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Abstract

Background & aims

Given ongoing challenges in non-invasive non-alcoholic liver disease (NAFLD) diagnosis,

we sought to validate an ALT-based NAFLD phenotype using measures readily available in

electronic health records (EHRs) and population-based studies by leveraging the clinical

and genetic data in the Million Veteran Program (MVP), a multi-ethnic mega-biobank of US

Veterans.

Methods

MVP participants with alanine aminotransferases (ALT) >40 units/L for men and >30 units/L

for women without other causes of liver disease were compared to controls with normal

ALT. Genetic variants spanning eight NAFLD risk or ALT-associated loci (LYPLAL1, GCKR,

HSD17B13, TRIB1, PPP1R3B, ERLIN1, TM6SF2, PNPLA3) were tested for NAFLD associ-

ations with sensitivity analyses adjusting for metabolic risk factors and alcohol consumption.

A manual EHR review assessed performance characteristics of the NAFLD phenotype with

imaging and biopsy data as gold standards. Genetic associations with advanced fibrosis

were explored using FIB4, NAFLD Fibrosis Score and platelet counts.

Results

Among 322,259 MVP participants, 19% met non-invasive criteria for NAFLD. Trans-ethnic

meta-analysis replicated associations with previously reported genetic variants in all but

LYPLAL1 and GCKR loci (P<6x10-3), without attenuation when adjusted for metabolic risk

factors and alcohol consumption. At the previously reported LYPLAL1 locus, the established

genetic variant did not appear to be associated with NAFLD, however the regional associa-

tion plot showed a significant association with NAFLD 279kb downstream. In the EHR vali-

dation, the ALT-based NAFLD phenotype yielded a positive predictive value 0.89 and 0.84

for liver biopsy and abdominal imaging, respectively (inter-rater reliability (Cohen’s kappa =

0.98)). HSD17B13 and PNPLA3 loci were associated with advanced fibrosis.

Conclusions

We validate a simple, non-invasive ALT-based NAFLD phenotype using EHR data by

leveraging previously established NAFLD risk-associated genetic polymorphisms.

Introduction

Non-alcoholic fatty liver disease (NAFLD) is a heritable, clinically heterogeneous disorder

encompassing simple steatosis and non-alcoholic steatohepatitis (NASH) with concomitant

cardio-metabolic risk factors [1, 2]. To date, genome-wide association studies (GWAS) for

NAFLD and related traits such as serum alanine aminotransferase (ALT) concentration have

identified 8 independent genetic loci derived primarily from hepatic lipid and glucose homeo-

static genes (LYPLAL1, GCKR,HSD17B13, TRIB1, PPP1R3B, CPN1-ERLIN1-CHUK, TM6SF2,

PNPLA3) (S1 Table in S1 File) [3–18]. In particular, the I148M variant of the patatin-like
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phospholipase domain-containing protein-3 (PNPLA3) gene has been strongly associated with

NAFLD, ALT concentration, and alcoholic liver disease. PNPLA3 encodes the calcium-inde-

pendent phospholipase A2 epsilon (also called adiponutrin) which is enriched in hepatocytes

and hepatic stellate cells and has a role in lipid droplet regulation [19]. Additionally, polymor-

phisms inMBOAT7 and IFNL3/4 have been shown to be associated with hepatic steatosis and

necroinflammation [20–22].

Despite our advanced understanding of NAFLD pathogenesis, population-based identifica-

tion of NAFLD remains a challenge in clinical practice and research [23, 24]. Although liver

biopsy is generally considered the gold standard in NAFLD diagnosis [25], it is infrequently

performed in routine clinical care due to its invasive nature with poor patient acceptance and

sample variability [26]. Conventional ultrasound, though frequently used, has limited sensitiv-

ity and specificity, whereas the role of transient elastography continues to emerge [1]. While

magnetic resonance imaging (MRI) modalities such as MRI protein-density fat fraction

(MRI-PDFF) or Magnetic Resonance Spectroscopy (MRS) can accurately diagnose hepatic

steatosis, these technologies are not widely available in routine clinical practice [26, 27]. Cur-

rent electronic-health record (EHR) based algorithms using diagnosis codes, clinical encoun-

ters, and laboratory values have limited sensitivity, underestimate population prevalence, and

still require clinician adjudication and labor-intensive medical record review [24, 28, 29].

Additional approaches to NAFLD phenotyping such as natural language processing and

machine learning remain areas of active and ongoing investigation [30].

Given these challenges in NAFLD diagnosis, we sought to validate a phenotype of NAFLD

using measures that can be readily applied in clinical practice and in population-based investi-

gations. To this end, we leveraged robust clinical and genomic data from the Million Veteran

Program (MVP), a multi-ethnic cohort with over 300,000 genotyped Veterans enrolled at 63

Veteran Affairs (VA) medical centers across the United States (US) [31]. Specifically, we used

16 genetic variants from 8 previously reported independent loci associated with NAFLD risk

(diagnosed using imaging, liver biopsy and related traits) and EHR review to validate a clinical

NAFLD phenotype. The replication of known genetic variant associations was performed in

MVP to increase the confidence on the non-invasive ALT-based NAFLD phenotype to facili-

tate future genetic association studies.

Materials and methods

MVP cohort description

This was a cross-sectional analysis at the time of MVP enrollment using previously collected

EHR data. We performed replication analyses using DNA samples and clinical data from the

MVP cohort, which has been described previously in detail [31, 32]. All participants provided

written informed consent to participate in the study. Consented participants provided a blood

sample, answered self-reported baseline and lifestyle questionnaires, and were consented for

future contact. Recruitment is ongoing at 63 VA Medical Centers across the US. The cohort is

predominantly male and enriched with Veterans of African (AA) and Hispanic/Latino (LA)

ancestry as compared to the US population [31]. Prospectively collected questionnaire data

were linked with clinical information from the VA EHR via the VA’s central database, the Cor-

porate Data Warehouse (CDW). The MVP core study protocol was approved by the VA Cen-

tral Institutional Review Board (CIRB) and the Research and Development (R&D)

Committees at all 63 participating VA medical centers. Further approval for this specific analy-

sis was obtained from the VA CIRB and from the R&D committees at Bedford, Philadelphia,

Palo Alto, Salt Lake City, and Phoenix VA medical centers.
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For the current analysis, clinical and genetic data were available from 234,683 European

(EU), 64,961 AA, and 22,615 LA participants (S2 Table in S1 File) categorized as mutually-

exclusive ancestral groups based on CDW data, self-identified race/ethnicity, and genetically

inferred ancestry enrolled in MVP from 2011 until 2016 [33]. Asian American participants

were excluded due to small sample size. As shown in S2 Table in S1 File, we further excluded

71,012 participants with the presence of international classification of disease-clinical modifi-

cation (ICD-9-CM/10-CM) codes for alcoholic liver disease and/or alcohol use disorder

(n = 51,549), other chronic viral (n = 7,995) metabolic, cholestatic liver diseases and liver

metastases (n = 11,468). For the main analyses, we further excluded 58,631 participants with

intermediate ALT values (between 30–40 U/L for men and 20–30 U/L for women) that did not

meet threshold ALT cutoffs for NAFLD case or control phenotype, resulting in a final analytic

cohort of 192,616 (S2 Table in S1 File, Row C).

NAFLD phenotype definitions

MVP NAFLD phenotype definitions were developed by combining a previously published VA

CDW ALT-based approach [24] with non-invasive clinical parameters available to practicing

clinicians at the point of care. The primary NAFLD phenotype (“ALT-threshold”) was defined

by: (i) elevated ALT>40 U/L for men and>30 U/L for women during at least two time points

at least 6 months apart within a two-year window period at any point prior to enrollment and

(ii) exclusion of other causes of liver disease (e.g. viral, cholestatic, and hereditary in addition

to alcohol-related hepatitis and cirrhosis) and/or alcohol use disorder by ICD-9-CM/10-CM.

Another ALT-based phenotype, ABALT, defined as ALT >30 U/L for men,>20 U/L for

women was evaluated using EHR validation (EHR validation section).

A secondary NAFLD phenotype (“ALT-metabolic”) combined “ALT-threshold” criteria

and at least one metabolic risk factor including obesity with body mass index (BMI)� 30 kg/

m2, dyslipidemia (DL), type 2 diabetes mellitus (T2D) or pre-diabetes as defined in the Meta-

bolic Risk Factor section below. The control group was defined by: normal ALT (�30 U/L for

men,�20 U/L for women) and no apparent causes of liver disease. There was a 97% overlap

between NAFLD cohorts defined by ALT-threshold and ALT-metabolic phenotypes. Given

this high overlap, we chose “ALT-threshold” as the main NAFLD phenotype for our analyses

given its simplicity and applicability in diverse study settings where clinical data may not be as

detailed as in the VA CDW.

We examined the associations between known ALT-associated variants and maximum

ALT within 2 years prior to enrollment as a continuous variable (labeled “ALT-max”). Sensi-

tivity analyses were conducted with six additional NAFLD phenotypes as defined in S4

Table in S1 File in which we altered ALT thresholds, individual metabolic risk factors, and

inclusion of intermediate ALT values in the control group (S5, S6 Tables in S1 File).

Metabolic risk factor definitions

All baseline variables were created using the most recent observation prior to MVP enroll-

ment. BMI was obtained from vital signs taken during clinical appointments. DL was defined

as any of the following: (i) triglyceride (TG)� 150 mg/dL taken before 9 AM, (ii) high density

lipoprotein (HDL) cholesterol < 40 mg/dL for men and< 50 mg/dL for women with at least 2

ICD-9-CM/10-CM codes (272.x/E78.0-E78.5), or (iii) at least one prescription for fenofibrate

or gemfibrozil. The DL definition was based on the criteria established by Third Adult Treat-

ment Panel (NCEP ATP III) for diagnosis of metabolic syndrome (MetS) [34]. Patients pre-

scribed HMG-CoA reductase inhibitors who did not meet any other criteria were not

classified as having DL as they could have been prescribed statins for primary coronary artery
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disease prevention unrelated to dyslipidemia [35]. Hypertension (HTN) was defined by ICD-

9-CM/10-CM codes (401.x-405.x/I10-I16).

T2D was based on any of the following criteria: (i) ICD9-10 codes shown in S3 Table in S1

File, but excluding codes for diabetes mellitus (T1D), other diabetes, medical conditions that

may cause diabetes, or diabetes pattern consistent with T1D (which included insulin in the

absence of oral agents, age of onset <40 years, BMI<25, or history of diabetic ketoacidosis),

(ii) hemoglobin A1c (HbA1c)�6.5% or outpatient blood glucose of�200 mg/dL, or (iii) at

least two prescriptions for diabetic medications. Pre-diabetes was defined with ICD-9/ICD-

10-CM codes: 790.2, 790.2x except 790.29, R73, R73.xx except R73.03 or HbA1c between 5.7%

and 6.49%, ever before the enrollment date in the absence of diabetes.

Assessment of alcohol use

Alcohol consumption was assessed with the mean age-adjusted scores from the Alcohol Use

Disorders Identification Test-Consumption (AUDIT-C), a validated 3-item questionnaire

administered annually by VA primary care practitioners and used previously in MVP [36–38].

The rationale for including and adjusting for AUDIT-C was: i) diagnostic codes used to

exclude patients for alcohol-use disorder may be insensitive for mild to moderate alcohol con-

sumption, ii) one third of the sample met criteria for possible alcohol misuse by AUDIT-C

resulting in loss of power if applying AUDIT-C as an exclusion criterion.

Genetic data

DNA extracted from whole blood was genotyped in MVP using a customized Affymetrix

Axiom biobank array, the MVP 1.0 Genotyping Array, as previously described [31, 32]. Qual-

ity control procedures include the following as previously reported: 1) ancestry classification

using a composite of self-reported race/ethnicity followed by ADMIXTURE v1.3 analyses; 2)

exclusion of low-quality samples (individual missingness >2.5%), 3) exclusion of related sam-

ples (using KING software); and 4) exclusion of low quality variants (<95% call rate) [32]. Sub-

sequently, genome-wide genotype pre-phasing (EAGLE v2) and imputation (Minimac3) was

performed using the 1000 Genomes phase 3, version 5 reference population where variants

with posterior call probability of< 0.9, imputation quality score <0.3, call rate<97.5%, and/

or ancestry specific Hardy-Weinberg equilibrium P <1x10-20 were excluded. Variants were

also excluded if they deviated >10% from their expected allele frequency from the 1000

Genomes Project. Ethnicity-specific principal component analysis was performed using

EIGENSOFT software.

Genetic variants selected for analyses

As shown in S1 Table in S1 File, we initially tested 15 genetic variants representing 8 indepen-

dent genomic regions from the imputed genetic dataset that were previously identified in

genome-wide association studies [3–9], including those associated with ALT concentration [3,

7, 8] and/or NAFLD diagnosed by MR spectroscopy [9, 39], computed tomography (CT) [6],

and histology [3, 40]. After this initial analysis (and lack of association at LYPLAL1), regional

association plots were generated for all 8 previously reported NAFLD-associated loci using

LocusZoom software [41] and shown in S1 Fig.

Electronic health record review

A medical record review in the VA EHR was independently performed by two hepatologists

on a sample of national data of 457 MVP enrollees, that included 241 with liver biopsies and
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216 that had at least one abdominal ultrasound, CT scan, or MRI to assess the diagnostic per-

formance of the two ALT-based NAFLD phenotype definitions against biopsy-proven and/or

radiologically confirmed NAFLD: (i) ABALT and (ii) ALT-threshold both defined above

(NAFLD Phenotype Definitions). In addition to liver biopsy and imaging data, the adjudica-

tors reviewed laboratory parameters, diagnoses, medication lists and inpatient and outpatient

clinical notes to rule in or out NAFLD; the algorithm followed a previously published schema

in the Veteran population [24]. The inter-rater reliability was measured by Cohen’s kappa (κ)

statistic. Performance characteristics of two NAFLD phenotypes, ALT-threshold and ABALT,

against EHR-adjudicated NAFLD as the gold standard were assessed by calculating positive

predictive values (PPVs) using Stata 15 (StataCorp LP, College Station, TX).

Assessment of advanced liver disease

We investigated relationships between previously established NAFLD variants and advanced

liver disease using two established clinically defined scores: FIB4 = Age [years] x AST [U/L] /

(platelets [10^9/L] x sqrt (ALT)), and NAFLD fibrosis score = -1.675 + (0.037�age) +

(0.094�BMI) + (1.13�(diabetes or prediabetes as defined above)) + (0.99�(AST/ALT))–

(0.013�platelets)–(0.66�albumin) [26, 42–45]. We defined advanced liver disease phenotypes at

enrollment by: (i) FIB4 score>2.670 [44] and (ii) NAFLD fibrosis score >0.676 with cutoffs

based on their optimal performance characteristics in previous NAFLD studies [43]. Average

platelet count at enrollment was investigated as a surrogate for portal hypertension as a contin-

uous measure. We also analyzed FIB4 and NAFLD fibrosis scores as continuous measures (S7

Table in S1 File).

Statistical analyses

Regression models were used to delineate the presence and strength of the relationship

between 8 established genetic loci and various definitions of the NAFLD phenotype (i.e.

ABALT, ABALT2, ALT2DL, AL2DM, ALT2HTN, ALT2OBESE, FIB4score, NAFLD fibrosis

score and their definition is described in S4 Table in S1 File). A total of 16 genetic variants

were chosen to represent 8 independent genetic regions. In particular, the 15 previously

reported variants (described in S1 Table in S1 File) were chosen together with an additional

variant in LYPLA1 locus (rs3001032, chr1:219727779) that captured the lead association with

NAFLD in the Million Veteran Program dataset upon investigating the regional association

plot (S1 Fig). Linear regression was used for continuous outcomes, such as FIB4 score,

NAFLD fibrosis score, whereas logistic regression was performed for dichotomous outcomes,

e.g. ABALT, ABALT2, ALT2DL, AL2DM, ALT2HTN, ALT2OBESE. The primary analysis for

the three above phenotypes was a trans-ethnic meta-analysis combining participants of EU,

AA, and LA ancestry; this was also conducted separately for each ancestry (S5A–S5C Table in

S1 File). The meta-analyses were performed using in a fixed-effects model using METAL with

inverse-variance weighting of log odds ratios [46]. Between-study allelic effect size heterogene-

ity was assessed with Cochran’s Q statistic as implemented in METAL. Variants were consid-

ered genome-wide significant if they surpassed the standard threshold (P = 5x10-8). Additional

replication-level significance (of P = 0.00625 representing Bonferroni correction of 8 indepen-

dent loci) and experiment-wide significance (P = 1x10-5 for correction of ~5,000 independent

tests regionally across the 8 loci) were also considered. Three multivariable models were gener-

ated for each outcome: (i) Model 1: NAFLD phenotype modeled as a function of SNP, age,

gender, and the first 10 genetic principal components (PCs) of genetic ancestry, (ii) Model 2:

NAFLD phenotype modeled as a function of SNP, age, gender, the first 10 genetic principal

components, and alcohol consumption at enrollment, and (iii) Model 3: NAFLD phenotype
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modeled as a function of age, gender, the first 10 genetic principal components, alcohol con-

sumption, T2D, hypertension, dyslipidemia and obesity. Covariates included age, gender,

AUDIT-C score, and 10 PCs for genetic similarity. Analysis was performed using R version

3.2.5.

Results and discussion

Characteristics of NAFLD analytic cohort across diverse ancestries

As shown in Table 1, 192,616 participants in the final NAFLD analytic cohort included

148,354 (82%) Europeans (EU), 31,878 (18%) African-Americans (AA), and 12,384 (6.4%)

Hispanic/Latinos (LA) with mean age of 64.5 (SD 13.1) of which 8.4% were female (similar to

the proportion of females in the entire VA population). The proportion of females was higher

among NAFLD cases across all ancestries.

The NAFLD analytic cohort had a substantial burden of cardiometabolic risk factors: 93%

of participants had at least 1 metabolic risk factor, 50% had BMI� 30 kg/m2, 71% had HTN,

26% had T2D, and 51% had DL. Approximately one third of the cohort showed evidence of

alcohol misuse based on the AUDIT-C score [36] despite the exclusion of participants with

alcohol use disorder diagnoses based on ICD-9-CM/10-CM. Laboratory measures consistent

with advanced fibrosis were detected in 10.2% based on NAFLD fibrosis score (>0.676), 3.8%

by FIB4 score (>2.670) and 9.5% based on platelet count (<150,000/μl), although fewer than

1% had diagnostic codes for cirrhosis or related complications(S2 Table in S1 File). As

Table 1. Baseline characteristics of the MVP NAFLD analytic cohort defined by the ALT-threshold definition.

All Ancestries (n = 192,616) European Ancestry

(n = 148,354)

African Ancestry

(n = 31,878)

Hispanic/Latino Ancestry

(n = 12,384)

CHARACTERISTIC TOTAL CASES CONTROLS CASES CONTROLS CASES CONTROLS CASES CONTROLS

Participants, n 192,616 60,542 132,074 46,653 101,701 8,019 23,859 5,870 6,514

Age at enrollment, mean ± sd 64.5 ± 13.1 61.8 ± 12.1 66.2 ± 13.7 63.1 ± 11.9 64.2 ± 14.8 58.2 ± 10.9 57.0 ± 14.5 56.5 ± 13.2 59.9 ± 16.0

Female, n (%) 16,209

(8.4%)

6,107

(10.1%)

10,102 (7.6%) 4,325

(9.3%)

6,169 (6.1%) 1,230

(15.3%)

3,508 (14.7%) 552 (9.4%) 425 (6.5%)

BMI�30 kg/m2, n (%) 88,547

(50.0%)

34,676

(57.3%)

53,871

(40.8%)

26,509

(56.8%)

39,672 (39%) 47,75

(59.5%)

11,115

(46.6%)

3,392

(57.8%)

3,084

(47.3%)

Hypertension, n (%) 136,862

(71.1%)

49,423

(81.6%)

87,439

(66.2%)

38,375

(82.3%)

66,946

(65.8%)

6,921

(86.3%)

16,668

(69.9%)

4,127

(70.3%)

3,825

(58.7%)

Diabetes, n (%) 49,961

(25.9%)

21,161

(35%)

28,800

(21.8%)

16,215

(34.8%)

21,232

(20.9%)

2,907

(36.3%)

5,899 (24.7%) 2,039

(34.7%)

1,669

(25.6%)

Prediabetes, n (%) 72,505

(37.6%)

20,210

(33.4%)

52,295

(39.6%)

15,664

(33.6%)

40,043

(39.4%)

2,571

(32.1%)

9,790 (41%) 2,075

(35.3%)

2,462

(37.8%)

Dyslipidemia, n (%) 97,698

(50.7%)

40,967

(67.7%)

5,6731 (43%) 31,900

(68.4%)

44,450

(43.7%)

4,693

(58.5%)

8,578 (26.9%) 4,374

(74.5%)

3,703

(56.8%)

Metabolic Risk Factor, n (%) 179,822

(93.4%)

58,964

(97.4%)

120,858

(91.5%)

45,487

(97.5%)

93,870

(92.3%)

7,835

(97.4%)

21,282

(89.2%)

5,675

(96.7%)

5,706

(87.6%)

Alcohol misuse, n (%) 59,304

(30.8%)

18,571

(30.7%)

40,733

(30.8%)

14,659

(31.4%)

32,966

(32.4%)

2,142

(26.7%)

5,909 (18.5%) 1,770

(30.2%)

1,858

(28.5%)

Peak ALT U/L, median [IQR] 28 [21 – 42] 43 [33 – 57] 23 [18 – 29] 44 [33 – 60] 24 [19 – 31] 42 [31 – 57] 23 [18 – 31] 47 [35 – 64] 24 [19 – 31]

Cirrhosis and chronic liver

disease not due to alcohol

1616 (0.8%) 1212 (2%) 404 (0.3%) 574 (1.2%) 217 (0.2%) 169 (2.1%) 115 (0.5%) 469 (8%) 72 (1.1%)

Abbreviations: ALT = alanine aminotransferase, AST = aspartate aminotransferase, BMI = body mass index, IQR = Interquartile range. All between and within-group

comparisons were P<0.001.

https://doi.org/10.1371/journal.pone.0237430.t001
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expected, participants with our primary NAFLD phenotype based on ALT-threshold were

more likely to have concomitant metabolic risk factors compared to controls with greater obe-

sity (57.3% vs 40.8%), HTN (81.6% vs 66.2%), T2D (35% vs 21.8%) and DL (67.7% vs 43%),

but not alcohol misuse (30.7% vs 30.8%).

Similar patterns persisted across EU, AA and LA ancestries. However, alcohol misuse was

more frequent among NAFLD compared to control participants with AA (26.7% vs 18.5%)

and LA (30.2% vs 28.5%) but not EU (31.4% vs 32.4%) ancestries. These findings provide

demographic and clinical characteristics of the NAFLD cohort in our analyses.

Replication of published NAFLD-associated loci in MVP NAFLD analytic

cohort

We next sought to replicate the NAFLD risk associations previously reported for 7 SNPs in 6

distinct genetic loci including LYPLAL1, GCKR,HSD17B13, PPP1R3B, TM6SF2 and PNPLA3,

using our primary and secondary NAFLD phenotype definitions (ALT-threshold and ALT-

metabolic) with and without further adjustment for alcohol use and/or metabolic risk factors

[3, 7, 8]. As shown in Table 2, four of the six NAFLD loci (5 of the seven tagging SNPs) were

Table 2. Previously published NAFLD risk variants with genome-wide significant association with clinical NAFLD phenotypes across all ancestries in the Million

Veteran Program NAFLD analytic cohort.

NAFLD Phenotype: ALT-Threshold (n = 192,616 Total: 60,542

cases, 132,074 controls)

NAFLD Phenotype: ALT-Metabolic

(n = 191,038 Total: 58,964 cases, 132,074

controls

Model 1 (Base) Model 2 (Base

+ Alcohol))

Model 3 (Base

+Alcohol+Metab)

Model 1 (Base) Model 2 (Base

+ Alcohol)

Previously published NAFLD risk variants

Gene rsID Chr Pos

(Mb)

EA EAF OR (95%

CI)

P OR (95%

CI)

P OR (95%

CI)

P OR (95%

CI)

P OR (95%

CI)

P

LYPLAL1 rs12137855 1 219.4 C 0.80 1.00 (0.98–

1.02)

0.9 1.00 (0.98–

1.02)

0.92 1.00 (0.98–

1.02)

0.83 1.00 (0.98–

1.02)

0.87 1.00 (0.98–

1.02)

0.89

LYPLAL1� rs3001032 1 219.7 T 0.69 1.04 (1.02–

1.06)

4.7E-

07

1.04 (1.02–

1.05)

9.9E-

07

1.04 (1.03–

1.06)

1.4E-

07

1.04 (1.02–

1.05)

1.2E-

06

1.04 (1.02–

1.05)

2.6E-

06

GCKR rs780094 2 27.7 T 0.40 1.02 (1.00–

1.03)

0.02 1.02 (1.00–

1.03)

0.04 1.01 (0.99–

1.03)

0.20 1.02 (1.00–

1.03)

0.02 1.01 (1.00–

1.03)

0.06

HSD17B13 rs72613567 4 88.2 T 0.73 1.09 (1.07–

1.11)

2.7E-

22

1.09 (1.07–

1.11)

2.2E-

22

1.10 (1.08–

1.12)

3.0E-

26

1.09 (1.07–

1.11)

8.1E-

22

1.09 (1.07–

1.11)

1.0E-

21

PPP1R3B rs4240624 8 9.2 G 0.09 1.12 (1.09–

1.14)

1.2E-

22

1.12 (1.09–

1.14)

6.6E-

22

1.12 (1.10–

1.15)

3.3E-

22

1.12 (1.09–

1.14)

2.5E-

22

1.12 (1.09–

1.14)

2.4E-

21

TM6SF2 rs2228603 19 19.3 T 0.08 1.19 (1.15–

1.22)

4.3E-

30

1.19 (1.16–

1.23)

7.1E-

31

1.24 (1.20–

1.27)

5.0E-

40

1.19 (1.15–

1.22)

3.9E-

30

1.19 (1.16–

1.23)

1.3E-

30

TM6SF2 rs58542926 19 19.4 T 0.07 1.23 (1.19–

1.26)

3.2E-

46

1.23 (1.20–

1.27)

1.2E-

47

1.29 (1.26–

1.33)

1.1E-

63

1.23 (1.19–

1.26)

7.2E-

46

1.23 (1.20–

1.27)

2.5E-

47

PNPLA3 rs738409 22 44.3 G 0.23 1.31 (1.29–

1.33)

2.2E-

210

1.31 (1.29–

1.33)

2.4E-

210

1.35 (1.33–

1.38)

4.1E-

232

1.31 (1.29–

1.33)

3.2E-

211

1.31 (1.29–

1.34)

3.0E-

210

�Newly defined LYPLAL1 variant associated with NAFLD in the Million Veteran Program based on the regional association plot (S1 Fig).

Abbreviations: rsID: dbSNP identifier (build 151), Chr: chromosome,Pos (Mb): megabase position on human genome reference hg19, EA: effect allele, EAF: effect allele

frequency among Europeans (Million Veteran Program), OR: odds ratio of risk in cases compared to controls per effect allele (additive model), CI: confidence interval.

LYPLAL1: Lysophospholipase-like Protein 1, GCKR: glucokinase regulatory protein, HSD17B13: Hydroxysteroid 17-Beta Dehydrogenase 13, PPP1R3B: protein

phosphatase 1, TM6SF2: Transmembrane 6 Superfamily Member 2, PNPLA3: patatin-like phospholipase domain-containing protein 3. Model 1: adjusted for age,

gender, and 10 principal components (PCs). Model 2: covariates in Model 1 + alcohol consumption at enrollment measured by the Alcohol Use Disorder Identification

Test (AUDIT-C). Model 3: covariates in Model 2 + metabolic risk factors (Type II diabetes/prediabetes, hypertension, dyslipidemia and BMI� 30 kg/m2). P-values

below 0.006 (adjusted for multiple comparisons) are shown in bold font.

https://doi.org/10.1371/journal.pone.0237430.t002
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robustly associated in the trans-ethnic meta-analysis of MVP cohort across all phenotype defi-

nitions and models (all P < 1x10-6, S1 Fig). We observed negligible differences in effect esti-

mates between the two NAFLD case definitions at these loci (Methods, Table 2), given the

high overlap (97%) between ALT-threshold and ALT-metabolic as described in Methods.

Additional adjustment for alcohol use based on AUDIT-C in Model 3 did not affect the esti-

mated odds ratios.

We further investigated the two regions with little to no statistical association in our cohort

in more detail. First, while the previously lead associated variant near the LYPLAL1 gene

(rs12137855, chr1:219,448,378) was not associated in our cohort (all P >0.80, Table 2), a

regional association plot (S1 Fig) indicated a substantial association with a robust effect with a

nearby SNP (rs3001032, chr1:219,727,779) (all OR = 1.04, all P< 1x10-5). Previous studies

have shown modest associations of rs3001032 with insulin resistance (HOMA-IR, P = 1.1x10-

4), beta-cell function (HOMA-B, P = 6.6x10-4), BMI (P = 1.4x10-5), T2D (P = 3.8x10-14), HDL

cholesterol (P = 8.1x10-3), and TG (P = 0.02), in contrast to rs12137855 which was not associ-

ated with these traits (P>0.05 for all) [47–50]. Given the burden of metabolic associations,

these data suggest that rs3001032 is likely to tag a true NAFLD association in this region. Sec-

ond, the previously associated variant at GCKR (rs780094) was not strongly associated with

our NAFLD phenotypes (i.e., a nominal P< 0.05 in the base model), particularly after meta-

bolic risk factor adjustments (Table 2). We investigated whether the association between

GCKR (rs780094) and secondary NAFLD phenotypes was sensitive to the NAFLD subtype def-

inition depending on the respective metabolic risk factor that served as an inclusion criterion.

When the NAFLD phenotype was defined by ALT-threshold + dyslipidemia (ALT2DL, S6c

Table in S1 File), the association was highly significant in participants of EU ancestry (OR

1.05, P = 6.5x10-8) as well as in the trans-ethnic meta-analysis (OR 1.05, P = 7 x 6.5x10-9).

These associations persisted when the models accounted for alcohol consumption (Model 2),

but were markedly attenuated and no longer significant when the NAFLD phenotype specifi-

cally excluded dyslipidemia and only included T2D (S6d Table in S1 File), HTN (S6e Table in

S1 File), or obesity (S6f Table in S1 File) in its definition.

Comparison of established NAFLD loci across EU, AA and LA cohorts

We further explored the associations of the foregoing NAFLD risk variants between MVP par-

ticipants stratified by EU, AA and LA ancestries (S5a and S5b Table in S1 File) [5–7, 9]. Similar

to the trans-ethnic meta-analyses, 6 of the 8 NAFLD risk variants (including the revised

LYPLAL1 variant rs3001032) were replicated with pre-specified threshold of significance (i.e.,

P<0.006) among EU participants with NAFLD defined by ALT-threshold (S5a Table in S1

File) or ALT-metabolic (S5b Table in S1 File) phenotype, but not GCKR (rs780094). Among

AA participants, only the genetic variants in PPP1R3B (rs4240624) and PNPLA3 (rs738409)

were replicated for both NAFLD phenotypes. Although there was a relatively modest sample

of LA, in that population, there was 100% directional concordance in odds ratios for the risk

alleles seen in EU participants and the TM6SF2 (rs58542926) and PNPLA3 (rs738409) loci

were significantly associated with both NAFLD phenotypes.

Replication of genetic loci associated with elevated ALT in MVP NAFLD

cohort

Having replicated NAFLD risk-associated variants with ALT-based NAFLD phenotypes, we

further examined 10 variants reported to be associated with ALT levels [3, 7, 8] including two

with NAFLD (rs72613567 and rs738409), using peak ALT (ALT-max) as defined in Methods.

As shown in Table 3, all 10 variants were strongly associated with peak levels of ALT in the
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entire cohort, with the strongest associations for PNPLA3 variants. Significant associations

persisted for all variants when adjusted for alcohol use in Model 2, while additional adjustment

for metabolic risk factor in Model 3 further increased both effect size and statistical signifi-

cance for most variants except for that in TRIB1. In ancestry-stratified analyses (S5c Table in

S1 File), all 10 variants were replicated among EU. In the AA cohort,HSD17B13 (rs72613567)

was replicated in Model 3 as was one SNP in ERLIN1 (rs11597086) and two in PNPLA3
(rs2281135, rs738409). In the LA cohort, variants at each of four independent loci were also

replicated.

Further sensitivity analyses were performed using previously published NAFLD risk and

ALT-associated genetic loci with six alternative NAFLD phenotype definitions to determine

whether further optimization could be achieved (S6a–S6f Table in S1 File). Altering the ALT

cutoff to>30 U/L for men and>20 U/L for women, changing ALT cutoff for the control

group, specifying the additional metabolic risk factor for NAFLD inclusion (e.g. T2D versus

dyslipidemia, obesity, or hypertension), and altering the number of concomitant metabolic

risk factors did not appreciably alter the associations, compared to NAFLD phenotype based

on ALT-threshold.

Not surprisingly, the strength of associations improved for most NAFLD risk/ALT level-

associated variants with higher ALT cutoffs (S6a, S6b Table in S1 File) and by further adjusting

for metabolic risk factors for most variants. The stronger associations noted between estab-

lished variants and higher ALT cutoffs shows the enhanced specificity (reduction in false posi-

tive cases) of the ALT-threshold phenotype without a concomitant reduction in statistical

power to detect associations.

Clinical NAFLD phenotype performance and direct EHR review

We next performed an EHR review to assess the performance characteristics of our clinical

ALT-based NAFLD phenotype definitions. The inter-rater reliability of the initial chart review

Table 3. Previously published ALT-associated variants with genome-wide significance and association with maximal ALT at enrollment.

NAFLD Phenotype: ALT-Max (n = 192,616)

Model 1 (Base) Model 2 (Base + Alcohol) Model 3 (Base+Alcohol

+Metab)

Gene rsID Chr Pos EA EAF Beta SE P Beta SE P Beta SE P

HSD17B13 rs6834314 4 88213808 A 0.72 0.781 0.090 6.1E-18 0.759 0.091 7.7E-17 0.805 0.090 5.0E-19

HSD17B13 rs72613567 4 88231392 T 0.73 0.893 0.096 2.0E-20 0.867 0.097 4.6E-19 0.920 0.096 1.3E-21

TRIB1 rs2954021 8 126482077 A 0.50 0.787 0.080 6.4E-23 0.814 0.08 4.4E-24 0.762 0.080 1.4E-21

ERLIN1 rs10883437 10 101795361 T 0.61 0.501 0.081 5.3E-10 0.524 0.081 1.1E-10 0.534 0.081 3.4E-11

ERLIN1 rs11597390 10 101861435 G 0.64 0.789 0.085 1.5E-20 0.797 0.086 1.3E-20 0.801 0.085 3.8E-21

ERLIN1 rs11597086 10 101953705 A 0.58 1.114 0.087 9.3E-38 1.115 0.087 2.9E-37 1.140 0.087 1.9E-39

ERLIN1 rs11591741 10 101976501 G 0.58 1.090 0.086 5.8E-37 1.096 0.086 8.2E-37 1.120 0.086 5.6E-39

PNPLA3 �rs738409 22 44324727 G 0.23 2.580 0.097 1.9E-155 2.574 0.098 1.4E-152 2.684 0.097 3.9E-168

PNPLA3 rs2281135 22 44332570 A 0.17 2.263 0.105 4.4E-102 2.240 0.106 7.5E-99 2.357 0.105 9.5E-111

PNPLA3 rs2143571 22 44391686 A 0.18 1.235 0.098 1.0E-36 1.212 0.098 4.8E-35 1.276 0.097 3.7E-39

Abbreviations: rsID: dbSNP identifier (build 151), Chr: chromosome, Pos: base pair position on human genome reference hg19, EA: effect allele, EAF: effect allele

frequency among Europeans (Million Veteran Program), Beta: effect size estimated increase in trait per increase copy of the effect allele (additive model). SE: Standard

error on Beta, HSD17B13: Hydroxysteroid 17-Beta Dehydrogenase 13, TRIB1:Tribbles Homolog 1, ERLIN1: ER Lipid Raft Associated 1, PNPLA3: patatin-like

phospholipase domain-containing protein 3. Model 1: adjusted for age, gender, and 10 principal components (PCs), Model 2: covariates in Model 1 + alcohol

consumption at enrollment measured by the Alcohol Use Disorder Identification Test (AUDIT-C), Model 3: covariates in Model 2 + Type II diabetes/prediabetes,

hypertension, dyslipidemia and BMI� 30 kg/m2. P-values below 0.006 (adjusted for multiple comparisons) are shown in bold font.

https://doi.org/10.1371/journal.pone.0237430.t003
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was κ = 0.98. As shown in Table 4, the, ALT-threshold phenotype yielded PPV of 0.89 and 0.84

with biopsy and imaging as gold standards, respectively.

Associations of established NAFLD risk and ALT level-associated variants

with advanced fibrosis

Most NAFLD risk/ALT level-associated variants examined in our study have been associated

with hepatic fibrosis progression including: GCKR (rs780094), HSD17B13 (rs72613567),

TM6SF2 (rs58542926), ERLIN1 (rs11597390, rs11597086, rs11591741) and PNPLA3
(rs738409) [3–9, 51]. Therefore, we examined our NAFLD/ALT panel for associations with

advanced fibrosis in our MVP cohort, using FIB4 score (>2.670) and NAFLD fibrosis score

(�0.676) and platelet counts at enrollment as a surrogate measure of portal hypertension. As

shown in Table 5, variants in GCKR,HSD17B13 and PNPLA3 (but not TM6SF2 and ERLIN1)

were associated with advanced fibrosis in our overall MVP cohort, but with variable levels of

significance depending on fibrosis definition. For example, significant associations were repli-

cated for the GCKR variant (rs780094), bothHSD17B13 variants (rs6834314A, rs72613567T)

and three PNPLA3 variants (rs738409, rs2281135, rs2143571) using platelet count as a contin-

uous variable. However, the use of FIB4 score replicated the associations forHSD17B13 and

PNPLA3 variants but not GCKR, whereas the use of NAFLD fibrosis score replicated the asso-

ciations for PNPLA3 variants but notHSD17B13 or GCKR.

Further ancestry-stratified analyses using FIB4 (S7a Table in S1 File), NAFLD fibrosis

scores (S7b Table in S1 File) and baseline platelet count (S7c Table in S1 File) showed similar

results for MVP participants with EU ancestry, with significant associations for GCKR,

HSD17B13 and PNPLA3 variants. Despite smaller sample sizes, analyses using baseline platelet

count showed significant associations among AA participants for GCKR and two PNPLA3 var-

iants (rs738409, rs2281135) and among LA participants forHSD17B13 variant (rs6834314)

and all three PNPLA3 variants. The use of NAFLD fibrosis score resulted in a significant asso-

ciation for the TRIB1 variant (rs2954021) among LA participants (S7b Table in S1 File),

although this association did not persist when using NAFLD fibrosis or FIB4 as continuous

Table 4. Electronic health record validation of NAFLD phenotype.

Liver Biopsy and Clinical Notes as Gold Standard (n = 178)

NAFLD Phenotype NAFLD Phenotype

ABALT� ALT-threshold��

(n = 241) (n = 178)

PPV 0.89 0.89

Abdominal Imaging Studies and Clinical Notes as Gold Standard (n = 216)

NAFLD Phenotype NAFLD Phenotype

ABALT� ALT-threshold��

(n = 216) (n = 142)

PPV 0.71 0.84

� ALT > 30 for men and > 20 for women during at least two time points at least 6 months apart within a two-year

period and no other chronic liver disease.

�� ALT > 40 for men and > 30 for women during at least two time points at least 6 months apart within a two-year

period and no other chronic liver disease irrespective of metabolic risk factors. Sample size is lower due to exclusion

of n = 137 from cases/control due to intermediate ALT values between 20–30 units/L.

Abbreviations: ALT:alanine aminotransferase, M:male, F:female; NAFLD = non-alcoholic fatty liver disease,

PPV = positive predictive value in the validation sample.

https://doi.org/10.1371/journal.pone.0237430.t004
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measures (S7d and S7e Table in S1 File). Overall, results were similar for models adjusted for

alcohol use and metabolic risk factors and with fibrosis scores as continuous measures (S7d

and S7e Table in S1 File). Thus, these results replicated the associations between advanced

hepatic fibrosis and GCKR,HSD17B13 and PNPLA3 variants in our MVP cohort. Together,

these data demonstrate the utility of the ALT-threshold phenotype in phenotyping NAFLD in

a large EHR database.

Discussion

In this study, we took advantage of the robust clinical EHR and genotype data from the largest

and diverse NAFLD case/control cohort to date to develop a non-invasive ALT-based NAFLD

phenotype that may be used in future, large-scale population-based studies. Our NAFLD phe-

notype is based on a few key components: chronically elevated ALT, exclusion of viral, chole-

static and other hereditary liver diseases, and exclusion of persons with alcohol-related

cirrhosis.

Of the 322,259 potentially eligible MVP participants with genetic and clinical data, 19% met

criteria for NAFLD as defined by the ALT-threshold phenotype. After applying exclusion cri-

teria, of the 192,616 participants in the final NAFLD analytic cohort, 31% (n = 60,542) met cri-

teria for NAFLD using this definition. These findings are consistent with the 18–21% NAFLD

Table 5. Previously published ALT level/NAFLD risk-associated variants with genome-wide significance and associations with advanced fibrosis/cirrhosis and

platelet count at enrollment among patients with NAFLD (n = 60,542).

FIB4 score >2.670 (n = 7,376

cases, 53,166 controls)

NAFLD fibrosis score�0.676

(n = 18,363 cases, 42,179

controls)

Platelet Count (n = 60,542)

GENE rsID Chr Pos EA EAF OR (95% CI) P OR (95% CI) P BETA SE P

LYPLAL1 rs12137855 1 219448378 C 0.8 0.97 (0.94–1.01) 0.11 0.98 (0.95–1.01) 0.18 0.214 0.214 0.32

LYPLAL1 rs3001032 1 219727779 T 0.69 1.00 (0.97–1.03) 0.91 0.98 (0.95–1.00) 0.082 -0.298 0.178 0.095

�GCKR rs780094 2 27741237 T 0.4 1.04 (1.01–1.07) 0.0092 1.00 (0.97–1.02) 0.8 1.605 0.179 2.5E-19

HSD17B13 rs6834314 4 88213808 A 0.72 1.05 (1.02–1.08) 0.0023 1.01 (0.98–1.04) 0.47 -1.504 0.193 6.1E-15

�HSD17B13 rs72613567 4 88231392 T 0.73 1.06 (1.02–1.09) 9.7E-04 1.02 (0.99–1.05) 0.25 -1.688 0.206 2.2E-16

TRIB1 rs2954021 8 126482077 A 0.5 0.99 (0.97–1.02) 0.55 0.99 (0.96–1.01) 0.25 -0.259 0.169 0.13

PPP1R3B rs4240624 8 9184231 G 0.09 0.96 (0.92–1.01) 0.084 1.00 (0.96–1.04) 0.89 -0.376 0.266 0.16

ERLIN rs10883437 10 101795361 T 0.61 1.02 (1.00–1.05) 0.089 1.01 (0.99–1.04) 0.4 -0.183 0.171 0.29

�ERLIN rs11597390 10 101861435 G 0.64 1.01 (0.98–1.04) 0.68 1.00 (0.97–1.02) 0.72 0.164 0.18 0.36

�ERLIN rs11597086 10 101953705 A 0.58 1.01 (0.98–1.03) 0.73 1.00 (0.97–1.03) 0.95 -0.068 0.184 0.71

�ERLIN rs11591741 10 101976501 G 0.58 1.00 (0.97–1.03) 0.82 1.00 (0.97–1.02) 0.87 -0.064 0.182 0.72

TM6SF2 rs2228603 19 19329924 T 0.08 0.97 (0.92–1.03) 0.32 0.97 (0.93–1.02) 0.24 0.154 0.357 0.67

�TM6SF2 rs58542926 19 19379549 T 0.07 1.01 (0.96–1.06) 0.64 0.97 (0.93–1.01) 0.18 -0.041 0.341 0.9

�PNPLA3 rs738409 22 44324727 G 0.23 1.08 (1.05–1.12) 2.4E-07 1.06 (1.03–1.09) 2.0E-05 -2.88 0.204 3.9E-45

PNPLA3 rs2281135 22 44332570 A 0.17 1.08 (1.04–1.11) 1.4E-05 1.05 (1.02–1.09) 0.0007 -2.382 0.221 5.1E-27

PNPLA3 rs2143571 22 44391686 A 0.18 1.05 (1.02–1.09) 0.0013 1.04 (1.01–1.07) 0.0042 -1.437 0.206 2.8E-12

Abbreviations: rsID: dbSNP identifier (build 151), Chr: chromosome, Pos (Mb): megabase position on human genome reference hg19, EA: effect allele, EAF: effect

allele frequency among Europeans (Million Veteran Program), OR: odds ratio, increased risk in cases compared to controls per effect allele (additive model), CI:

confidence interval, Beta: effect size estimated increase in trait per increase copy of the effect allele (additive model). SE: Standard error on Beta, LYPLAL1:

Lysophospholipase-like Protein 1, GCKR: glucokinase regulatory protein, HSD17B13: Hydroxysteroid 17-Beta Dehydrogenase 13, PPP1R3B: protein phosphatase 1,

TM6SF2: Transmembrane 6 Superfamily Member 2, PNPLA3: patatin-like phospholipase domain-containing protein 3. All analysis adjusted for age, gender, and 10

principal components (PCs); adjustments including alcohol consumption are presented in the Supplement (S6a–S6c Table in S1 File). P-values below 0.006 (adjusted for

multiple comparisons) are shown in bold font.

https://doi.org/10.1371/journal.pone.0237430.t005
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prevalence reported previously among Veterans (2003–2011) and with national estimates [23,

52, 53]. Expectedly, NAFLD participants were more likely to have metabolic risk factors than

controls. In the course of developing our phenotype, we noted a high degree of overlap

between the ALT-based NAFLD phenotype (ALT-threshold) and one that required a concom-

itant metabolic risk factor (ALT-metabolic). The very similar associations between known

NAFLD risk genetic loci and these two definitions support our use of ALT-threshold as the

primary NAFLD phenotype for two main reasons. The ALT-threshold definition is more par-

simonious and by not including a metabolic risk factor facilitates the conduct of further

genetic correlation or causal inference studies (via Mendelian randomization) to investigate

the links between these individual metabolic risk factors and NAFLD (by not conditioning a

phenotype on a metabolic risk factor performing causal inference studies of the influence of a

risk factor and NAFLD would become problematic potentially inducing collider bias) [54]. In

addition to investigating how our NAFLD phenotype associated with previously established

genetic variants, we also assessed the performance characteristics of these phenotypes among

Veterans with available liver biopsy and abdominal imaging data, which yielded high positive

predictive values and high inter-rater reliability. The PPV noted in our study was 89% when

compared to a biopsy-proven gold standard and 71% when using imaging and clinical notes as

the gold standard. Results are comparable to other studies using EHR- and natural language-

based processing algorithms [24, 29, 55].

The strength of our ALT-based NAFLD phenotype is that it utilizes factors routinely

assessed in clinical practice and performs well even among participants with moderate alcohol

consumption. Clinical models for the diagnosis of NAFLD/NASH have been validated in pro-

spective studies, however, several require measures such as waist circumference, homeostasis

model assessment of insulin resistance, or fasting insulin or fasting glucose. Several of these

factors are not readily available in real-world settings [52, 53, 56].

In the course of performing genetic association studies, we made several observations

regarding genetic variants in LYPLAL1 (rs12137855) and GCKR (rs80094). While the previ-

ously reported association was not replicated in the LYPLAL1 variant (rs12137855) in our

cohort, a nearby variant (rs3001032) was strongly associated with our phenotype and a pleth-

ora of metabolic risk factors, suggesting that this variant tags the regional NAFLD signal. With

regards to GCKR, our sensitivity analyses showed a highly significant association between the

established GCKR variant and NAFLD only when dyslipidemia was included in the NAFLD

definition. GKCR was previously found to be associated with elevated ALT, however this was

in smaller, highly selected cohorts (overweight/obese Mexican women, obese children of

Asian ancestry), which differed substantially from MVP enrollees [57, 58]. This was not sur-

prising as GCKR was previously shown to enhance hepatic glucose uptake resulting in reduced

fatty acid oxidation and increased hepatic de novo lipogenesis [59] augmenting both the risk

of NAFLD and metabolic aberrations [6]. It has also been shown by others that the GCKR vari-

ant associates with dyslipidemia, while this is not the case for many other NAFLD risk-increas-

ing genotypes such as PNPLA3 [6, 60] and that it increases the risk of NAFLD in obese

individuals [58]. In sensitivity analyses, including/excluding dyslipidemia in the NAFLD case

definition might have modified the proportions of individuals carrying these risk alleles con-

tributing to the noted differences in the reported association tests. It is also possible that the

lack of apparent associations with GCKRmay have been due to our highly specific, but less

sensitive NAFLD phenotype. This would need to be confirmed in future VA studies with

imaging and biopsy data.

The diversity of the MVP cohort provided an opportunity to investigate NAFLD in under-

represented populations. GWAS studies for NAFLD and ALT levels have largely focused on

persons of EU ancestry, with minority populations underrepresented [4]. For example, only
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cohorts with EU ancestry were included in the two largest studies examining hepatic steatosis

(n = 7,176) and ALT (n = 45,596), whereas other studies included up to 3,124 AA and 849 LA

[5–7, 9, 61]. At the same time, NAFLD prevalence has been reported to be lower among AA

but higher among LA than EU in population-based studies [23, 52, 62]. Notably, our MVP

cohort of 60,542 NAFLD cases included 8,019 of AA and 5,870 of LA ancestry, thereby estab-

lishing one of the largest NAFLD cohorts with multi-ethnic representation. Among AA in our

MVP cohort, significant associations with NAFLD and/or ALT were detected for 6 variants,

including PNPLA3 (rs738409) and PPP1R3B (rs4240624), which were previously reported in

3,124 AA patients examined for hepatic steatosis by CT [61]. As for LA participants, significant

associations were replicated for 9 variants including PNPLA3 (rs738409) further supporting

the robustness of our NAFLD phenotype [61].

In MVP, we confirmed associations between several NAFLD risk variants and advanced

fibrosis. In our main analyses, variants in PNPLA3 (rs738409, rs2281135, rs2143571) exhibited

strong positive associations with advanced fibrosis and negative associations with platelet

count andHSD17B13 variants (rs6834314, rs72613567) confirming the results of prior studies

[3, 6, 39]. We did not find significant associations between advanced fibrosis and TM6SF2 [18]

or two additional lociMBOAT7 and IFNL3/4 (results not shown) previously found to associate

with hepatic steatosis and necroinflammation [20–22]. This may be secondary to our low sam-

ple size of patients with advanced fibrosis or the heterogeneity of fibrosis definitions across

previous studies. The GCKR variant (rs780094) had a near-significant association with

advanced fibrosis when characterized by continuous FIB4 measurement. Notably, GCKR was

associated with a higher platelet count. This is not surprising as the variant in GCKR is pleio-

tropic and has been associated with platelet count and other human blood cell traits [63].

Interestingly, the observed prevalence of advanced fibrosis among AA was comparable to EU,

differing from previous reports and suggesting possible under-recognition of NAFLD among

AA in previous studies [61, 62] and/or an underestimation of how ethnic differences in patho-

genic traits such as visceral adiposity underlie NAFLD susceptibility [64].

There are several limitations to this study. The requirement for abnormal ALT potentially

excluded a large number of individuals with NAFLD/NASH with and without cirrhosis who

did not manifest elevated liver enzymes. The primary analyses excluded those with intermedi-

ate ALT values, however, sensitivity analyses (S6 Table in S1 File) showed that genetic associa-

tions were similar when participants with intermediate values were included. Patients of Asian

ancestry were not represented and women were under-represented potentially limiting gener-

alizability. Although fibrosis was assessed non-invasively and in several different ways, the

validity of these measures will need to be determined among Veterans. The sample size of Vet-

erans with advanced fibrosis and biopsy or transient elastography data was small limiting our

ability to evaluate associations with advanced fibrosis; these will be examined in future studies.

We may have been limited in our ability to capture Veterans with the most severe forms of

NAFLD who did not survive to MVP enrollment as well as Veterans with hepatic steatosis and

normal ALT values. Despite these concerns, our accurate, genetically and clinically-validated

phenotype should be amenable to large-scale scans to identify and replicate genetic causes of

NAFLD and progression to complications.

Conclusion

We leveraged the clinical and genetic data in MVP—a multi-ethnic, mega-biobank to provide

a validation of a simple, non-invasive ALT-based NAFLD phenotype in a real-world, popula-

tion-based, national cohort. Our phenotype may be applied to future genetic and
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epidemiologic studies in population-based cohorts and to aid practicing clinicians in identify-

ing individuals at risk for NAFLD with readily available clinical data.

Supporting information

S1 File.

(DOCX)

S1 Fig. Regional plots of 8 independent previously published NAFLD risk loci.

(PDF)

Acknowledgments

This research is based on data from the Million Veteran Program, Office of Research and

Development, Veterans Health Administration. This publication does not represent the views

of the Department of Veterans Affairs or the United States Government.

Author Contributions

Conceptualization: Marina Serper, Marijana Vujkovic, David E. Kaplan, Rotonya M. Carr,

Daniel J. Rader, Scott M. Damrauer, Julie A. Lynch, Danish Saleheen, Benjamin F. Voight,

Kyong-Mi Chang.

Data curation: Marina Serper, Marijana Vujkovic, Kyung Min Lee, Qing Shao, Saiju Pyarajan,

Scott L. DuVall, Julie A. Lynch, Benjamin F. Voight, Kyong-Mi Chang.

Formal analysis: Marijana Vujkovic, Benjamin F. Voight, Kyong-Mi Chang.

Funding acquisition: Philip S. Tsao, Kyong-Mi Chang.

Methodology: Marina Serper, David E. Kaplan, Rotonya M. Carr, Rachel Vickers-Smith,

Henry R. Kranzler, Scott M. Damrauer, Danish Saleheen, Benjamin F. Voight, Kyong-Mi

Chang.

Resources: Christopher J. O’Donnell, John M. Gaziano, Sumitra Muralidhar, Danish

Saleheen.

Writing – original draft: Marina Serper, Marijana Vujkovic, Rotonya M. Carr, Benjamin F.

Voight, Kyong-Mi Chang.

Writing – review & editing: Marina Serper, Marijana Vujkovic, David E. Kaplan, Rotonya M.

Carr, Donald R. Miller, Peter D. Reaven, Lawrence S. Phillips, Christopher J. O’Donnell,

James B. Meigs, Peter W. F. Wilson, Rachel Vickers-Smith, Henry R. Kranzler, Amy C. Jus-

tice, John M. Gaziano, Sumitra Muralidhar, Saiju Pyarajan, Scott L. DuVall, Themistocles

L. Assimes, Jennifer S. Lee, Philip S. Tsao, Daniel J. Rader, Scott M. Damrauer, Julie A.

Lynch, Danish Saleheen, Benjamin F. Voight, Kyong-Mi Chang.

References
1. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and manage-

ment of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study

of Liver Diseases. Hepatology. 2018; 67(1):328–57. https://doi.org/10.1002/hep.29367 PMID:

28714183

2. Carr RM, Oranu A, Khungar V. Nonalcoholic Fatty Liver Disease: Pathophysiology and Management.

Gastroenterol Clin North Am. 2016; 45(4):639–52. https://doi.org/10.1016/j.gtc.2016.07.003 PMID:

27837778

PLOS ONE NAFLD in the MVP program

PLOS ONE | https://doi.org/10.1371/journal.pone.0237430 August 25, 2020 15 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237430.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237430.s002
https://doi.org/10.1002/hep.29367
http://www.ncbi.nlm.nih.gov/pubmed/28714183
https://doi.org/10.1016/j.gtc.2016.07.003
http://www.ncbi.nlm.nih.gov/pubmed/27837778
https://doi.org/10.1371/journal.pone.0237430


3. Abul-Husn NS, Cheng X, Li AH, Xin Y, Schurmann C, Stevis P, et al. A Protein-Truncating HSD17B13

Variant and Protection from Chronic Liver Disease. New Engl J Med. 2018; 378(12):1096–106. https://

doi.org/10.1056/NEJMoa1712191 PMID: 29562163

4. Kahali B, Halligan B, Speliotes EK. Insights from Genome-Wide Association Analyses of Nonalcoholic

Fatty Liver Disease. Semin Liver Dis. 2015; 35(4):375–91. https://doi.org/10.1055/s-0035-1567870

PMID: 26676813

5. Kozlitina J, Smagris E, Stender S, Nordestgaard BG, Zhou HH, Tybjaerg-Hansen A, et al. Exome-wide

association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver dis-

ease. Nat Genet. 2014; 46(4):352–6. https://doi.org/10.1038/ng.2901 PMID: 24531328

6. Speliotes EK, Yerges-Armstrong LM, Wu J, Hernaez R, Kim LJ, Palmer CD, et al. Genome-wide associ-

ation analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct

effects on metabolic traits. PLoS Genet. 2011; 7(3):e1001324. https://doi.org/10.1371/journal.pgen.

1001324 PMID: 21423719

7. Chambers JC, Zhang W, Sehmi J, Li X, Wass MN, Van der Harst P, et al. Genome-wide association

study identifies loci influencing concentrations of liver enzymes in plasma. Nat Genet. 2011; 43

(11):1131–8. https://doi.org/10.1038/ng.970 PMID: 22001757

8. Yuan X, Waterworth D, Perry JR, Lim N, Song K, Chambers JC, et al. Population-based genome-wide

association studies reveal six loci influencing plasma levels of liver enzymes. Am J Hum Genet. 2008;

83(4):520–8. https://doi.org/10.1016/j.ajhg.2008.09.012 PMID: 18940312

9. Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, et al. Genetic variation in

PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008; 40(12):1461–5.

https://doi.org/10.1038/ng.257 PMID: 18820647

10. Anstee QM, Seth D, Day CP. Genetic Factors That Affect Risk of Alcoholic and Nonalcoholic Fatty Liver

Disease. Gastroenterology. 2016; 150(8):1728–44 e7. https://doi.org/10.1053/j.gastro.2016.01.037

PMID: 26873399

11. Di Costanzo A, Belardinilli F, Bailetti D, Sponziello M, D’Erasmo L, Polimeni L, et al. Evaluation of Poly-

genic Determinants of Non-Alcoholic Fatty Liver Disease (NAFLD) By a Candidate Genes Resequen-

cing Strategy. Sci Rep. 2018; 8(1):3702. https://doi.org/10.1038/s41598-018-21939-0 PMID: 29487372

12. Pirola CJ, Flichman D, Dopazo H, Gianotti TF, San Martino J, Rohr C, et al. A Rare Nonsense Mutation

in the Glucokinase Regulator Gene Is Associated With a Rapidly Progressive Clinical Form of Nonalco-

holic Steatohepatitis. Hepatology Communications. 2018; 2(9):1030–6. https://doi.org/10.1002/hep4.

1235 PMID: 30202818

13. Bauer RC, Sasaki M, Cohen DM, Cui J, Smith MA, Yenilmez BO, et al. Tribbles-1 regulates hepatic lipo-

genesis through posttranscriptional regulation of C/EBPalpha. J Clin Invest. 2015; 125(10):3809–18.

https://doi.org/10.1172/JCI77095 PMID: 26348894

14. Mehta MB, Shewale SV, Sequeira RN, Millar JS, Hand NJ, Rader DJ. Hepatic protein phosphatase 1

regulatory subunit 3B (Ppp1r3b) promotes hepatic glycogen synthesis and thereby regulates fasting

energy homeostasis. J Biol Chem. 2017; 292(25):10444–54. https://doi.org/10.1074/jbc.M116.766329

PMID: 28473467

15. Smagris E, Gilyard S, BasuRay S, Cohen JC, Hobbs HH. Inactivation of Tm6sf2, a Gene Defective in

Fatty Liver Disease, Impairs Lipidation but Not Secretion of Very Low Density Lipoproteins. J Biol

Chem. 2016; 291(20):10659–76. https://doi.org/10.1074/jbc.M116.719955 PMID: 27013658

16. Linden D, Ahnmark A, Pingitore P, Ciociola E, Ahlstedt I, Andreasson AC, et al. Pnpla3 silencing with

antisense oligonucleotides ameliorates nonalcoholic steatohepatitis and fibrosis in Pnpla3 I148M

knock-in mice. Mol Metab. 2019; 22:49–61. https://doi.org/10.1016/j.molmet.2019.01.013 PMID:

30772256

17. BasuRay S, Smagris E, Cohen JC, Hobbs HH. The PNPLA3 variant associated with fatty liver disease

(I148M) accumulates on lipid droplets by evading ubiquitylation. Hepatology. 2017; 66(4):1111–24.

https://doi.org/10.1002/hep.29273 PMID: 28520213

18. Liu YL, Reeves HL, Burt AD, Tiniakos D, McPherson S, Leathart JB, et al. TM6SF2 rs58542926 influ-

ences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat Commun. 2014;

5:4309. https://doi.org/10.1038/ncomms5309 PMID: 24978903

19. Pingitore P, Romeo S. The role of PNPLA3 in health and disease. Biochim Biophys Acta Mol Cell Biol

Lipids. 2019; 1864(6):900–6. https://doi.org/10.1016/j.bbalip.2018.06.018 PMID: 29935383

20. Mancina RM, Dongiovanni P, Petta S, Pingitore P, Meroni M, Rametta R, et al. The MBOAT7-TMC4

Variant rs641738 Increases Risk of Nonalcoholic Fatty Liver Disease in Individuals of European

Descent. Gastroenterology. 2016; 150(5):1219–30 e6. https://doi.org/10.1053/j.gastro.2016.01.032

PMID: 26850495

PLOS ONE NAFLD in the MVP program

PLOS ONE | https://doi.org/10.1371/journal.pone.0237430 August 25, 2020 16 / 19

https://doi.org/10.1056/NEJMoa1712191
https://doi.org/10.1056/NEJMoa1712191
http://www.ncbi.nlm.nih.gov/pubmed/29562163
https://doi.org/10.1055/s-0035-1567870
http://www.ncbi.nlm.nih.gov/pubmed/26676813
https://doi.org/10.1038/ng.2901
http://www.ncbi.nlm.nih.gov/pubmed/24531328
https://doi.org/10.1371/journal.pgen.1001324
https://doi.org/10.1371/journal.pgen.1001324
http://www.ncbi.nlm.nih.gov/pubmed/21423719
https://doi.org/10.1038/ng.970
http://www.ncbi.nlm.nih.gov/pubmed/22001757
https://doi.org/10.1016/j.ajhg.2008.09.012
http://www.ncbi.nlm.nih.gov/pubmed/18940312
https://doi.org/10.1038/ng.257
http://www.ncbi.nlm.nih.gov/pubmed/18820647
https://doi.org/10.1053/j.gastro.2016.01.037
http://www.ncbi.nlm.nih.gov/pubmed/26873399
https://doi.org/10.1038/s41598-018-21939-0
http://www.ncbi.nlm.nih.gov/pubmed/29487372
https://doi.org/10.1002/hep4.1235
https://doi.org/10.1002/hep4.1235
http://www.ncbi.nlm.nih.gov/pubmed/30202818
https://doi.org/10.1172/JCI77095
http://www.ncbi.nlm.nih.gov/pubmed/26348894
https://doi.org/10.1074/jbc.M116.766329
http://www.ncbi.nlm.nih.gov/pubmed/28473467
https://doi.org/10.1074/jbc.M116.719955
http://www.ncbi.nlm.nih.gov/pubmed/27013658
https://doi.org/10.1016/j.molmet.2019.01.013
http://www.ncbi.nlm.nih.gov/pubmed/30772256
https://doi.org/10.1002/hep.29273
http://www.ncbi.nlm.nih.gov/pubmed/28520213
https://doi.org/10.1038/ncomms5309
http://www.ncbi.nlm.nih.gov/pubmed/24978903
https://doi.org/10.1016/j.bbalip.2018.06.018
http://www.ncbi.nlm.nih.gov/pubmed/29935383
https://doi.org/10.1053/j.gastro.2016.01.032
http://www.ncbi.nlm.nih.gov/pubmed/26850495
https://doi.org/10.1371/journal.pone.0237430


21. Petta S, Valenti L, Tuttolomondo A, Dongiovanni P, Pipitone RM, Camma C, et al. Interferon lambda 4

rs368234815 TT>deltaG variant is associated with liver damage in patients with nonalcoholic fatty liver

disease. Hepatology. 2017; 66(6):1885–93. https://doi.org/10.1002/hep.29395 PMID: 28741298

22. Luukkonen PK, Zhou Y, Hyotylainen T, Leivonen M, Arola J, Orho-Melander M, et al. The MBOAT7 var-

iant rs641738 alters hepatic phosphatidylinositols and increases severity of non-alcoholic fatty liver dis-

ease in humans. J Hepatol. 2016; 65(6):1263–5. https://doi.org/10.1016/j.jhep.2016.07.045 PMID:

27520876

23. Kanwal F, Kramer JR, Duan Z, Yu X, White D, El-Serag HB. Trends in the Burden of Nonalcoholic Fatty

Liver Disease in a United States Cohort of Veterans. Clin Gastroenterol Hepatol. 2016; 14(2):301–8 e1-

2. https://doi.org/10.1016/j.cgh.2015.08.010 PMID: 26291667

24. Husain N, Blais P, Kramer J, Kowalkowski M, Richardson P, El-Serag HB, et al. Nonalcoholic fatty liver

disease (NAFLD) in the Veterans Administration population: development and validation of an algorithm

for NAFLD using automated data. Aliment Pharmacol Ther. 2014; 40(8):949–54. https://doi.org/10.

1111/apt.12923 PMID: 25155259

25. Siddiqui MS, Harrison SA, Abdelmalek MF, Anstee QM, Bedossa P, Castera L, et al. Case definitions

for inclusion and analysis of endpoints in clinical trials for nonalcoholic steatohepatitis through the lens

of regulatory science. Hepatology. 2018; 67(5):2001–12. https://doi.org/10.1002/hep.29607 PMID:

29059456

26. Castera L, Friedrich-Rust M, Loomba R. Noninvasive Assessment of Liver Disease in Patients With

Nonalcoholic Fatty Liver Disease. Gastroenterology. 2019; 156(5):1264–81 e4. https://doi.org/10.1053/

j.gastro.2018.12.036 PMID: 30660725

27. Middleton MS, Heba ER, Hooker CA, Bashir MR, Fowler KJ, Sandrasegaran K, et al. Agreement

Between Magnetic Resonance Imaging Proton Density Fat Fraction Measurements and Pathologist-

Assigned Steatosis Grades of Liver Biopsies From Adults With Nonalcoholic Steatohepatitis. Gastroen-

terology. 2017; 153(3):753–61. https://doi.org/10.1053/j.gastro.2017.06.005 PMID: 28624576

28. Blais P, Husain N, Kramer JR, Kowalkowski M, El-Serag H, Kanwal F. Nonalcoholic fatty liver disease

is underrecognized in the primary care setting. Am J Gastroenterol. 2015; 110(1):10–4. https://doi.org/

10.1038/ajg.2014.134 PMID: 24890441

29. Corey KE, Kartoun U, Zheng H, Shaw SY. Development and Validation of an Algorithm to Identify Non-

alcoholic Fatty Liver Disease in the Electronic Medical Record. Dig Dis Sci. 2016; 61(3):913–9. https://

doi.org/10.1007/s10620-015-3952-x PMID: 26537487

30. Fialoke S, Malarstig A, Miller MR, Dumitriu A. Application of Machine Learning Methods to Predict Non-

Alcoholic Steatohepatitis (NASH) in Non-Alcoholic Fatty Liver (NAFL) Patients. AMIA Annu Symp Proc.

2018; 2018:430–9. PMID: 30815083

31. Gaziano JM, Concato J, Brophy M, Fiore L, Pyarajan S, Breeling J, et al. Million Veteran Program: A

mega-biobank to study genetic influences on health and disease. J Clin Epidemiol. 2016; 70:214–23.

https://doi.org/10.1016/j.jclinepi.2015.09.016 PMID: 26441289

32. Klarin D, Damrauer SM, Cho K, Sun YV, Teslovich TM, Honerlaw J, et al. Genetics of blood lipids

among ~300,000 multi-ethnic participants of the Million Veteran Program. Nat Genet. 2018; 50

(11):1514–23. https://doi.org/10.1038/s41588-018-0222-9 PMID: 30275531

33. Fang H, Hui Q, Lynch J, Honerlaw J, Assimes T, Huang J, Vujkovic M, Damrauer S, Pyarajan S,

Gaziano M, DuVall S, O’Donnell C, Cho K, Chang KM, Wilson P, Tsao P, Sun Y, Tang H. Harmonizing

genetic ancestry and self-identified race/ethnicity in genome-wide association studies. (AJHG, in

press).

34. Alberti KG, Zimmet P, Shaw J. Metabolic syndrome—a new world-wide definition. A Consensus State-

ment from the International Diabetes Federation. Diabet Med. 2006; 23(5):469–80. https://doi.org/10.

1111/j.1464-5491.2006.01858.x PMID: 16681555

35. Bibbins-Domingo K, Grossman DC, Curry SJ, Davidson KW, Epling JW Jr., Garcia FA, et al. Statin Use

for the Primary Prevention of Cardiovascular Disease in Adults: US Preventive Services Task Force

Recommendation Statement. Jama. 2016; 316(19):1997–2007. https://doi.org/10.1001/jama.2016.

15450 PMID: 27838723

36. Bush K, Kivlahan DR, McDonell MB, Fihn SD, Bradley KA. The AUDIT alcohol consumption questions

(AUDIT-C): an effective brief screening test for problem drinking. Ambulatory Care Quality Improvement

Project (ACQUIP). Alcohol Use Disorders Identification Test. Arch Intern Med. 1998; 158(16):1789–95.

https://doi.org/10.1001/archinte.158.16.1789 PMID: 9738608

37. Justice AC, Smith RV, Tate JP, McGinnis K, Xu K, Becker WC, et al. AUDIT-C and ICD codes as phe-

notypes for harmful alcohol use: association with ADH1B polymorphisms in two US populations. Addic-

tion. 2018; 113(12):2214–24. https://doi.org/10.1111/add.14374 PMID: 29972609

PLOS ONE NAFLD in the MVP program

PLOS ONE | https://doi.org/10.1371/journal.pone.0237430 August 25, 2020 17 / 19

https://doi.org/10.1002/hep.29395
http://www.ncbi.nlm.nih.gov/pubmed/28741298
https://doi.org/10.1016/j.jhep.2016.07.045
http://www.ncbi.nlm.nih.gov/pubmed/27520876
https://doi.org/10.1016/j.cgh.2015.08.010
http://www.ncbi.nlm.nih.gov/pubmed/26291667
https://doi.org/10.1111/apt.12923
https://doi.org/10.1111/apt.12923
http://www.ncbi.nlm.nih.gov/pubmed/25155259
https://doi.org/10.1002/hep.29607
http://www.ncbi.nlm.nih.gov/pubmed/29059456
https://doi.org/10.1053/j.gastro.2018.12.036
https://doi.org/10.1053/j.gastro.2018.12.036
http://www.ncbi.nlm.nih.gov/pubmed/30660725
https://doi.org/10.1053/j.gastro.2017.06.005
http://www.ncbi.nlm.nih.gov/pubmed/28624576
https://doi.org/10.1038/ajg.2014.134
https://doi.org/10.1038/ajg.2014.134
http://www.ncbi.nlm.nih.gov/pubmed/24890441
https://doi.org/10.1007/s10620-015-3952-x
https://doi.org/10.1007/s10620-015-3952-x
http://www.ncbi.nlm.nih.gov/pubmed/26537487
http://www.ncbi.nlm.nih.gov/pubmed/30815083
https://doi.org/10.1016/j.jclinepi.2015.09.016
http://www.ncbi.nlm.nih.gov/pubmed/26441289
https://doi.org/10.1038/s41588-018-0222-9
http://www.ncbi.nlm.nih.gov/pubmed/30275531
https://doi.org/10.1111/j.1464-5491.2006.01858.x
https://doi.org/10.1111/j.1464-5491.2006.01858.x
http://www.ncbi.nlm.nih.gov/pubmed/16681555
https://doi.org/10.1001/jama.2016.15450
https://doi.org/10.1001/jama.2016.15450
http://www.ncbi.nlm.nih.gov/pubmed/27838723
https://doi.org/10.1001/archinte.158.16.1789
http://www.ncbi.nlm.nih.gov/pubmed/9738608
https://doi.org/10.1111/add.14374
http://www.ncbi.nlm.nih.gov/pubmed/29972609
https://doi.org/10.1371/journal.pone.0237430


38. Bradley KA, DeBenedetti AF, Volk RJ, Williams EC, Frank D, Kivlahan DR. AUDIT-C as a brief screen

for alcohol misuse in primary care. Alcohol Clin Exp Res. 2007; 31(7):1208–17. https://doi.org/10.1111/

j.1530-0277.2007.00403.x PMID: 17451397

39. Kozlitina J, Stender S, Hobbs HH, Cohen JC. HSD17B13 and Chronic Liver Disease in Blacks and His-

panics. New Engl J Med. 2018; 379(19):1876–7. https://doi.org/10.1056/NEJMc1804027 PMID:

30403941

40. Chalasani N, Guo X, Loomba R, Goodarzi MO, Haritunians T, Kwon S, et al. Genome-wide association

study identifies variants associated with histologic features of nonalcoholic Fatty liver disease. Gastro-

enterology. 2010; 139(5):1567–76, 76 e1-6. https://doi.org/10.1053/j.gastro.2010.07.057 PMID:

20708005

41. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, et al. LocusZoom: regional visuali-

zation of genome-wide association scan results. Bioinformatics (Oxford, England). 2010; 26(18):2336–

7.

42. Angulo P, Hui JM, Marchesini G, Bugianesi E, George J, Farrell GC, et al. The NAFLD fibrosis score: a

noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology. 2007; 45(4):846–

54. https://doi.org/10.1002/hep.21496 PMID: 17393509

43. Dowman JK, Tomlinson JW, Newsome PN. Systematic review: the diagnosis and staging of non-alco-

holic fatty liver disease and non-alcoholic steatohepatitis. Alimentary Pharmacology & Therapeutics.

2011; 33(5):525–40.

44. Shah AG, Lydecker A, Murray K, Tetri BN, Contos MJ, Sanyal AJ. Comparison of Noninvasive Markers

of Fibrosis in Patients With Nonalcoholic Fatty Liver Disease. Clinical Gastroenterology and Hepatol-

ogy. 2009; 7(10):1104–12. https://doi.org/10.1016/j.cgh.2009.05.033 PMID: 19523535

45. Sterling RK, Lissen E, Clumeck N, Sola R, Correa MC, Montaner J, et al. Development of a simple non-

invasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology. 2006; 43

(6):1317–25. https://doi.org/10.1002/hep.21178 PMID: 16729309

46. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association

scans. Bioinformatics (Oxford, England). 2010; 26(17):2190–1.

47. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, et al. New genetic loci

implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010; 42

(2):105–16. https://doi.org/10.1038/ng.520 PMID: 20081858

48. Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. Meta-analysis of genome-

wide association studies for height and body mass index in approximately 700000 individuals of Euro-

pean ancestry. Hum Mol Genet. 2018; 27(20):3641–9. https://doi.org/10.1093/hmg/ddy271 PMID:

30124842

49. Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, et al. Fine-mapping type 2 dia-

betes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps.

Nat Genet. 2018; 50(11):1505–13. https://doi.org/10.1038/s41588-018-0241-6 PMID: 30297969

50. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, et al. Discovery and refine-

ment of loci associated with lipid levels. Nat Genet. 2013; 45(11):1274–83. https://doi.org/10.1038/ng.

2797 PMID: 24097068

51. Rotman Y, Koh C, Zmuda JM, Kleiner DE, Liang TJ, Nash CRN. The association of genetic variability in

patatin-like phospholipase domain-containing protein 3 (PNPLA3) with histological severity of nonalco-

holic fatty liver disease. Hepatology. 2010; 52(3):894–903. https://doi.org/10.1002/hep.23759 PMID:

20684021

52. Ruhl CE, Everhart JE. Fatty liver indices in the multiethnic United States National Health and Nutrition

Examination Survey. Aliment Pharmacol Ther. 2015; 41(1):65–76. https://doi.org/10.1111/apt.13012

PMID: 25376360

53. Bazick J, Donithan M, Neuschwander-Tetri BA, Kleiner D, Brunt EM, Wilson L, et al. Clinical Model for

NASH and Advanced Fibrosis in Adult Patients With Diabetes and NAFLD: Guidelines for Referral in

NAFLD. Diabetes Care. 2015; 38(7):1347–55. https://doi.org/10.2337/dc14-1239 PMID: 25887357

54. Munafo MR, Tilling K, Taylor AE, Evans DM, Davey Smith G. Collider scope: when selection bias can

substantially influence observed associations. Int J Epidemiol. 2018; 47(1):226–35. https://doi.org/10.

1093/ije/dyx206 PMID: 29040562

55. Van Vleck TT, Chan L, Coca SG, Craven CK, Do R, Ellis SB, et al. Augmented intelligence with natural

language processing applied to electronic health records for identifying patients with non-alcoholic fatty

liver disease at risk for disease progression. International Journal of Medical Informatics. 2019;

129:334–41. https://doi.org/10.1016/j.ijmedinf.2019.06.028 PMID: 31445275

56. Bedogni G, Bellentani S, Miglioli L, Masutti F, Passalacqua M, Castiglione A, et al. The Fatty Liver

Index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroen-

terol. 2006; 6:33. https://doi.org/10.1186/1471-230X-6-33 PMID: 17081293

PLOS ONE NAFLD in the MVP program

PLOS ONE | https://doi.org/10.1371/journal.pone.0237430 August 25, 2020 18 / 19

https://doi.org/10.1111/j.1530-0277.2007.00403.x
https://doi.org/10.1111/j.1530-0277.2007.00403.x
http://www.ncbi.nlm.nih.gov/pubmed/17451397
https://doi.org/10.1056/NEJMc1804027
http://www.ncbi.nlm.nih.gov/pubmed/30403941
https://doi.org/10.1053/j.gastro.2010.07.057
http://www.ncbi.nlm.nih.gov/pubmed/20708005
https://doi.org/10.1002/hep.21496
http://www.ncbi.nlm.nih.gov/pubmed/17393509
https://doi.org/10.1016/j.cgh.2009.05.033
http://www.ncbi.nlm.nih.gov/pubmed/19523535
https://doi.org/10.1002/hep.21178
http://www.ncbi.nlm.nih.gov/pubmed/16729309
https://doi.org/10.1038/ng.520
http://www.ncbi.nlm.nih.gov/pubmed/20081858
https://doi.org/10.1093/hmg/ddy271
http://www.ncbi.nlm.nih.gov/pubmed/30124842
https://doi.org/10.1038/s41588-018-0241-6
http://www.ncbi.nlm.nih.gov/pubmed/30297969
https://doi.org/10.1038/ng.2797
https://doi.org/10.1038/ng.2797
http://www.ncbi.nlm.nih.gov/pubmed/24097068
https://doi.org/10.1002/hep.23759
http://www.ncbi.nlm.nih.gov/pubmed/20684021
https://doi.org/10.1111/apt.13012
http://www.ncbi.nlm.nih.gov/pubmed/25376360
https://doi.org/10.2337/dc14-1239
http://www.ncbi.nlm.nih.gov/pubmed/25887357
https://doi.org/10.1093/ije/dyx206
https://doi.org/10.1093/ije/dyx206
http://www.ncbi.nlm.nih.gov/pubmed/29040562
https://doi.org/10.1016/j.ijmedinf.2019.06.028
http://www.ncbi.nlm.nih.gov/pubmed/31445275
https://doi.org/10.1186/1471-230X-6-33
http://www.ncbi.nlm.nih.gov/pubmed/17081293
https://doi.org/10.1371/journal.pone.0237430


57. Flores YN, Velazquez-Cruz R, Ramirez P, Banuelos M, Zhang ZF, Yee HF Jr., et al. Association

between PNPLA3 (rs738409), LYPLAL1 (rs12137855), PPP1R3B (rs4240624), GCKR (rs780094), and

elevated transaminase levels in overweight/obese Mexican adults. Mol Biol Rep. 2016; 43(12):1359–

69. https://doi.org/10.1007/s11033-016-4058-z PMID: 27752939

58. Lin YC, Chang PF, Chang MH, Ni YH. Genetic variants in GCKR and PNPLA3 confer susceptibility to

nonalcoholic fatty liver disease in obese individuals. Am J Clin Nutr. 2014; 99(4):869–74. https://doi.org/

10.3945/ajcn.113.079749 PMID: 24477042

59. Beer NL, Tribble ND, McCulloch LJ, Roos C, Johnson PR, Orho-Melander M, et al. The P446L variant

in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through

increased glucokinase activity in liver. Hum Mol Genet. 2009; 18(21):4081–8. https://doi.org/10.1093/

hmg/ddp357 PMID: 19643913

60. Sliz E, Sebert S, Wurtz P, Kangas AJ, Soininen P, Lehtimaki T, et al. NAFLD risk alleles in PNPLA3,

TM6SF2, GCKR and LYPLAL1 show divergent metabolic effects. Hum Mol Genet. 2018; 27(12):2214–

23. https://doi.org/10.1093/hmg/ddy124 PMID: 29648650

61. Palmer ND, Musani SK, Yerges-Armstrong LM, Feitosa MF, Bielak LF, Hernaez R, et al. Characteriza-

tion of European ancestry nonalcoholic fatty liver disease-associated variants in individuals of African

and Hispanic descent. Hepatology. 2013; 58(3):966–75. https://doi.org/10.1002/hep.26440 PMID:

23564467

62. Saab S, Manne V, Nieto J, Schwimmer JB, Chalasani NP. Nonalcoholic Fatty Liver Disease in Latinos.

Clin Gastroenterol Hepatol. 2016; 14(1):5–12; quiz e9-0. https://doi.org/10.1016/j.cgh.2015.05.001

PMID: 25976180

63. Astle WJ, Elding H, Jiang T, Allen D, Ruklisa D, Mann AL, et al. The Allelic Landscape of Human Blood

Cell Trait Variation and Links to Common Complex Disease. Cell. 2016; 167(5):1415–29 e19. https://

doi.org/10.1016/j.cell.2016.10.042 PMID: 27863252

64. Agbim U, Carr RM, Pickett-Blakely O, Dagogo-Jack S. Ethnic Disparities in Adiposity: Focus on Non-

alcoholic Fatty Liver Disease, Visceral, and Generalized Obesity. Curr Obes Rep. 2019.

PLOS ONE NAFLD in the MVP program

PLOS ONE | https://doi.org/10.1371/journal.pone.0237430 August 25, 2020 19 / 19

https://doi.org/10.1007/s11033-016-4058-z
http://www.ncbi.nlm.nih.gov/pubmed/27752939
https://doi.org/10.3945/ajcn.113.079749
https://doi.org/10.3945/ajcn.113.079749
http://www.ncbi.nlm.nih.gov/pubmed/24477042
https://doi.org/10.1093/hmg/ddp357
https://doi.org/10.1093/hmg/ddp357
http://www.ncbi.nlm.nih.gov/pubmed/19643913
https://doi.org/10.1093/hmg/ddy124
http://www.ncbi.nlm.nih.gov/pubmed/29648650
https://doi.org/10.1002/hep.26440
http://www.ncbi.nlm.nih.gov/pubmed/23564467
https://doi.org/10.1016/j.cgh.2015.05.001
http://www.ncbi.nlm.nih.gov/pubmed/25976180
https://doi.org/10.1016/j.cell.2016.10.042
https://doi.org/10.1016/j.cell.2016.10.042
http://www.ncbi.nlm.nih.gov/pubmed/27863252
https://doi.org/10.1371/journal.pone.0237430

