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Abstract

By ‘partially post-hoc’ subgroup analyses, we mean analyses that compare existing data from a 

randomized experiment—from which a subgroup specification is derived—to new, subgroup-only 

experimental data. We describe a motivating example in which partially post hoc subgroup 

analyses instigated statistical debate about a medical device’s efficacy. We clarify the source of 

such analyses’ invalidity and then propose a randomization-based approach for generating valid 

posterior predictive p-values for such partially post hoc subgroups. Lastly, we investigate the 

approach’s operating characteristics in a simple illustrative setting through a series of simulations, 

showing that it can have desirable properties under both null and alternative hypotheses.
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1. Introduction

Subgroup causal effects are often of scientific interest in randomized experiments. When 

subgroups are specified after observing outcomes, however, the estimated subgroup effects 

and p-values produced by traditional statistical methods do not have the typically desired 

repeated sampling properties. Traditional multiple comparisons (e.g., Bonferroni) 

adjustments tend to be overly conservative when subgroups overlap [1, 2]. Moreover, post 

hoc decisions often make it difficult to specify the number of comparisons being made, 

making such adjustments less straightforward. ‘Partially post-hoc’ subgroup analyses, which 

compare existing data—from which the subgroup specification is derived—to new, 

subgroup-only experimental data, are further complicated.

Here, we describe a motivating example faced by the US Food and Drug Administration 

(FDA) in which a partially post hoc subgroup analysis instigated statistical debate about a 

medical device’s efficacy. We provide a statistical framework to clarify the source of 

statistical invalidity. We then propose a randomization-based method for generating valid 

posterior predictive p-values for such partially post hoc subgroups. Although we do not have 

raw data for the particular example, we investigate the method’s operating characteristics 

*Correspondence to: Joseph J. Lee, Department of Statistics, Harvard University, 1 Oxford St., Cambridge, MA 02138, U.S.A..
†joseph.j.lee@post.harvard.edu

HHS Public Access
Author manuscript
Stat Med. Author manuscript; available in PMC 2015 November 23.

Published in final edited form as:

Stat Med. 2015 October 30; 34(24): 3214–3222. doi:10.1002/sim.6531.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



through a series of simulations, showing that it exhibits both a valid type I error rate and 

substantial power under reasonable alternative hypotheses.

2. The Durolane trials

In March 2006, Swedish medical device company Q-Med AB (Uppsala, Sweden) submitted 

its medical device Durolane to the FDA for pre-market approval. Durolane is a viscous gel 

intended to treat osteoarthritic knee pain, administered through intra-articular (into-the-joint) 

injection. Prior to FDA review, the device had already been approved in a number of 

countries across Europe and Asia. As evidence of Durolane’s efficacy, Q-Med submitted 

analyses of data from three randomized clinical trials.

Q-Med initially conducted two randomized, double-blind experiments attempting to 

demonstrate Durolane’s superiority to a saline placebo (control), measuring each patient’s 

pre-treatment and post-treatment pain scores on the Western Ontario and McMasters 

Universities Osteoarthritis Index (WOMAC). Higher WOMAC scores translate to higher 

levels of pain; patients were deemed positive responders to treatment if their WOMAC pain 

scores were reduced by at least 40% and at least five points on the 0–20 point scale. 

Comparisons of responder rates in studies 1 and 2 produced p-values of 0.53 and 0.49, 

respectively, neither of which are considered close to statistically significant by the FDA 

(the standard FDA cutoff for significance is 0.05).

After observing and unblinding outcome data from studies 1 and 2, Q-Med combined and 

filtered the data for a post hoc subgroup analysis. Patients without effusion (fluid 

accumulation in the knee joint) and without baseline polyarticular pain—284 (50.4%) of the 

564 total patients—were included in the selected subgroup. Researchers asserted that 

including patients with effusion and polyarticular pain would make it ‘… difficult to observe 

a treatment effect because the presence of these conditions leads to considerable variability 

in the WOMAC assessment’ [3]. The subgroup, however, was not specified a priori. Within 

the subgroup, Q-Med found a statistically significant difference in responder rates, boasting 

a drastically decreased p-value of 0.0013.

Per FDA’s request, Q-Med conducted a third clinical trial to confirm this affirmative result 

for the specified patient subpopulation. All study 3 patients satisfied the covariate inclusion 

criteria specified in the post hoc analysis of studies 1 and 2. Instead of using a placebo 

control group in study 3, however, Q-Med decided to compare Durolane with the drug 

methylprednisolone in a non-inferiority trial. Although methylprednisolone is currently an 

approved standard of care for osteoarthritic knee pain, there exist concerns about its side 

effects, particularly its tendency to destroy cartilage over time; Durolane is purportedly able 

to avoid this detrimental side effect. Based on 442 patients, study 3 successfully showed 

Durolane’s non-inferiority to methylprednisolone. But because no saline control group was 

included, study 3 alone did not provide direct evidence, as desired by the FDA, for 

Durolane’s superiority to a saline placebo in reducing knee pain.

Because there was no placebo control group for study 3, Q-Med used covariate-matched 

saline placebo patients from studies 1 and 2 to assess Durolane’s effectiveness. The selected 

historical placebo controls (i) met study 3 covariate inclusion criteria and (ii) provided 
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sufficient covariate balance in comparison with the study 3 Durolane treatment group, as 

determined by a propensity score model [4]. Observed outcomes were not used in the 

selection of historical controls. The comparison of historical controls from studies 1 and 2 

with Durolane patients from study 3 favored Durolane, with a statistically significant p-

value of 0.047. Nevertheless, in August 2009, the FDA rejected Durolane for sale in the 

United States.

3. A statistical framework

Here, we describe a statistical framework and explore the implications of using historical 

controls in the Durolane context. We argue why the combined subgroup p-value is invalid 

(in terms of type I error) and demonstrate that balancing covariate profiles (e.g., via 

propensity score matching) cannot fully repair its validity.

3.1. Experiment 1 and post hoc subgroup specification

Suppose that we have N1patients in experiment 1 (representing Durolane studies 1 and 2 

collectively), each defined by a single, binary covariate X (e.g., man/woman) and randomly 

assigned to the control or active treatment (indicated by W). Let Y be a binary experimental 

outcome representing whether or not a patient ‘responds’ to the assigned treatment (e.g., in 

terms of having reduced knee pain). The ‘Science’ table [5] for experiment 1 and its 

observed values under a particular assignment are shown in Table I. Each patient has two 

potential outcomes [6], only one of which can ever be observed [7]. This notation is 

sufficient under the stable unit treatment value assumption, which asserts no interference 

between experimental units, as well as two well-defined outcomes [8]. Unit i, j represents 

the jth unit from experiment i.

Suppose that after experiment 1 outcomes are observed, the researcher calculates subgroup 

p-values for each possibly scientifically relevant subgroup, defined by X values. In the 

setting with a single binary covariate X, there are three possible subgroups: X = 0, X = 1, and 

X ∈ {0, 1}. The researcher then presumably identifies the subgroup S for which the active 

treatment appears to have the most beneficial effect with respect to Y, for example, the 

subgroup with the most significant p-value in favor of the active treatment.

3.2. Experiment 2

Experiment 2 (representing Durolane study 3) consists of N2 patients, all of whom satisfy 

the subgroup criteria of S and are assigned to active treatment; there are no control patients. 

In reality, Durolane’s experiment 2 introduced a new, third treatment condition 

(methylprednisolone; see Section 2). However, Q-Med’s ultimate goal was to satisfy FDA’s 

request to compare Durolane with the saline placebo (the control from experiment 1). 

Experiment 2 patients assigned to methylprednisolone are not relevant for this purpose and 

are thus ignored here.

Without loss of generality, suppose that the X = 1, for example, woman, subgroup is chosen 

from experiment 1. Then experiment 2 consists entirely of female patients assigned to the 

active treatment; the observed values of experiment 2 Science table are shown in Table II.
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3.3. Combined subgroup analysis

Because experiment 2 outcomes are realized after S is specified, experiment 2 data can be 

used to estimate the subgroup average treatment effect (SubATE) validly through traditional 

statistical methods. For instance, if control patients were also included in experiment 2, the 

data from experiment 2 alone could generate a valid subgroup p-value. However, 

comparisons using experiment 1 control patients and experiment 2 treatment patients cannot 

be handled in the same manner.

Consider the following two quantities: (i)  and (ii) 

. The first quantity,  represents the estimated SubATE 

for S from experiment 1, from which the selected subgroup specification is derived. The 

second, , represents the estimated SubATE for S obtained by comparing 

experiment 1 control patients and experiment 2 treatment patients. The combined subgroup 

analysis calculates  and generates an associated subgroup p-value.

3.4. Invalidity under the null hypothesis

Suppose that the null hypothesis of zero treatment effect is true. Because the specification of 

S is a function of observed experiment 1 outcomes—and S is a subgroup for which the 

treatment appears effective— the expectation of  (over the randomization) is positive, 

and its associated p-value is skewed right, making traditional testing invalid in terms of type 

I error ([9]). Conceptually,  because  is the maximum or near maximum of 

several estimated SubATEs from experiment 1. Examining the two terms that make up , 

we expect  to be high and  to be low because of the subgroup 

specification; in other words, we expect experiment 1 treatment patients in S to have 

artificially good outcomes and experiment 1 control patients in S to have artificially poor 

outcomes, because such outcome information was used to select S in the first place.

In addition, because  shares one term with , we can see by the linearity of the 

expectation operator that  also has a positive expectation and a skewed-right p-

value under the null hypoth esis. Although  is realized after S is specified, the 

carry-over usage of  renders traditional testing of  invalid (although, one 

could argue, ‘less invalid’ than testing of ).

Finally, note in this setting that the historical controls in the combined subgroup analysis 

have covariate profiles (e.g., X = 1) that exactly match experiment 2 treatment patients. 

Here, the statistical problem is rooted not in any discrepancies between control and 

treatment covariate profiles but in the usage of observed experiment 1 outcomes under the 

false assumption that they are independent of the subgroup specification. Any traditionally 

calculated subgroup p-value for  cannot be valid, regardless of any covariate 

balancing (e.g., propensity score matching) techniques designed to mitigate that invalidity.
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4. Valid randomization-based p-values for post hoc subgroups in the 

presence of nuisance unknowns

Lee and Rubin [9] introduced a randomization-based approach for generating valid post hoc 

subgroup p-values, motivated by earlier ideas about randomization due to Fisher [10]. The 

fundamental insight is to specify the decision tree that led to the final test statistic value, 

considering what subgrouping and inferential steps would have been taken if the data had 

been realized under a different randomization. The approach entails (i) specifying a precise 

post hoc subgrouping procedure and an accompanying test statistic, (ii) calculating the test 

statistic on the observed data, (iii) imputing the missing potential outcomes in the study 

under a sharp null hypothesis, (iv) repeatedly drawing random hypothetical assignments 

according to the assignment mechanism and calculating test statistic values on the 

corresponding hypothetical datasets to construct the null randomization distribution of the 

test statistic, and (v) comparing the observed test statistic value against its null 

randomization distribution.

Calculating test statistic values on hypothetical data from a single experiment under a sharp 

null hypothesis is straightforward. For example, under the sharp null hypothesis of zero 

treatment effect, the missing potential outcomes can be imputed exactly as observed for each 

unit. The test statistic is then calculated using the hypothetical assignment and 

corresponding hypothetical observed data, given the specified subgrouping procedure. 

However, in settings with multiple experiments—including one or more that occur after the 

subgroup specification—constructing the null randomization distribution of the test statistic 

requires some ingenuity.

Consider our example from Section 3, in which women (X = 1 patients) make up the 

selected subgroup, S. The final test statistic, , compares outcomes from female 

experiment 1 control patients with outcomes from experiment 2 treatment patients, where by 

construction, all of experiment 2 patients are women. But what if men had exhibited a more 

beneficial estimated treatment effect than women in experiment 1? Presumably, experiment 

2 would then have included only men; the experimental sample for experiment 2 would have 

been completely different.

Here, we propose an extension of the aforementioned method that generates valid posterior 

predictive p-values [11, 12] in the presence of nuisance unknowns, for example, male 

experiment 2 outcomes. We expand experiment 2 Science table, conceptualizing it as an 

augmented experiment with  patients , containing patients with the same mix 

of X values as experiment 1 and filled with missing data. For experiment 2 patients that exist 

in reality (i.e., women), potential outcomes under active treatment are observed, but 

potential outcomes under control are missing (unobserved). For experiment 2 patients that 

exist only in our augmented framework (i.e., men), both potential outcomes are missing. The 

observed and unobserved values of the augmented experiment 2 Science table are shown in 

Table III.
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Because the male treatment potential outcomes are not observed in experiment 2, values of 

 under hypothetical randomizations can be considered random variables, with 

uncertainty resulting from these missing potential outcomes. Given a set of imputed values, 

however, we can construct the randomization distribution of  and calculate a 

randomization-based p-value. Thus, by multiply imputing [13] the missing male potential 

outcomes according to a distributional model that assumes the null hypothesis, they can be 

‘integrated out’ to produce a posterior predictive p-value; the posterior predictive p-value is 

the average p-value over the multiple imputations of the missing treatment potential 

outcomes.

Under the null hypothesis, the posterior predictive distribution of the missing treatment 

potential outcomes is informed by the observed experiment 1 potential outcomes for both 

control and treatment patients. In the framework with binary outcomes and two independent 

covariate subgroups (men versus women), there are two parameters to model for imputation: 

θm, the probability of a successful male outcome, and θf , the probability of a successful 

female outcome. A typical, non-controversial Bayesian model involves two independent 

Beta priors and Binomial likelihoods. (In the simulations as follows, we specify diffuse, 

independent Beta(1,1) priors.) Because of conjugacy, the posterior distributions of θm and θf 

remain Beta, leading to a Beta-Binomial posterior predictive distribution for the missing 

treatment potential outcomes. Here, modeling is further simplified by the fact that the 

treatment potential outcomes in experiment 2 need to be imputed only for the male patients; 

θf can be ignored because it is not needed. For a post hoc subgroup test statistic T, the full 

procedure for obtaining a posterior predictive p-value in the two-experiment setting is as 

follows:

Specify precisely the post hoc subgrouping procedure and the subgroup test statistic of 

interest, T (e.g., ).

Perform the post hoc subgrouping procedure on the observed dataset to obtain the 

observed subgroup test statistic, Tobs.

Using the augmented experiment 2 framework, multiply impute the missing treatment 

potential outcomes (e.g., M times), using their posterior predictive distributions 

according to a distributional model that assumes the null hypothesis. M is a large 

number (e.g., 10,000) that controls the Monte Carlo integration error.

For each of the M imputed datasets, calculate a randomization-based p-value for T 

according to the actual assignment mechanism(s) and specified subgrouping procedure 

([9]), treating the imputed values as true. The randomization-based p-value is the 

proportion of hypothetical randomizations for which the corresponding test statistic 

value, Thyp, is as extreme as or more extreme than Tobs.

The posterior predictive p-value for the null hypothesis with respect to T equals the 

average of the M randomization-based p-values.

The method outlined previously can be viewed as a form of data augmentation [14], with the 

expanded experiment 2 population making it possible to obtain a posterior predictive p-

value for T. Rubin [15] described a similar procedure in a different setting, in order to obtain 
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a posterior predictive p-value for the complier average causal effect in a single experiment 

with non-compliance. In that setting, the nuisance unknowns were the missing compliance 

statuses of the patients in the experiment who were assigned to the control treatment. In the 

same paper, a computational shortcut was identified: for each of the M imputed datasets, 

only one hypothetical assignment needs to be drawn in step 4. The individual 

randomization-based p-values then equal either 0 or 1, and the posterior predictive p-value is 

the average of the indicators.

As mentioned by Lee and Rubin [9], specifying a post hoc procedure exactly as it occurred 

may be difficult. In such cases, the randomization-based posterior predictive p-values can 

still place helpful bounds on the significance level of estimated subgroup effects by using 

reasonable approximations that place limits on the post hoc procedure.

5. Operating characteristics

5.1. Simulation setup

To evaluate the operating characteristics of the proposed method, we simulate random 

datasets under various treatment effect hypotheses. We first randomly sample N1 = 500 

patients for experiment 1, drawing from a population of 50% women and 50% men. We 

randomly assign N1/2 of these patients to control and the other N1/2 to active treatment. We 

then draw random Bernoulli outcomes according to the probabilities in Table IV.

After observing experiment 1 outcomes, we specify the subgroup S for further study. There 

are three possible choices for S: men, women, or all patients; S is the subgroup exhibiting 

the smallest p-value based on control versus treatment experiment 1 responder rates. (If 

multiple subgroups share the smallest p-value, the one in that pool with the largest number 

of included units is selected. If multiple subgroups share the smallest p-value and the largest 

sample size within that pool, one of them is selected at random.)

Experiment 2 is conducted with new patients, all of whom satisfy the criterion of S and are 

assigned to active treatment. The combined subgroup p-value is calculated for , 

comparing experiment 2 treatment units in S to experiment 1 control units in S. 

Randomization-based posterior predictive p-values are then generated according to the 

procedure described in Section 4.

5.2. Simulation results

Under the null hypotheses described in Table IV, both experiment 1 and combined 

(experiments 1 and 2) subgroup p-values are invalid in terms of type I error, that is, both 

subgroup p-values incorrectly reject the null hypothesis more often than desired by the 

nominal significance level. Figure 1 shows the histograms of these p-values under the null 

hypotheses. As expected, all of the histograms are heavily skewed right, indicating the p-

values’ invalidity. The combined subgroup p-values are slightly less skewed, suggesting that 

they are, in some sense, ‘less invalid’ than experiment 1 subgroup p-values.

On the other hand, the posterior predictive p-value appears valid—in fact, conservative—in 

terms of type I error (Figure 2). In other words, when the null hypothesis is true, the 
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posterior predictive p-value rejects it less often than indicated by the nominal significance 

level. Such conservatism often arises when multiply imputing missing data under a null 

hypothesis ([15]) and seems to become more extreme when the proportion of missing data is 

large.

Table V displays simulation results, comparing the type I error rates based on experiment 1, 

combined, and posterior predictive subgroup p-values.

Conservatism under a null hypothesis is often welcome, especially in FDA contexts, 

provided that the method exhibits sufficient power under reasonable alternative hypotheses; 

simulations show this to indeed be the case. Under the alternative hypotheses described in 

Table IV, the method has substantial power, rejecting the null hypothesis at α = 0.05 in 21% 

and 69% of replications under alternative hypotheses A (5% treatment effect) and B (10% 

treatment effect), respectively. Figure 3 displays the histograms of posterior predictive p-

values under these alternative hypotheses. We also note that in the motivating example from 

Section 2, pre-experiment sample size calculations aimed to capture 80% power at α = 0.05 

assuming larger treatment effects of 15–20%; according to simulations, our method achieves 

over 95% power when generating data with such large effects.

6. Discussion

We have presented a randomization-based approach for generating valid posterior predictive 

p-values for partially post hoc subgroups. We have also demonstrated that the resulting p-

values can have substantial power under reasonable alternative hypotheses. In the simple 

illustrative example provided, the multiple imputation of the missing experiment 2 treatment 

potential outcomes is facilitated by a conjugate model assuming independence between the 

subgroups. Such independence may not always be plausible, especially as the number of 

relevant covariates increases. For instance, only two covariates—effusion and polyarticular 

pain—defined the Durolane subgroup; thus, subgroup patients could and did share values of 

other additional covariates with non-subgroup patients. The augmented framework then 

requires an imputation model that relates covariates to the outcomes, for example, Bayesian 

logistic regression, under the null hypothesis. The missing experiment 2 treatment potential 

outcomes are again multiply imputed according to their posterior predictive distribution, 

which can be empirically constructed using Markov chain Monte Carlo techniques.

Having a single binary covariate in our illustration provides a straightforward imputation 

model that allows us to highlight our methodological contributions. When dealing with more 

complicated imputation models—as with all parametric models—it may be useful to 

investigate the sensitivity of the resulting inference to the model specification and the choice 

of priors. More generally, our randomization-based approach applies to randomized 

experiments with nuisance unknowns; examples of such unknowns include missing 

compliance statuses ([2]) and missing outcome data from patients who exist in reality (as 

opposed to existing only in the augmented framework).
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Figure 1. 
Empirical distributions of experiment 1 (top) and combined (experiments 1 and 2; bottom) 

subgroup p-values under the null hypotheses described in Table IV based on 1000 simulated 

datasets.

Lee and Rubin Page 10

Stat Med. Author manuscript; available in PMC 2015 November 23.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 2. 
Empirical distributions of posterior predictive p-values under the null hypotheses described 

in Table IV based on 1000 simulated datasets.
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Figure 3. 
Empirical distributions of posterior predictive p-values under the alternative hypotheses 

described in Table IV based on 1000 simulated datasets.
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Table I

The Science table for experiment 1 (left) and its corresponding observed values under a particular assignment 

(right).

Experiment 1

Covariate Potential outcomes Assignment Observed outcomes

Unit (i,j) Xi,j(0) Yi,j(0) Yi,j(1) W i, j
obs Yi,j(0) Yi,j(1)

1,1 0 Y1,1(0) Y1,1(1) 0 Y
1,1
obs ?

1,2 1 Y1,2(0) Y1,2(1) 0 Y
1,2
obs ?

1,3 0 Y1,3(0) Y1,3(1) 1 ? Y
1,3
obs

… … …

1,N1 1 Y1,N1
 (0) Y1,N1

 (1) 1 ? Y
1,N

1

obs
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Table II

The observed values of the Science table for experiment 2.

Experiment 2

Covariate Assignment Observed outcomes

Unit (i, j) X i,j W i, j
obs Yi,j(0) Yi,j(1)

2,1 1 1 ? Y
2,1
obs

2,2 1 1 ? Y
2,2
obs

2,3 1 1 ? Y
2,3
obs

… …

2, N2 1 1 ? Y
2,N

2

obs
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Table III

The observed and unobserved values of the augmented experiment 2 Science table.

Experiment 2

Covariate Assignment Potential outcomes

Unit (i, j) X i,j W i, j
obs Yi,j(0) Yi,j(1)

2,1 1 1 ? Y
2,1
obs

2,2 1 1 ? Y
2,2
obs

2,3 1 1 ? Y
2,3
obs

… …

2,N2 1 1 ? Y
2,N

2

obs

2,N2 + 1 0 1 ? ?

2,N2 + 2 0 1 ? ?

… …

2,N2
′ 0 1 ? ?
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Table IV

Simulated outcome success (‘response’) probabilities under various treatment effect hypotheses.

Men Women

Control Active treatment Control Active treatment

Null hypothesis A 0.50 0.50 0.50 0.50

Null hypothesis B 0.20 0.20 0.80 0.80

Alternative hypothesis A 0.50 0.55 0.50 0.55

Alternative hypothesis B 0.20 0.30 0.80 0.90
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Table V

Type I error rates (at α = 0.05) of experiment 1, combined, and posterior predictive subgroup p-values based 

on 1000 simulated datasets.

Type I error rate at α = 0.05

Subgroup p-value Null hypothesis A (%) Null hypothesis B (%)

Experiment 1 10.3 12.3

Combined (experiments 1 and 2) 8.7 8.0

Posterior predictive 2.0 2.3
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