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Abstract: Synthetic jet actuators (SJA) are emerging in various engineering applications, from flow

separation and noise control in aviation to thermal management of electronics. A SJA oscillates a

flexible membrane inside a cavity connected to a nozzle producing vortices. A complex interaction

between the cavity pressure field and the driving electronics can make it difficult to predict

performance. A reduced-order model (ROM) has been developed to predict the performance of SJAs.

This paper applies this model to a canonical configuration with applications in flow control and

electronics cooling, consisting of a single SJA with a rectangular orifice, emanating perpendicular

to the surface. The practical implementation of the ROM to estimate the relationship between

cavity pressure and jet velocity, jet velocity and diaphragm deflection and applied driving voltage

is explained in detail. Unsteady Reynolds-averaged Navier Stokes computational fluid dynamics

(CFD) simulations are used to assess the reliability of the reduced-order model. The CFD model

itself has been validated with experimental measurements. The effect of orifice aspect ratio on the

ROM parameters has been discussed. Findings indicate that the ROM is capable of predicting the

SJA performance for a wide range of operating conditions (in terms of frequency and amplitude).

Keywords: synthetic jet; reduced-order model; lumped-element model; gas dynamics; Helmholtz

resonance; piezoelectric actuator; electromagnetic actuator; computational fluid dynamics

1. Introduction

Synthetic jet actuators (SJAs) generate a train of vortices which are formed by periodic suction

and ejection of the same amount of fluid across an orifice. This establishes a directional flow with

zero net mass input, formed from the ambient fluid surrounding the orifice, hence “synthetic” jet [1,2].

These types of actuators have been used to control flow separation and noise, e.g., in aviation

applications, as well as more recently in the thermal management of electronics.

An SJA typically consists of a piezoelectric or electromagnetic driver deflecting a flexible

membrane inside a cavity, which is connected to an external body of fluid through a short nozzle or

orifice (The terms ‘nozzle’ and ‘orifice’ will be used interchangeably in this paper). An oscillation of

the internal membrane causes a cavity pressure fluctuation and, thus, an oscillatory flow through the

orifice. At a sufficiently high stroke length [3], a stable vortex detaches from the orifice and propagates

into the surrounding flow field, thereby imparting momentum to a boundary layer.

A basic synthetic jet flow emanating into quiescent ambient fluid is characterized by a few

parameters: (i) the jet Reynolds number Re = U0dh/ν, where dh is the hydraulic diameter of the orifice,

ν is the fluid kinematic viscosity and U0 is a characteristic velocity scale representing the average
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nozzle ejection velocity, defined as U0 = L0 f , where f is the actuation frequency. The stroke length

L0 is defined as the average distance a fluid slug is expelled during the ejection phase, assuming a

harmonic velocity profile in the orifice which is positive during ejection (0 ≤ t < 0.5 f−1) and negative

during the suction phase (0.5 f−1 ≤ t < f−1):

L0 =
∫ 0.5 f−1

t=0
un(t)dt (1)

where un(t) represents the spatially averaged orifice or nozzle velocity, hence subscript ‘n’.

The dimensionless stroke length L0/dh is the reciprocal of a Strouhal number or L0/dh = ( f dh/U0)
−1.

Usually the actuator diaphragm is excited by a sine wave, in which case the characteristic velocity

U0 = π−1Un where Un is the peak (spatially averaged) orifice velocity, or the amplitude of the sine

wave un(t) = Un sin 2π f t.

For sharp-edged orifices, threshold values for a vortex to detach, and thus for a synthetic jet flow

to form, are L0/dh > 0.50 for a circular orifice and L0/dh > 0.95 for a two-dimensional slot orifice

with infinite aspect ratio a → ∞ , where a is defined as the span-to-width ratio of a rectangular slot or

a = b/h. The stroke length is a characteristic for the flow structure [4].

For flow control purposes, the SJA is usually embedded within a streamlined or bluff body,

with the jet emanating from a surface at an angle [5,6]. For electronics cooling purposes, the synthetic

jet flow is usually directed at a surface, impinging onto the object to be cooled [7]. In both cases

however, the orifice can be circular or rectangular in shape, and the jet can issue at an oblique angle.

Moreover, the use of dual adjacent SJAs can be used to achieve flow vectoring, determined by the

phase difference in the driving signals for adjacent actuators [8].

Each of these configurations leads to quite different and complicated pressure fields, making

it hard to predict SJA performance a priori. Since the jet flow structure is determined by the

aforementioned dimensionless groups Re and L0/dh, information is needed about the synthetic

jet orifice velocity un(t), or for sine wave actuation, simply the velocity amplitude Un(= πU0). Hence:

{

Re = dh
πν Un

L0
dh

= 1
πdh

Un
f

(2)

However, the orifice velocity cannot be inferred directly from the driving voltage e. Nor can

the orifice velocity be measured easily in typical applications, requiring either intrusive techniques

(e.g., hot-wire anemometry) or more expensive optical velocity measurements. A calibration correlating

actuator voltage e with orifice velocity Um can be performed; however, this may be subject to

degradation or drift in actuator characteristics. A calibration of cavity acoustic pressure pc with

orifice velocity is, therefore, preferred [9–11]. For instance, when changing the phase difference

between adjacent SJAs, only a pressure-velocity calibration approach can maintain a constant jet

Reynolds number [8].

For a synthetic jet issuing into an external boundary layer, the combined flow field is further

characterized by the velocity ratio Up/U∞ or the dimensionless frequency F+ = f L/U∞, where U∞ is

the freestream velocity and L represents the streamwise location of the SJA from a leading edge, or the

length of a separated zone.

Three main types of actuating mechanisms have been used to generate synthetic jet flows in

academic research, (i) an oscillating piston, (ii) an electromagnetic loudspeaker or (iii) a piezoelectric

bending element. Both air and liquid have been used as working fluids. It will be shown in Section 2

that the type of driver (i, ii or iii) does not affect the relationship between the nozzle velocity Un

and cavity pressure pc, only the relationship between input power and diaphragm motion. Hence,

a general reduced-order model (ROM) will incorporate a so-called ‘fluidic model’ relating Un to pc

which does not depend on the actuator type, and a ‘driver model’ relating driver input to diaphragm

deflection, xd. The cavity pressure pc is the physical linking variable between both parts of the model.
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Table 1 gives an overview of different types of actuators, orifices, and SJA operating conditions

for a selection of experimental studies in the scientific literature. The list is not exhaustive, since the

purpose is merely to convey the range of actuator types and typical parameter ranges encountered.

The final table entry represents the current study.

The objectives of this paper are threefold: (i) to provide a clear but concise overview of an analytical

ROM for a generic SJA, which would be useful both for early stage design and for controlling SJA

operation; (ii) to validate this ROM for a typical lab-scale SJA with rectangular orifice, using both

experimental calibration data as well as 2D and 3D transient CFD simulation results; (iii) to compare

CFD and experimental results and illustrate the potential challenges associated with the comparison of

2D and 3D geometries for SJA in the frequency domain.

Table 1. List of experimental synthetic jet investigations with details of the type of orifice and

actuator used.

Study Orifice Fluid Actuator Type L0/dh Re U0, m/s f, HZ

Smith and Glezer [10] Slot (h = 0.5 mm, a = 147) Air Piezoelectric disk 14.6 596 8.5 577
Shuster and Smith [12] Circular (dh = 25.4 mm) Water Oscillating piston 1.0 3.0 1000–10,000 0.04–0.39 1.6–5.2

Smith and Swift [13] Slot (h = 5.1 mm, a = 47) Air Loudspeakers 6.9–41 1360–28,790 2.0–41.8 29–102
Crittenden and Glezer [14] Circular (dh = 1.6 mm–4.8 mm) Air Oscillating piston >76 989–35,830 9.0–108 25–200
Kordík and Trávníček [15] Circular (dh = 10 mm) Air Loudspeaker 6.3–15.8 2400–7100 3.5–10.3 55–65

Current study Slot (h = 1.5 mm, a = 30) Air Loudspeaker 0.5–40 80–1836 0.2–9.5 41–164

2. Analytical Reduced-Order Model (ROM)

The SJA ROM used in this paper is a lumped parameter analytical model, combining (i) a

second-order equivalent representation of the driving element (i.e., a piezoelectric diaphragm or a

loudspeaker) with (ii) a zeroth-order gas dynamics approximation of the fluid motion in the orifice,

with fluid compressibility in the cavity. The main mechanical degrees of freedom represent the motion

of the diaphragm Ud and fluid slug in the nozzle Un, respectively.

The overall system response function can be broken down into its constituent parts as follows:

Fluidicpoweroutput

Electricalpowerinput
∝

ρcAnU2
n

e2/Ze
=

Operational

fluidic

moder
︷ ︸︸ ︷

ρcUn

pc

AnUn

AdUd

pc Ad

Ud
︸ ︷︷ ︸

Fluidiceffects

in cavity and nozzle

·
(

Ud

e

)2

Ze

︸ ︷︷ ︸

Driver electro-

mechanics

(3)

where ρ and c are the fluid density and speed of sound, An and Ad are the cross-section and surface

areas of the nozzle and diaphragm, respectively, and Ze is the electrical impedance of the driver.

All variables in bold (Un, Ud, e, pc, Ze) in Equation (3) represent complex quantities in the frequency

domain, dependent on the Laplace variable s = j2π f which has been omitted in Equation (3) for

brevity.

2.1. Brief Description of the ROM

The operational fluidic model ρcUn/pc was described by Persoons and O’Donovan [11] and can

be used to estimate the SJA velocity from a measured cavity pressure. It can be simplified to a closed

form analytical expression, and thus is easily implemented in a data acquisition or control system,

as described in this section. The coupling between the electromechanical driver model and fluidic

model is described in full detail by Persoons [16]. Comparable reduced-order models, also referred to

as lumped element models (LEM), are presented and discussed by other researchers [17–21]. Thus for
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the sake of brevity and clarity, only the basic elements are described here and the reader is referred to

other works for more details on the derivations of the equations [11,16].

Figure 1 shows a schematic diagram and equivalent electrical networks for this ROM with

a piezoelectric actuator (Figure 1b) and electromagnetic (e.g., loudspeaker) actuator (Figure 1c).

The diaphragm and nozzle slug velocities and displacements are related as Ud = sxd and Un = sxn.

 

𝑼𝒅 = 𝑠𝒙𝒅 𝑼𝒏 = 𝑠𝒙𝒏

(a)  

(b) (c) 

𝑒  𝑥 𝑝  𝑈
𝐾  𝛽 𝐾𝛽

(𝑀 𝑠 + 𝐶 𝑠 + 𝐾 )𝒙𝒅 = 𝑭𝒅 − 𝒑𝒅,𝟏 − 𝒑𝒅,𝟎 𝐴𝜌𝐴 𝐿 𝑠 + 𝑪𝒏 + 𝒁𝒏,𝟏 + 𝒁𝒏,𝟎 𝑠 𝒙𝒏 = 𝒑𝒄𝐴𝑀 , 𝐶 , 𝐾 𝑭𝒅𝒑𝒅,𝟏 𝒑𝒅,𝟎 𝒁𝒅 𝒁𝒄
(𝑀 𝑠 + (𝐶 + 𝒁𝒄 + 𝒁𝒅)𝑠 + 𝐾 )𝒙𝒅 = 𝑭𝒅 = 𝛼𝒆𝛼 𝛼 = 𝑑 𝐾𝑑 𝐿 𝐴𝐶 𝑼𝒏 𝒁𝒏𝐶  𝒁𝒏𝐾 𝛽 𝒁𝒏 𝑎 = 32𝑓 < 𝑐/(50𝐴 / ) 𝒁𝒏 ≅𝑀 𝑠 = 𝜌𝐴 (𝛽 4𝐴 /𝜋)𝑠 𝑀

𝑅  𝐿  

𝐹  𝑒 

𝑖 𝑠𝑥  𝑀  𝐶  𝐾  

𝑍  𝑍  𝐵𝑙 𝐹  𝑒 

𝑖 𝑠𝑥  𝑀  𝐶  𝐾  

𝑍  𝑍  𝐶  

𝑖  𝑖  

𝛼 

𝐿  

𝑉  

𝐾 , 𝐶  

𝑀  

Driver 𝐹 , 𝑥  𝑒, 𝑖 𝑝 ,  𝑝 ,  

𝑝  

𝑈 ,𝑥  

Figure 1. (a) Schematic diagram and equivalent electrical networks of a reduced-order model of a

synthetic jet actuator (SJA) with (b) piezoelectric and (c) electromagnetic driver: from driving voltage e

to diaphragm deflection xd, cavity pressure pc and nozzle velocity Un [16].

Most parameters can be determined from known dimensions and manufacturer’s specifications

for the driver. Only two parameters (K and β) should be determined by calibration: K relates to the

non-linear nozzle damping and β relates to the added nozzle inertia due to acoustic radiation.

The mechanical/fluidic behavior can be described by combining two second-order models,

one relating to the oscillating diaphragm and one relating to the compressible gas dynamics:

Diaphragm :
(

Mds2 + Cds + Kd

)

xd = Fd −
(

pd,1 − pd,0

)

Ad (4)

Gas dynamics :
(

ρAnLns2 + (Cn + Zn,1 + Zn,0)s
)

xn = pc An (5)

where Md, Cd, Kd are the equivalent mass, damping and stiffness of the driver, Fd is the motive force

applied by the actuator and pd,1 and pd,0 are the pressures on either side of the diaphragm, which are

governed by acoustic radiation impedances Zd and the cavity impedance Zc. Equation (4) can be thus

rewritten as:

Diaphragm :
(

Mds2 + (Cd + Zc + Zd)s + Kd

)

xd = Fd = αe (6)

where α is an electromechanical coupling coefficient. In case of a piezoelectric actuator, α = d33Kd

where d33 is the piezoelectric modulus relating electric field and volumetric extension. This case is

represented in Figure 1b.

In Equation (5), Ln and An are the geometric length and cross-sectional area of the nozzle,

CnUn represents the damping force related to fluid oscillating through the orifice, and the two Zn

terms correspond to acoustic impedances on both ends of the nozzle. Cn and Zn are directly related to

the aforementioned parameters K and β, as explained below.

Firstly, the frequency-dependent acoustic radiation impedance Zn is described in detail by

Beranek [22] for some canonical geometries. Appendix A in Persoons [16] describes the radiation
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impedance for a circular and rectangular orifice of aspect ratio a = 32, based on tabulated data

by Burnett and Soroka [23]. A low-frequency approximation for f < c/(50A1/2
n ) of this impedance

Zn
∼= M f s = ρAn

(
β
√

4An/π
)
s where M f represents a mass of fluid adjacent to one side of the orifice

which adds to the oscillating inertia. This approximation thus leads to the introduction of the added

mass coefficient β. When applied to both sides of the orifice equally, this can be recast into an equivalent

(end-corrected) nozzle length L′
n:

L′
n = Ln + 2β

√

4An/π (7)

With the total equivalent (quantities with a prime (‘) indicate the inclusion of an added mass

correction) oscillating fluid mass M′
n = ρAnL′

n and the cavity compressibility Kc = ρc2 A2
n/Vc where

Vc is the cavity volume, the Helmholtz resonance frequency emerges from the Equation:

fH =
1

2π

c

L′
n

√

AnL′
n

Vc
(8)

Secondly, the nozzle damping force CnUn can be represented by a combination of first-order

(viscous) and second-order (inertial) damping. The relative dominance of first or second-order

damping depends on the Stokes number (∝
√

f d2
h/ν); however, for short nozzles and moderate

frequencies the first-order term can typically be ignored [16], leaving only:

CnUn = KAn
ρ|Un|

2
Un (9)

Equation (5) can thus be recast as the non-linear cavity impedance Zc relating SJA cavity pressure

to orifice velocity:

Zc =
pc

ρcUn
=

ρAnL′
ns + 1

2 KρAn|Un|
ρcAn

(10)

The reciprocal of Zc in Equation (10) describes the operational SJA model ρcUn/pc in the frequency

domain. Appendix C in Persoons [16] explains how this expression can be simplified for sine wave

actuation to the following closed-form expression to estimate the nozzle velocity amplitude Un from

the cavity pressure amplitude pc:

ρcUn

pc
=

√

2Vc

AnL′
n

1
√
(

ω
ωH

)2
+

√
(

ω
ωH

)4
+ K2

(
Vc

An L′
n

)2( pc

ρc2

)2

(11)

Using a microphone, the cavity pressure amplitude pc can easily be measured [11,16] and

Equation (11) thus allows for Un to be directly calculated, once values for K and β are known for the

orifice. The following section describes the procedure for determining these parameters.

Other useful expressions relating nozzle velocity to diaphragm deflection xd and actuator voltage

e can be derived from the above set of equations. The reader is referred to Persoons [16] for the full

derivation. The following relates nozzle velocity Un to diaphragm deflection xd

(
= Uds−1

)
:

Un An

Ud Ad

(

=
Un An

sxd Ad

)

=
Kc

M′
ns2 + Cns + Kc

(12)

Based on derivations in Persoons [16], the relationship between nozzle velocity Un and

piezoelectric actuator voltage e is given by:
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Un

e
=

Ad

An

(
Kc

M′
ns2 + Cns + Kc

)

︸ ︷︷ ︸

Fluidic effects in

cavity and nozzle

(
αs

Mds2 + (Cd + Zc + Zd)s + Kd

)

︸ ︷︷ ︸

Piezoelectric actuator

electromechanics

(13)

For an electromagnetic actuator (see Figure 1c), a similar expression can be obtained [16]:

Un

e
=

Ad

An

(
Kc

M′
ns2 + Cns + Kc

)

︸ ︷︷ ︸

Fluidic effects in

cavity and nozzle

(

(Bl)s/(Re + Les)

Mds2 + (Cd + Zc + Zd)s + Kd + Kem f

)

︸ ︷︷ ︸

Loudspeaker actuator

electromechanics

(14)

where Re and Le are the voice coil resistance and inductance, respectively, Bl is the electromagnetic

force factor (Fd = Bl · i), and Kem f = (Bl)2s/(Re + Les).

Equations (12)–(14) are only provided here in complex notation, yet these can easily be

implemented in a data acquisition software such as NI LabVIEW or MATLAB (sample code is available

upon request from the corresponding author (Tim Persoons)) to infer the amplitude and phase lag of

Un as a function of either xd or e.

The two system resonance frequencies f1 and f2 are related to, but not equal to, the Helmholtz

resonance frequency fH and driver resonance frequency fd = 1
2π

√

Kd/M′
d, and are determined as:

f1
∼= 1

2π

√

[K−1
c +((An/Ad)

2Kd)
−1

]
−1

M′
n

f2
∼= 1

2π

√

Kd+(Ad/An)
2Kc

M′
d

(15)

The equivalent diaphragm mass appears here in its modified form [16], including an added mass

correction on one side of the diaphragm, M′
d = Md + βρAd(4Ad/π)1/2.

Persoons [16] gives more details about the physical interpretation of f1 and f2, and further

confirmation for these resonance frequencies can also be found in Gallas et al. [18], Kordik et al. [19]

and Kooijman and Ouweltjes [24].

2.2. Estimating ROM Parameters K and β

The non-linear damping coefficient K and added mass coefficient β can be determined by

least-squares fitting the model expression in a calibration procedure, as described by Persoons [16].

This will tend to over predict β as the fit includes acoustic effects from the diaphragm, which are

only implicitly included in the ROM while only the acoustic effects at the nozzle are explicitly used.

Alternatively, β can be determined analytically, as described below.

As mentioned in the brief description of the SJA ROM, β arises from acoustic radiation impedance

and affects the inertia of the nozzle in the same manner that adding additional mass would. For a

rectangular nozzle, such as the one used in this work, acoustic impedance can be interpolated from

the tabulated data given by Burnett and Soroka [23] or analytically determined from the equation

provided therein [23] and reproduced below. For a circular nozzle, the acoustic impedance can be

determined by using a Struve H function of the first kind [16]. For a rectangular nozzle, β can be

determined as a function of frequency and aspect ratio a as follows:

β =

√
π χ(kA1/2

n , a)

2kA1/2
n

(16)
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where χ is the imaginary part of the acoustic impedance and k is the wave number (k = 2π f /c) which

is normalized by the nozzle cross-sectional area as kA1/2
n . The function χ(γ, a) can be determined as:

χ(γ, a) =
2

πγ2

[

sin γq − γq cos γq + γ

(

p +
1

p

)

− sin γp − sin
γ

p

]

− 2

π

[

pI(γ, a) +
I(γ, 1/a)

p

]

(17)

where parameters p and q are defined as p = a1/2 and q = (a + 1/a)1/2, and the function I(γ, ξ) is

defined as:

I(γ, ξ) =
∫ (ξ+1/ξ)

1
2

ξ
− 1

2

(

1 − 1

ξt2

) 1
2

sin γtdt (18)

Note that Equations (16)–(18) for determining β are a low-frequency approximation, and only

valid for values of kA1/2
n < 0.886. Alternatively, the following equation is an empirical fit for β that is

valid for 1 < a < 50 and kA1/2
n < 0.886 with a mean error of 1.7% and a maximum error of 5.9%:

β ≈ −0.34064 + 6.6771 × 10−2 kA1/2
n + 1.5318 × 10−4 a2 + 2.7233 × 10−8 a4+0.78343 exp

(
−1.7384 × 10−2 a

)
(19)

While Equation (19) is only valid for aspect ratios not exceeding 50, the value of β from Equations

(16)–(18) in the limit for infinite aspect ratio ( a → ∞ ) is zero. Thus, for a two-dimensional CFD model

with an inherent aspect ratio of infinity, β tends to zero and thus no end correction is needed for a

ROM representing that case. In Equation (7), the apparent nozzle length L′
n for a 2D CFD simulation

thus reduces to the geometric length Ln, which is used in Section 3.3 to explain how to compare the

performance of 2D and 3D SJA cavity geometries.

3. Validation Methodologies

3.1. Numerical Validation Using Transient Computational Fluid Dynamics (CFD) Modelling

Two-dimensional (2D) unsteady compressible CFD simulations are carried out using Ansys CFX

software. For a selected number of cases, three-dimensional (3D) simulations have been carried out

using the same package (see Section 3.1.1). Figure 2 displays the 2D computational domain and the

generated mesh used in the simulations. To achieve the most realistic computation of the flow induced

by the synthetic jet, Alimohammadi et al. [25] reported on the importance of diaphragm deformation

and the inclusion of the cavity and deforming diaphragm as a part of the simulation. This approach

stands in contrast to the traditional assumption of an oscillating boundary condition at the exit of the

orifice slot which leads to an over-simplification of boundary conditions. As a result, the oscillating

wall of the cavity is simulated in the developed CFD model here by means of dynamic mesh techniques.

The diaphragm deformation applied in the CFD model xd = f (t, y) is different from the deformation

of the loudspeaker cone used for the experiments (see Section 3.2), however the maximum deflection

for all cases considered in this study does not exceed 4% of the cavity height Lc, and therefore the

difference in impact on the internal cavity flow is deemed negligible.

The computational domain consists of three distinct regions, namely cavity, nozzle (length

Ln = 10 mm, width h = 1.5 mm), and the near-orifice region where the synthetic jet develops.

The cavity dimensions for the simulations are hc = 75 mm and Lc = 23 mm, to mimic the experimental

validation geometry as best as possible.

The far-field boundaries at atmospheric pressure are placed at a distance of 120 h in the x

direction and ±70 h in the y direction from the orifice outlet. The simulation of synthetic jets

consists of intricate fluid mechanics featuring flow separation, unsteadiness, and vortex dynamics.

Alimohammadi et al. [25] have suggested the shear stress transport (SST) model coupled with modified

curvature correction and also the Gamma-Theta transition model as the most suitable Reynolds

Averaged Navier Stokes (RANS) turbulence model to be utilized. As such, the 2D domain is composed

of nearly 100,000 cells in a structured mesh, and the near wall refinement assures the y+ value

(i.e., the non-dimensional distance of the first grid point from the wall) does exceed unity.
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The numerical uncertainty is quantified by the grid convergence index (GCI) method which

represents the discretization error, the method recommended by the Journal of Fluids Engineering [26].

Through several mesh refinements to study the independency of the mesh generation, the maximum

numerical uncertainties (GCImax) are calculated for different grids, reporting that solutions are within

the asymptotic range of convergence. The GCImax based on the peak nozzle velocity is calculated

as 0.8%.

 

𝛽  −0.34064 + 6.6771 10-  𝑘𝐴 ⁄ + 1.5318 10-  𝑎 + 2.7233 10-  𝑎+ 0.78343 exp(−1.7384 10-  𝑎) 𝛽𝑎 → ∞𝛽 𝐿𝐿

𝑥 = 𝑓(𝑡, 𝑦)
𝐿

 

𝐿 =10 ℎ = 1.5 ℎ = 75 𝐿 = 23

𝑥 = 𝑓(𝑡, 𝑦) 

𝐿  
ℎ 

ℎ  𝐿  𝑦 𝑥 

 

Far-field boundary,  

free to 𝑝  

 Wall 

Cavity 

Figure 2. 2D computational domain and mesh (the diaphragm deformation is exaggerated and only

indicative. The full solution domain is not shown for the sake of clarity).

3.1.1. Complementary 3D Simulations

For some selected cases, 3D CFD simulations are performed on a mesh with 1.46 million cells for

the same solver settings and conditions. For the 3D simulations, the exact experimental dimensions

are taken (see Section 3.2). By choosing similar linear cavity dimensions, it is anticipated that internal

vortex formation in the cavity would be reasonably similar in 2D and 3D cases. However, Section 3.3

explains important consequences for the comparison of results from 2D and 3D geometries in the

frequency domain.

3.2. Experimental Validation

The experimental validation approach is identical to the description in Persoons [16], to which the

reader is referred for full details. Similar to the CFD simulations, the orifice slot measures h = 1.5 mm

by b = 45 mm (aspect ratio a = b/h = 30) with a length Ln = 10 mm, while the cavity volume

Vc = 113 cm3 and Ad = 44 cm2, corresponding to a 75 mm circular diaphragm representing a Visaton

FR8 (4 Ohm, 10 W) loudspeaker [16].

Figure 3 shows a schematic diagram identifying the primary instrumentation used: (i) a hot-wire

sensor (e.g., Dantec 55P11, Pt-plated tungsten wire, 5 µm diameter by 1.25 mm in length), operated

in a constant temperature anemometer (Dantec 54T30, bridge ratio 20:1, resistance overheat ratio 1.8,

10 kHz low pass filter) measures the approximate centerline nozzle velocity Un,0(t) which is taken

to represent the mean nozzle velocity in the assumption that the profile is reasonably uniform for

a short orifice. The probe is less than 0.5 mm away from the orifice outlet plane to avoid velocity

decay. The off-angle positioning of the probe, away from the main jet formation region, minimizes

its flow disturbance. The hot-wire was calibrated in this same orientation in a low-turbulence wind

tunnel, using a pitot-static probe as reference, for a range of air velocities between 0.6 m/s and 48 m/s.
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A King’s law relation was least-squares fitted to the calibration data, resulting in a coefficient of

determination of 99.9%. The probe reading is insensitive to flow direction, yet due to the probe body

orientation being nearly perpendicular to the jet flow (see Figure 3), the reading can be inverted during

the suction stroke. The transitions between suction and ejection strokes are determined by locating

the local minima in the hot-wire reading (in absolute value). During these transitions, wherever

the velocity reading falls below the lower limit of the calibration range (<0.6 m/s), readings are

ignored. (ii) The cavity acoustic pressure pc is measured relative to atmosphere using a low sensitivity

microphone (G.R.A.S., Hole, Demark. 40BD with 26CB constant current power (CCP) preamplifier,

1.6 mV/Pa, 40–174 dB, 4 Hz–70 kHz). (iii) The deflection of the diaphragm xd is measured with a

laser displacement sensor (e.g., Keyence LK-G157, range ±40 mm, linearity ±0.05%). These quantities

are read into a data acquisition system along with the driver voltage e and current i. The data is

phase-averaged over 16 periods to achieve an uncertainty level below 5% based on a 95% confidence

level on the phase-averaged velocity, pressure and diaphragm deflection waveforms.

 

(a) (b) 

𝑈𝑝 𝑥

𝑓
𝑓( )  𝛽

𝑓( ) = 12𝜋 𝑐𝐿 𝐴 𝐿𝑉  where 𝐿 = 𝐿 + 2𝛽 4𝐴 /𝜋 
𝛽 =0 𝑓( )

𝑓( ) = 12𝜋 𝑐𝐿 ( ) ℎ𝐿 ( )ℎ 𝐿  where 𝐿 ( ) = 𝐿
𝑓( ) = 509 𝑓( ) = 332 𝑓( ) = 307𝜔/𝜔 (= 𝑓/𝑓 ) 𝑓

𝑎𝑎 = 30 (𝜌𝑐𝑈 /𝑝 )(𝐴 𝐿 /𝑉 ) /𝑈 𝑝

𝑥  

𝑝  𝑈  

𝑒 𝑖 (iii) 

(ii) 

(i) 

ℎ 𝑏 

(i) 

Figure 3. (a) Schematic diagram of an instrumented SJA with (b) rectangular orifice (not to scale),

instrumented with (i) a hot-wire anemometer probe for nozzle velocity Un, (ii) microphone for cavity

pressure pc and (iii) laser displacement sensor for xd [16].

3.3. Comparing Synthetic Jet Actuator Performance for 2D and 3D Geometries

As mentioned in Section 2.1, the Helmholtz resonance frequency and driver resonance frequency

are two important quantities that characterize the performance of an SJA in the temporal or frequency

domain. The Helmholtz resonance frequency fH defined by Equation (8) is the primary parameter,

since typically the driver and cavity resonance frequencies are chosen to be of similar magnitudes for

optimal performance.

For 3D geometries such as the actuator used for the experimental validation, the Helmholtz

resonance frequency f
(3D)
H can be estimated based on the cavity volume, nozzle cross-sectional area

end-corrected nozzle length (which requires an estimate of the added mass coefficient β):

f
(3D)
H =

1

2π

c

L′
n

√

AnL′
n

Vc
where L′

n = Ln + 2β
√

4An/π (20)

For a 2D geometry used for the CFD simulations in this study, the added mass coefficient β = 0,

as explained in Section 2.2. Thus the 2D equivalent of the Helmholtz resonance frequency f
(2D)
H is

defined slightly differently as:

f
(2D)
H =

1

2π

c

L′
n
(2D)

√

hL′
n
(2D)

hcLc
where L′

n
(2D) = Ln (21)
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In this paper, the Helmholtz resonance frequencies for the 2D and 3D CFD simulations and

experiments are f
(2D)
H = 509 Hz, f

(3D)
H = 332 Hz and f

(exp)
H = 307 Hz, respectively. In the

following section, the frequency domain results are plotted as a function of the normalized frequency

ω/ωH(= f / fH), where fH takes the aforementioned values for 2D and 3D data.

4. Results and Discussion

Table 2 shows an overview of the cases studied in this paper. All cases represent experiments

and matching CFD simulations for an SJA with a rectangular orifice, however as specified above,

there are inevitable physical differences in the systems, more specifically the 2D CFD geometry having

an infinite orifice aspect ratio a, whereas the aspect ratio for the experiments and 3D CFD results is

finite (a = 30).

Table 2 also summarizes the velocity-to-pressure ratio values, representing the fluidic SJA model

defined in Equation (11). The values are provided in dimensionless form as (ρcUn/pc)(AnL′
n/Vc)

1/2
,

where the amplitudes Un and pc are obtained from the (i) experiments, (ii) 2D CFD and (iii) 3D CFD

simulations, respectively. For each condition, the corresponding reduced-order model value obtained

using Equation (11) is also provided in brackets.

Figure 4 provides a graphical representation of the agreement between the experimental values

(markers) and the ROM (solid lines) in terms of the ratio of nozzle velocity to cavity pressure ρcUn/pc,

referred to as the fluidic model and defined in Equation (11). Because the model is non-linear, four lines

are shown for four different cavity pressure amplitudes ranging from 100 Pa to 1000 Pa. The markers

represent experimental measurement points at corresponding pressure amplitudes, as listed in Table 2.

Cases A and B (see Table 2) are indicated with red and blue markers, respectively.

Table 2. List of cases included in this investigation. Cases A and B are indicated respectively as red and

blue markers in subsequent figures. Values in parenthesis are reduced-order model (ROM) predictions

at the operating conditions.

Case
Frequency

!
!H

(

= f
fH

)
Pressure

Amplitude pc,
Pa

Velocity-to -Pressure Ratio
(

æcUn
pc

)√
AnL′

n
Vc

, in dB

Experimental

(f
(exp)
H = 307 HZ)

2D Computational
Fluid Dynamics (CFD)

(f
(2D)
H = 509 HZ)

3D CFD (f
(3D)
H =

332 HZ)

A 0.13 106 13.1 (13.0) 15.0 (15.1) 11.8 (13.0)
B 0.53 202 4.8 (5.1) 6.5 (9.1) 6.1 (5.5)
C 0.13 208 10.9 (10.7) 12.0 (12.3) -
D 0.27 509 9.6 (9.1) 13.5 (12.5) -
E 0.27 1027 6.8 (6.3) 8.7 (8.5) -
F 0.27 202 3.5 (3.7) 6.5 (6.2) -
G 0.53 504 4.6 (4.2) 5.5 (6.8) -

 

𝜌𝑐𝑈 /𝑝

𝝎𝝎𝑯 = 𝒇𝒇𝑯 𝒑𝒄
𝝆𝒄𝑼𝒏𝒑𝒄 𝑨𝒏𝑳𝒏𝑽𝒄

𝒇𝑯(𝒆𝒙𝒑) 𝒇𝑯(𝟐𝑫) 𝒇𝑯(𝟑𝑫)

𝑈 /𝑝 𝐾 = 1.552𝛽 = 0.615
  

 𝐾
𝐾 =0 = 𝐾 𝛽

𝑈 𝑝 𝐾 𝛽

Figure 4. ROM validation in terms of the fluidic model Un/pc (Equation (11) with K = 1.552 and

β = 0.615) (lines) versus experimental data (markers) for a synthetic jet actuator with rectangular orifice

of aspect ratio 30:1. Markers represent cavity pressure magnitudes (#) 100 Pa, (�) 200 Pa, (3) 500 Pa,

(△) 1000 Pa. Cases A and B (see Table 2) are indicated with red and blue markers, respectively.
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The higher the pressure amplitude, the more the damping term featuring K in Equation (11)

dominates, and the less sensitive the velocity-to-pressure ratio becomes to frequency. The frequency

on the horizontal axis is normalized by the Helmholtz resonance frequency. For frequencies exceeding

the Helmholtz resonance by a factor of 3–5, the velocity-to-pressure ratio is no longer quasi constant

and increasingly tends towards the dashed line. This represents an undamped model (K = 0),

corresponding to
ρcUn

pc
=
√

Vc
An L′

n

(
ω

ωH

)−1
.

Regarding the procedure for determining the parameters K and β through calibration, this is

described in detail in Persoons [16]. In short, once a given dataset of cavity pressure and nozzle velocity

waveforms are provided, whether through experimental measurements or numerical simulations,

the amplitudes Un and pc are determined to calculate the velocity-to-pressure ratio as listed in Table 2.

Then a least-squares fitting procedure is applied to determine K and β such that Equation (11) best

fits the experimental or numerically determined ratios. Because of the non-linearity, it is convenient

for plotting purposes if the data are taken at predefined cavity pressure amplitudes, which explains

why the data in Table 2 have cavity pressure amplitudes that are approximately 100 Pa, 200 Pa,

500 Pa and 1000 Pa. During the experiments, this can be done by monitoring the cavity pressure

microphone readings, although admittedly this is somewhat more cumbersome to achieve for the CFD

simulations using the dynamic meshing approach. However, this is merely a small inconvenience from

the perspective of plotting results to collapse onto a small number of lines representing Equation (11).

The nozzle velocity, cavity pressure and diaphragm deflection waveforms that were used to

determine the amplitudes in Figure 4 and Table 2 are shown for two selected cases A and B in Figures 5

and 6. These cases are chosen for the following reasons: Case A (red marker in Figure 4) is relatively

low frequency and has a small cavity pressure amplitude (approximately 100 Pa), and thus also a small

velocity amplitude, which makes for challenging measurement conditions. Case B (blue marker in

Figure 4) is obtained at a higher frequency closer to the Helmholtz resonance frequency, which makes

for increasingly more challenging conditions to obtain reliable convergence of the CFD simulations.

Due to the significant computational cost involved in performing transient 3D CFD simulations,

only cases A and B were simulated in 3D. 2D CFD simulations were carried out for the entire set

of cases.

For Case A, Figure 5 shows plots of the phase-resolved (a) diaphragm deflection xd(ωt), (b) cavity

pressure pc(ωt) and (c) nozzle velocity Un(ωt) determined from experimental measurements, 2D CFD

simulations and 3D CFD simulations, where the phase angle is given by ωt = 2π f t. Phase angle

ωt = 0 is arbitrarily chosen as the zero crossing of the diaphragm deflection during the ejection

stroke. For the experiments, the waveforms are ensemble-averaged over 16 cycles, as explained in

Section 3.2. For the CFD simulations, the waveforms are extracted after periodic conditions were

reached. The threshold for reaching periodicity is defined such that the root-mean-squared deviation

on the instantaneous values of velocity and pressure between two successive cycles does not exceed 1%.

Since the diaphragm deflection is a user-defined input in the CFD simulations, perfect sine

waveforms are observed for the CFD implementation of xd(ωt) in Figure 5a. The simulated cavity

pressure in Figure 5b broadly resembles the measured pressure waveform; however, some phase

lag can be seen in some of the higher order fluctuations. With respect to the ROM, however, it only

considers first order effects and neglects any higher order acoustics, thus these discrepancies are

of minor importance in that regard. The difference in pressure magnitude in Figure 5b between

experiments and CFD simulations has been verified to be independent of mesh density, turbulence

model, and numerical discretization method. Furthermore, 2D and 3D CFD simulations yield similar

pressure amplitudes. However, it is the ratio of velocity to pressure amplitude that matters for the

fluidic model validation, not the cavity pressure amplitude itself.

In terms of the nozzle velocity Un(ωt), it is important to note that the measured velocity is

obtained by means of a hot-wire anemometer probe, placed in close proximity to the outlet of the jet

nozzle (see Section 3.2). Because a hot-wire anemometer is insensitive to flow direction, the original

velocity waveform is unfolded during the suction stroke to produce the directional velocity waveform
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shown in Figure 5a. Furthermore, because of the asymmetry in the near-orifice flow fields for a

synthetic jet during ejection and suction, there is a small but significant difference in the positive and

negative peak velocity magnitudes during ejection and suction, respectively.

 

(a) 

(b) 

(c) 𝑥 (𝜔𝑡) 𝑝 (𝜔𝑡) 𝑈 (𝜔𝑡)𝜔𝑡
 

Figure 5. (a) Diaphragm deflection xd(ωt), (b) cavity pressure pc(ωt) and (c) nozzle velocity Un(ωt)

as a function of phase angle ωt for case A (see Table 2), comparing experimental results (—), 2D CFD

results (#), and 3D CFD results (�).

Furthermore, as mentioned in Section 3.2, the hot-wire measures the approximate centerline

nozzle velocity Un,0(ωt). Therefore, the velocity at the same location is extracted from the CFD results

to provide a fair comparison. In Figure 5c and 6c, hot-wire readings below the calibration range

(<0.6 m/s) are omitted from the graphs.
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Overall, Figure 5c shows a reasonable agreement between the experimental and numerical velocity

waveforms, faithfully reproducing a minor peak during the startup of the ejection phase, visible at

phase angle ωt/(2π) ∼= 0.90. The difference in magnitude between the experimental and CFD results

should be interpreted as follows: although the 2D CFD results show a good agreement with the

experiments in terms of velocity, the 2D CFD cavity pressure is underestimated. For the 3D CFD

results, the predicted velocity magnitude is smaller yet the ratio of velocity to pressure amplitude

is much closer to the experimental data, giving a stronger confirmation of the validity of the fluidic

model in Equation (11).

 

(a) 

(b) 

(c) 𝑥 (𝜔𝑡) 𝑝 (𝜔𝑡) 𝑈 (𝜔𝑡)𝜔𝑡
 

Figure 6. (a) Diaphragm deflection xd(ωt), (b) cavity pressure pc(ωt) and (c) nozzle velocity Un(ωt)

as a function of phase angle ωt for case B (see Table 2), comparing experimental results (—), 2D CFD

results (#), and 3D CFD results (�).
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Similar to Figure 5, Figure 6 shows the corresponding waveforms for case B at a greater frequency,

closer to the Helmholtz resonance frequency. Again, a reasonable general agreement is observed

between experimental and numerical data. Because it is approaching the resonance frequency, a

significant phase shift is observed for case B between the diaphragm deflection and nozzle velocity,

compared to the low frequency case A.

In terms of the 2D CFD simulations, it was found that the results are not particularly sensitive to

changes in the modelling approach. Different discretization schemes and turbulence models were used

for the 2D CFD simulations during the initial exploratory simulations for this study, and even the 3D

CFD simulation results do not appreciably alter the shape of the pressure and velocity waveforms. A

notable improvement in the velocity-to-pressure ratio prediction was observed for 3D CFD simulations

compared to 2D simulations (see Figure 5).

Furthermore, it was found that there was no need to match exactly the location of the cavity

pressure probe in the CFD pressure field to the location of the microphone used in the experiments.

Thus it seems that, at least in first approximation, the physics relating bulk cavity pressure to nozzle

velocity can indeed be captured reliably by a reduced-order model.

Figure 7 demonstrates this more clearly by plotting the experimental and numerical values for

the velocity-to-pressure ratio on the vertical axis against the corresponding ROM prediction on the

horizontal axis. As before, cases A and B are indicated by red and blue markers, respectively, and the

other cases listed in Table 2 are also included (only 2D CFD and experimental data). As mentioned

previously, because of the difference in geometry for the 2D versus 3D geometries, different β values

are used. In Figure 7, the ROM predictions corresponding to the experimental and numerical data

are produced using Equation (11) with K = 1.552. For the experimental results, β = 0.615. For the 3D

CFD results, β = 0.237 and for the 2D CFD results, β = 0 as explained in Section 2.2. The reason for

the difference in β between the 3D CFD and experimental results can be attributed to the different

acoustic radiation impedance boundary conditions; the experiments feature radiation from the rear of

the diaphragm, which is not included in the CFD simulation. Furthermore, the far field radiation and

reflective properties of the lab environment are difficult to reproduce faithfully in CFD at a reasonable

computational cost.

This study has revealed the challenges in reliably matching up experimental and numerical

conditions for this type of phenomenon. Further research including more detailed pressure and

velocity field quantification will be required to fully understand these aspects.

 

𝛽𝐾 = 1.552 𝛽 = 0.615𝛽 = 0.237 𝛽 = 0𝛽

𝑈 /𝑝
  

𝑈 𝑝𝑥 𝑝 𝑈 /𝑝 𝑓𝐾  𝛽𝐾 𝛽𝛽 𝑓

Figure 7. ROM validation in terms of the fluidic model Un/pc given by Equation (11) (horizontal

axis) versus (#) 2D CFD results, (�) 3D CFD results and (3) experimental results, for the same cases

included in Figure 4 and Table 2. Cases A and B are indicated with red and blue markers, respectively.
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5. Conclusions

In this paper, the underlying physics and methodology behind a physics-based reduced-order

model (ROM) with two degrees of freedom for a synthetic jet actuator (SJA) has been explained.

The ROM combines (i) a fluidic model relating jet velocity amplitude Un to cavity pressure amplitude

pc and (ii) an electromechanical driver model relating the driver input to the diaphragm deflection

amplitude xd and cavity pressure amplitude pc.

The fluidic model provides the velocity-to-pressure amplitude ratio Un/pc as a function of the

fluid speed of sound, SJA dimensions and the operating frequency f . It is a non-linear model which

accounts for fluid damping and inertia effects in the nozzle—these effects are captured by the two

empirical model parameters, the pressure loss coefficient K and added mass coefficient β. Guidelines

are provided for evaluating K and β, and a closed form expression for the added mass coefficient β is

given for rectangular slot orifices as a function of orifice aspect ratio and frequency f .

The simplified version of the fluidic model equation (assuming sine wave actuation) is described

by Equation (11) which is generally applicable to any SJA operating in any gas or liquid medium,

as long as the fluid compressibility outweighs the mechanical compliance of the cavity and surrounding

structure [27]. The electromechanical driver model is established in Equations (13) and (14) for the

most common actuation methods used, i.e., a piezoelectric diaphragm and loudspeaker, respectively.

The paper has presented both experimental and numerical results using transient computational

fluid dynamics (CFD) simulations, using both 2D and 3D geometries. Important aspects related to the

comparison of 2D and 3D geometries are discussed in Sections 3.3 and 4.

A satisfactory agreement is achieved with the ROM predictions for both experimental

measurements as well as 2D and 3D numerical simulations, as summarized by Figure 7.

This demonstrates the validity of this fairly simple analytical ROM for a variety of conditions, for a

range of frequencies approaching the Helmholtz resonance frequency.
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Nomenclature

A Cross-sectional area, m2

a Orifice aspect ratio (a = b/h)

Bl Electromagnetic force factor (Fd = Bl · i)

b Spanwise length of slot orifice, m

C Linear damping coefficient, N/(m*s) or capacitance, F

c Speed of sound, m/s

dh Hydraulic diameter, m

e Actuator voltage, V

F+ Dimensionless frequency ( f L/U∞)

Fd Actuator driving force, N

f Actuation frequency, Hz

h Orifice slot width, m

i Actuator current, A
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j Imaginary unit (j =
√
−1)

K Nozzle non-linear damping coefficient or stiffness, N/m

L Length, m or inductance, H

L0 Synthetic jet stroke length, m

M Mass, kg

pc Cavity acoustic pressure, Pa

R Resistance, Ohm

Re Reynolds number (Re = U0dh/ν)

s Laplace variable (s = j2π f ), s−1

t Time, s

U Velocity, m/s

U0 Characteristic velocity (U0 = L0 f ), m/s

V Volume, m3

x Displacement, m

Z Impedance, Ω

Subscripts

0 Characteristic synthetic jet scale

c Actuator cavity

d Actuator diaphragm

e Electrical (referring to the actuator driver)

emf Electromotive force

H Helmholtz resonance

n Actuator nozzle or orifice

p Parallel

s Series

∞ Free stream

Greek symbols

α Electromechanical coupling coefficient, N/V

β Nozzle added mass coefficient

ρ Density, kg/m3

ν Kinematic viscosity, m2/s

Abbreviations

CFD Computational fluid dynamics

ROM Reduced-order model

SJA Synthetic jet actuator
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