ ︸
m−1

, ca, . . . , ca︸ ︷︷ ︸
p−m


where the constant c satisfies l1·M = (X1−Proj)⊥Proj. This follows from symmetry;
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no calculation of projection matrices is needed to verify this. Let d = 1− c. Then

(l1·M)k =


1 + da k = 1

da− 1−d
m−1

2 ≤ k ≤ m

da k ≥ m+ 1

.

Some algebra starting from lT1·MX2 = 0 yields

d =
1/(m− 1)

pa2 + 2a+ 1/(m− 1)
.

The term d = d(a) is a simple rational function of a, and it is easy to check when

m ≥ 2 that 0 ≤ da < 1/(2
√
p).

Note also that ‖l1·M‖ ≥ 1. Hence l̄1·M = l1·M/‖l1·M‖ satisfies

|l̄T1·MZ| ≤ |Z1|+ |
1

m− 1

m∑
j=2

Zj|+ |
1

2
√
p

p∑
j=1

Zj| ≤ 2
√

2 log p(1 + op(1)) +Op(1).

This verifies that

lim sup
p→∞

supa∈(−1/p,∞) K(X(a))
√

2 log p
≤ 2 in probability. (A.1.9)

It remains to prove that equality holds in (A.1.9). Let Z(1) < Z(2) < . . . < Z(p)

denote the order statistics of Z. Fix m. It is well-known that, in probability,

lim
p→∞

Z(1)√
2 log p

= −1 and lim
p→∞

Z(j)√
2 log p

= 1 ∀j : p−m ≤ j ≤ p.
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Note that

lim
a→∞

da = 0 and lim
a→∞
‖l1·M‖2 = 1 + (m− 1)−1.

For any given Z one may choose to look at lj∗·M∗ , with j∗ being the index of Z(1)

and M∗ = {j∗} ∪ {j |Zj = Z(k), p − m + 2 ≤ k ≤ p}. The above then yields, in

probability,

lim
p→∞,a→∞

|l̄Tj∗·M∗Z|√
2 log p

≥ 2√
1 + (m− 1)−1

.

Choosing m arbitrarily large and combining this with (A.1.9) yields the desired

conclusion.

A.1.5 Proof of Theorem 1.6.2

Consider a primary predictor and controls (PP&C) design matrix

X =

 √
1− (p− 1)c2 0Tp−1

c1p−1 Ip−1

 (A.1.10)

where c is the correlation between the primary predictor and the control predictors.

For a model M ⊃ {1} with |M| = m, l̄1·M is of the following form:

l̄1·M,j =



√
1−(p−1)c2

1−(m−1)c2
j = 1

0 j ∈ M\{1}

c√
1−(m−1)c2

j ∈ Mc

(A.1.11)
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Therefore,

z1·M = l̄T1·MZ =

√
1− (p− 1)c2

1− (m− 1)c2
Z1 +

c√
1− (m− 1)c2

∑
j∈Mc

Zj. (A.1.12)

Note that for each fixed m,

max
M

∣∣∣∣∣ c√
1− (m− 1)c2

∑
j∈Mc

Zj

∣∣∣∣∣
=

c√
1− (m− 1)c2

max

(
p−m−1∑
j=1

Z(p−j+1),−
p−m−1∑
j=1

Z(j)

) (A.1.13)

where Z(j) is the j-th order statistic. Note also that

sup
c

c√
1− (m− 1)c2

=
1√
p−m

(A.1.14)

and the equality is attained as c→ 1/
√
p− 1. Therefore, for each fixed m,

sup
c

1
√
p

max
|M|=m

|z1·M|

=

√
p

p−m
max

(
p−m−1∑
j=1

1

p
Z(p−j+1),−

p−m−1∑
j=1

1

p
Z(j)

)
+Op

(√
log p

p

)
.

(A.1.15)

Suppose m = rp. Note that as p→∞, by Bahadur (1966),

Z(p−j+1) = Φ−1

(
p− j + 1

p+ 1

)
+Op(p

−1/2). (A.1.16)

Note also that
∑p−m−1

j=1
1
p
Φ−1

(
p−j+1
p+1

)
is a good approximation of the Riemann in-

133



tegral
∫ 1

r
Φ−1(x)dx:

∫ 1

r

Φ−1(x)dx =

p−m−1∑
j=1

1

p
Φ−1

(
p− j + 1

p+ 1

)
+O(p−2). (A.1.17)

Therefore,
p−m−1∑
j=1

1

p
Z(p−j+1) =

∫ 1

r

Φ−1(x)dx+Op(p
−1/2). (A.1.18)

Similarly,

−
m−1∑
j=1

1

p
Z(j) =

∫ 1

r

Φ−1(x)dx+Op(p
−1/2). (A.1.19)

Summarizingly,

sup
c

1
√
p

max
|M|=m

|z1·M|

=

√
p

p−m
max

(
p−m−1∑
j=1

1

p
Z(p−j+1),−

p−m−1∑
j=1

1

p
Z(j)

)
+Op(

√
log p/p)

=
1√

1− r

∫ 1

r

Φ−1(x)dx+Op(p
−1/2) +Op(

√
log p/p)

=
1√

1− r
φ(Φ−1(r)) +Op(

√
log p/p).

(A.1.20)

The function f(r) = 1√
1−rφ(Φ−1(r)) is maximized at r∗ = 0.73 with f(r∗) = 0.636.

Therefore,

lim sup
p→∞

sup
c

1
√
p

max
M
|z1·M| = 0.636. (A.1.21)

This sharpness of this bound is seen by considering the model with the first or last

m∗ = r∗p order statistics of Z when p→∞ and c→ 1√
p−1

.
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With (A.1.21), we conclude that K1(X) ∼ 0.636
√
p.

A.1.6 Proof of Theorem 1.6.3

We will show that if a
1/p
p → a (> 0), we have

• a uniform asymptotic worst-case bound:

limp→∞ sup|Lp|≤ap maxl̄∈Lp |l̄TZ|/√p
P

≤
√

1− 1/a2;

• attainment of the bound when |Lp| = ap and l̄ ∈ Lp are i.i.d. Unif(Sp−1)

independent of Z:

limp→∞ maxl̄∈Lp |l̄TZ|/√p
P

≥
√

1− 1/a2.

These facts imply the assertions about (1− α)-quantiles K(Lp) of maxl̄∈Lp |l̄TZ| in

Theorem 1.6.3. We decompose Z = RU where R2 = ‖Z‖2 ∼ χ2
p and U = Z/‖Z‖ ∼

Unif(Sp−1) are independent. Due to R/
√
p

P→ 1 it is sufficient to show the following:

• uniform asymptotic worst-case bound:

lim
p→∞

sup
|Lp|≤ap

max
l̄∈Lp

|l̄TU|
P

≤
√

1− 1/a2 ; (A.1.22)

• attainment of the bound when |Lp| = ap and l̄ ∈ Lp are i.i.d. Unif(Sp−1)

independent of U:

lim
p→∞

max
l̄∈Lp

|l̄TU|
P

≥
√

1− 1/a2 . (A.1.23)
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To show (A.1.22), we upper-bound the non-coverage probability and show that it

converges to zero for K ′ >
√

1− 1/a2. To this end we start with a Bonferroni-style

bound, as in Wyner (1967):

P[ max
l̄∈L
|l̄TU| > K ′] = P

⋃
l̄∈L

[ |l̄TU| > K ′] (A.1.24)

≤
∑
l̄∈L

P[ |l̄TU| > K ′] (A.1.25)

= |Lp|P[ |U | > K ′], (A.1.26)

where U is any coordinate of U or projection of U onto a unit vector. We will show

that the bound (A.1.26) converges to zero. We use the fact that U2 ∼ Beta(1/2, (p−

1)/2), hence

P[ |U | > K ′] =
1

B(1/2, (p− 1)/2)

∫ 1

K′2
x−1/2(1− x)(p−3)/2dx (A.1.27)

We bound the Beta function and the integral separately:

1

B(1/2, (p− 1)/2)
=

Γ(p/2)

Γ(1/2)Γ((p− 1)/2)
<

√
(p− 1)/2

π
,

where we used Γ(x+ 1/2)/Γ(x) <
√
x (a good approximation, really) and Γ(1/2) =

√
π. ∫ 1

K′2
x−1/2(1− x)(p−3)/2dx ≤ 1

K ′
1

(p− 1)/2
(1−K ′2)(p−1)/2,
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where we used x−1/2 ≤ 1/K ′ on the integration interval. Continuing with the chain

of bounds from (A.1.26) we have:

|Lp|P[ |U | > K ′] ≤ 1

K ′

(
2

(p− 1)π

)1/2 (
|Lp|1/(p−1)

√
1−K ′2

)p−1

.

Since |Lp|1/(p−1) → a (> 0) by assumption, the right hand side converges to zero at

geometric speed if a
√

1−K ′2 < 1, that is, if K ′ >
√

1− 1/a2. This proves (A.1.22).

To show (A.1.23), we upper-bound the coverage probability and show that it

converges to zero for K ′ <
√

1− 1/a2. We make use of independence of l̄ ∈ Lp, as

in Wyner (1967):

P[ max
l̄∈Lp
|l̄TU| ≤ K ′] =

∏
l̄∈Lp

P[ |l̄TU| ≤ K ′] = P[ |U | ≤ K ′]|Lp| (A.1.28)

= (1−P[ |U | > K ′])
|Lp| (A.1.29)

≤ exp (−|Lp|P[ |U | > K ′]) . (A.1.30)

We will lower-bound the probability P[ |U | > K ′] recalling (A.1.27) and again deal

with the Beta function and the integral separately:

1

B(1/2, (p− 1)/2)
=

Γ(p/2)

Γ(1/2)Γ((p− 1)/2)
>

√
p/2− 3/4

π
,

where we used Γ(x + 1)/Γ(x + 1/2) >
√
x+ 1/4 (again, a good approximation

really). ∫ 1

K′2
x−1/2(1− x)(p−3)/2dx ≥ 1

(p− 1)/2
(1−K ′2)(p−1)/2,
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where we used x−1/2 ≥ 1. Putting it all together we bound the exponent in (A.1.30):

|Lp|P[ |U | > K ′] ≥
√
p/2− 3/4√
π (p− 1)/2

(
|Lp|1/(p−1)

√
1−K ′2

)p−1

.

Since |Lp|1/(p−1) → a (> 0) by assumption, the right hand side converges to +∞

at nearly geometric speed if a
√

1−K ′2 > 1, that is, if K ′ <
√

1− 1/a2. This

proves (A.1.23).
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