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Abstract 

Introduction: A major challenge to enabling precision health at a global scale is the bias between those who enroll 
in state sponsored genomic research and those suffering from chronic disease. More than 30 million people have 
been genotyped by direct‑to‑consumer (DTC) companies such as 23andMe, Ancestry DNA, and MyHeritage, provid‑
ing a potential mechanism for democratizing access to medical interventions and thus catalyzing improvements in 
patient outcomes as the cost of data acquisition drops. However, much of these data are sequestered in the initial 
provider network, without the ability for the scientific community to either access or validate. Here, we present a 
novel geno‑pheno platform that integrates heterogeneous data sources and applies learnings to common chronic 
disease conditions including Type 2 diabetes (T2D) and hypertension.

Methods: We collected genotyped data from a novel DTC platform where participants upload their genotype data 
files and were invited to answer general health questionnaires regarding cardiometabolic traits over a period of 
6 months. Quality control, imputation, and genome‑wide association studies were performed on this dataset, and 
polygenic risk scores were built in a case–control setting using the BASIL algorithm.

Results: We collected data on N = 4,550 (389 cases / 4,161 controls) who reported being affected or previously 
affected for T2D and N = 4,528 (1,027 cases / 3,501 controls) for hypertension. We identified 164 out of 272 variants 
showing identical effect direction to previously reported genome‑significant findings in Europeans. Performance met‑
ric of the PRS models was AUC = 0.68, which is comparable to previously published PRS models obtained with larger 
datasets including clinical biomarkers.
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Background
Early diagnosis and prevention of chronic modern dis-
eases, including type 2 diabetes (T2D) and hypertension, 
have the potential to make a significant impact in patient 
outcomes. However, the Centers for Disease Control 
(CDC) estimated that over 20% of T2D cases are undi-
agnosed [1] and that only 11% of the over 80 million US 
residents that suffer from prediabetes have been diag-
nosed (CDC National Diabetes Statistics Report 2017). 
Early diagnosis could allow for better allocation of inter-
vention strategies known to be effective at reducing the 
risk of disease progression. According to medical prac-
titioners, insufficient screening is lacking mainly due 
to the fact that chronic diseases tend to progress slowly 
until they manifest clinically later in life. One of the main 
barriers to effectively identifying individuals at risk is the 
lack of predictive tools trained on heterogeneous datasets 
that are able to predict susceptibility using historical data 
available outside of clinical and research settings.

The World Health Organization (WHO) reports a 
sustained increase in diabetes mellitus, with projec-
tions increasing to 3% of the world population by 2030, 
becoming the seventh leading cause of death globally [1]. 
A sedentary lifestyle and a diet pattern with high intake 
of foods rich in hydrogenated fat, refined grains, and red 
meat have contributed to the increase in overweight and 
obesity and led to the increased incidence of T2D [2]. An 
important challenge to this health crisis is to decrease 
mortality, especially at younger ages, and in low and low-
middle countries [3], with more than 400 million people 
affected globally [4].

The overlap between T2D and hypertension is com-
mon among the population [5]. Hypertension alone 
affects more than 1.28 billion people worldwide [6]. T2D 
can lead to complications which can be exacerbated 
when the patient also presents hypertension, for example, 
in the progression of diabetic nephropathy [7]. Both T2D 

and hypertension are risk factors associated with stroke 
and other serious and life-threatening events [8]. In fact, 
during the recent COVID-19 pandemic, outcomes of 
patients seem to be negatively affected by the presence of 
T2D, hypertension, and obesity [9].

Genetics of T2D has been extensively studied [10–15], 
with over 400 genetic variants found to be associated with 
the diseases [16]. In addition to individual studies focus-
ing on defined ethnic groups like Hispanics [17, 18], there 
have been consortium efforts to investigate the genetic 
architecture of complex traits in diverse populations. 
Some of these consortia include a) the Population Archi-
tecture using Genomics and Epidemiology (PAGE) con-
sortium [19]; b) the rich data offered by the UK Biobank 
allowing associations between complex traits, genetics, 
and lifestyle [20]; c) the Trans-Omics for Precision Medi-
cine (TOPMed) Consortium [21] which improves impu-
tation quality and detection of rare variant associations; 
and more recently d) the Meta-Analysis Biobank Initia-
tive [22], a collaborative network of biobanks across the 
world representing millions of consented individuals.

Direct to consumer platforms are novel sources of 
information that have expanded quickly during the past 
decade. The earliest example in 2010 was the use of web-
based self-reported questionnaires with complemen-
tary genetic testing, leading to the creation of a research 
database [23] which has allowed for novel polygenic risk 
scores in complex traits [24] and subsequent FDA sub-
missions of novel diagnostics [25]. The clinicogenomic 
database developed by a consortium is led by a large 
pharmaceutical company, alongside an electronic health 
record company focused on oncological practices, and a 
direct to consumer (DTC) genetic testing company, put-
ting together a comprehensive database [26], allowing 
sophisticated analysis of including the selection of novel 
biomarkers [27], drug effectiveness studies [28], or auto-
matic eligibility criteria selection [29].

Discussion: DTC platforms have the potential of inverting research models of genome sequencing and phenotypic 
data acquisition. Quality control (QC) mechanisms proved to successfully enable traditional GWAS and PRS analyses. 
The direct participation of individuals has shown the potential to generate rich datasets enabling the creation of PRS 
cardiometabolic models. More importantly, federated learning of PRS from reuse of DTC data provides a mechanism 
for scaling precision health care delivery beyond the small number of countries who can afford to finance these 
efforts directly.

Conclusions: The genetics of T2D and hypertension have been studied extensively in controlled datasets, and vari‑
ous polygenic risk scores (PRS) have been developed. We developed predictive tools for both phenotypes trained 
with heterogeneous genotypic and phenotypic data generated outside of the clinical environment and show that 
our methods can recapitulate prior findings with fidelity. From these observations, we conclude that it is possible to 
leverage DTC genetic repositories to identify individuals at risk of debilitating diseases based on their unique genetic 
landscape so that informed, timely clinical interventions can be incorporated.
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The rapid development of polygenic risk scores (PRS) 
in recent years stresses the importance of accurately 
assessing the ancestry makeup of participants in biomed-
ical studies to avoid potential selection biases [30]. PRS 
represents a measure of an individual’s overall genetic 
liability to a trait or disease [31]. The European Bioinfor-
matics Institute (EBI) has launched a PRS catalog data-
base, allowing for reproducibility and standardization of 
reporting of PRS models [32]. As of Feb 16, 2022, the cat-
alog includes 35 models related to the T2D from 15 peer 
reviewed publications [33–45], and six models related to 
hypertension across 3 publications [38, 43, 45]. However, 
these models mostly include single ancestry participants 
(typically European) which may not generalize across 
other ancestral groups.

Even though the need for ancestry-focused research 
has been highlighted by many [46, 47], the lack of diver-
sity resulted in systemic biases that threaten to widen 
existing health disparities among minority and majority 
populations in most developed countries. The overrep-
resentation of European individuals in genetic studies 
represents a major issue, hampering the translation of 
PRS across populations. In this study, we hypothesize 
that PRS models can be improved by defining the genetic 
ancestry of participants. Embedding genetic ancestry as a 
covariate, or scaling PRS scores as part of post-process-
ing step, would result in more accurate models than tra-
ditional filtering to only European-based PRS models.

Furthermore, the validation of a DTC framework for 
validating and extending PRS provides a cost-effective 
means of enrolling understudied populations in complex 
disease genetics as 23andMe has done with their “Roots 
into the Future” effort. We aim to build on such successes 
by powering a public–private partnership that is collect-
ing DTC data to be included in the Biobank Meta-anal-
ysis Network. The notion that DTC provided a “straight 
to mobile instead of landlines” opportunity is important 
to validate as most low- and middle-income countries 
are considering how to harness advances in genomics for 
the study of their own populations while building state-
sponsored capacity is a fundamental challenge to many 
efforts.

Methods
In this case–control retrospective observational study, 
adult participants from an international genetic platform 
were invited to self-report their health status and meta-
bolic traits. Their genetic information was also previ-
ously uploaded in the same platform, which allowed us to 
explore their genetic susceptibility and to build polygenic 
risk scores (PRS) regarding these traits. Finally, we cal-
culated ancestry estimation using Neural ADMIXTURE 
for all individuals. We were interested in evaluating 

ancestry-aware polygenic scores for type 2 diabetes and 
hypertension.

Cohort and eligibility criteria
We used the research database where participants were 
drawn from Genomelink (genomelink.io) users, which 
offers a DTC genetic traits platform with more than 
500,000 users globally. After uploading their genetic 
information, generated in other DTC platforms, users 
can be informed on their susceptibility to an extensive 
set of genetic traits. All participants created an account 
and agreed to a consent on the use of their data and legal 
agreement. Upon signing up, participants were invited to 
undertake a health online survey. Participants were redi-
rected to the survey once they gave online consent to be 
a part of the research. The online consent is in compli-
ance with the institutional review board (IRB) at WCG 
IRB (https:// www. wcgirb. com/) under IRB tracking ID 
20,201,332.

The online survey included questions about general 
conditions like diabetes, blood pressure, lipid profile, and 
medication intake. It also included COVID-19, influenza 
and common cold-related questions along with age, sex, 
weight, height, and pandemic behavior. Data were col-
lected over a period of six months, from May 01, 2021 
to October 06, 2021. Additional file  1 shows the online 
questionnaire.

Only the initial answers of each participant were 
included in the study, if genotype information was avail-
able, and if they answered the age and sex questions. 
Case–control groups were created following participants’ 
answers to the general condition question: T2D and 
hypertension. Additionally, for T2D, participants were 
included if they reported to have high levels of sugar in 
their blood work or if they were taking antidiabetic medi-
cation. Participants were defined as controls if they did 
not report managing health conditions listed in the ques-
tionnaire survey, or if they were not managing any health 
condition. Also, for the T2D cohort specifically, par-
ticipants who reported having normal sugar levels were 
included as controls. Participants with missing values 
were excluded.

Genotype data: quality control, imputation, and GWAS
This study includes seven independent genotyping 
arrays, comprising a total of 12,424 unrelated individu-
als. Genotype-level data for each array were processed by 
applying identical quality control and imputation proce-
dures. Briefly, variants with a call rate of < 95% and pal-
indromic markers (A/T, G/C, MAF > 0.4) were excluded. 
We performed an exact test for Hardy–Weinberg equi-
librium for individuals of the largest ancestral group 
(p < 1 ×  10−12, globally). Individual quality control (QC) 

https://www.wcgirb.com/
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includes genotype call rates > 97%, matching between 
gender identification and chromosomal sex, and no 
excess ancestry-adjusted heterozygosity. Samples geneti-
cally related to other individuals in the cohort and dupli-
cates were detected and removed, by applying the King 
algorithm (–make-king, king estimate > 0.177; PLINK 2). 
Principal component analysis was performed to identify 
global ancestry per individual using 1000 genomes as ref-
erence population with PLINK 2 [48]. Further informa-
tion about the number of markers per genotyping array 
pre- and post-QC is available on Additional file 2.

Imputation was carried out using 1000 genomes as 
a reference panel with Beagle [49]. Next, we gener-
ated a merged dataset combining imputed genotypes 
(MAF > 0.01; imputation quality R2 > 0.30) from avail-
able datasets. Imputed makers with call rate > 0.95 in the 
merged data were selected for downstream analysis.

The GWAS was performed for T2D and hypertension 
phenotypes (N = 4,550; N = 4,528, respectively) using an 
additive genetic model with PLINK 2 (–glm). We include 
the top ten principal components (PC)s, age, sex, and the 
genotyping array as covariables in the model. The results 
were depicted using the qqman package in R.

PRS analysis
The Batch Screening Iterative LASSO (BASIL) algorithm 
[50] is a meta-algorithm (algorithms that learn from the 
output of other algorithms), which employs a Lasso algo-
rithm [51] and enhances this output with another layer 
for faster variable selection in ultra-high-dimensional 
problems. Similar to the Lasso algorithm, the purpose of 
BASIL is to find a parameter vector β whose components 
are the coefficients for the independent variable of the 
linear regression that approximates the solution of the 
problem.

BASIL solves the Lasso solution path in an iterative 
fashion, starting with a sequence of candidate param-
eters. From these candidate solutions, each iteration 
discards the ones that do not meet the requirements to 
be a suitable solution. The set of variables who make it 
into the final set for a viable solution are those who were 
also screened satisfying a desired threshold require-
ment, while the others are discarded (i.e., those solutions 
in which the coefficients in their positions inside the β 
parameter are meant to be 0). This process is repeated 
until the optimum parameter λ0 is found, which is the 
one that minimizes (λ0). The BASIL algorithm guaran-
tees to find the exact solution and not only an approxi-
mation, via the Karush–Kuhn–Tucker condition (the first 
derivative necessary conditions for a solution to be opti-
mal) [52] which is verified along each iteration. This con-
dition is necessary and sufficient to prove it.

Genetic ancestry
To address the confounding factor of population strati-
fication in PRS estimations, various approaches have 
been taken [53, 54]. Here, we follow the convention of 
using the first 10 principal components of the PCA to 
the adjustment of the GWA study. For the correction of 
PRS models, we make use of estimates of global ances-
try. For this purpose, we use Neural ADMIXTURE [55], 
a faster adaptation of the ADMIXTURE algorithm [56] 
with similar (or better) clustering results. Utilizing 
the Python implementation of Neural ADMIXTURE, 
we use data from the 1000 Genomes Project Consor-
tium [57] for training a model in the supervised mode 
of Neural ADMIXTURE with the default parameters. 
We utilized the results of global ancestry inference as a 
covariate in the training of our PRS models.

Statistical analysis
We first used descriptive statistics to understand the 
characteristics of this cohort, including the geographic 
distribution of participants, age, sex, and comorbidities. 
This can become useful in future replication studies. 
We built three PRS models using BASIL, a lasso-based 
linear model: a) one model included genotype features 
alone; b) another model used only the covariates of 
age, sex, and the first ten genetic principal components 
(PCs); c) and a final (full) model used both genotypes 
and covariates. We used the first 10 PCs to account 
for residual population micro-stratification as fixed 
effects. With the three models, we then calculate their 
predictive performances, as well as the performance of 
the full model against the covariate-only model (delta 
between models).

The predictive ability of these PRS models was evalu-
ated using the area under the curve (AUC) receiver 
operating characteristic (ROC) curves using the pROC 
package in R [58]. To make comparisons between AUC 
curves from each model, we used the nonparametric 
method developed by DeLong et  al. [59], which is a 
commonly used method.

Results
Genome‑wide association results for diabetes type 2 
and hypertension
We combined genome-wide association data for: 1) 389 
T2D cases and 4,161 controls (N = 4,550); and 2) 1,027 
hypertension cases and 3,501 controls of European 
ancestry (N = 4,528). We tested ~ 8 million variants 
for T2D and hypertension passing quality control and 
imputation filters (MAF > 0.01, R2 > 0.3). Both results 
showed low inflation of test statistics (λGC = 1.01; 
λGC = 1.01) (Fig. 1).
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Nineteen T2D variants displayed significant evidence 
of replication (p < 0.05) in this dataset. Among them, we 
identified variants closely associated with genes which 
have been previously linked to type 2 diabetes suscepti-
bility (e.g., CDKAL1, KCNQ1), as well as variants in the 
FTO locus linked previously with both BMI and T2D. 
Overall, we identified 164 out of 272 variants show-
ing identical effect direction to previously reported 
genome-significant findings in Europeans (Additional 
file 3) [35]. For the hypertension dataset, we replicated 
ten hypertension genetic markers and identified 230 
out of 365 variants having identical effect direction [60] 
(Additional file 3; Fig. 1).

We validated our GWAS using independent GWAS 
meta-analysis datasets from Mahajan et al. 2018 (74,124 
T2D cases, 824,006 controls) [35] and Evangelou et  al. 
2018 (757,201 individuals) [60]. We compared the p-val-
ues and the effect sizes for the variants assessed in both 
our studies that had identical chromosomal coordinates 
and alleles with the independent GWAS. The direction 
of the effect sizes (estimated as OR) was set to match the 
effect alleles in each study. We observed that the effect 
sizes of the genome-wide significant variants in the inde-
pendent GWAS [35, 60] were concordant in direction-
ality in both our T2D and hypertension GWAS. (Effect 
sizes had the same direction across both studies, Addi-
tional file 3.)

Our observations highlight how carefully curated DTC 
repositories with ever increasing sample sizes and vari-
ant diversity can replicate previous findings and hold the 
potential of delivering enhanced discovery and single-
variant resolution of causal T2D and hypertension risk 
and protection alleles. Additionally, our findings confirm 
the potential impact of DTC resources on mechanistic 
insights and clinical translation efforts.

Estimation of cardiometabolic PRS models using SNPnet
PRS models were built for each phenotype using the 
BASIL algorithm [50]. The predictor variable was binary 
(presence or absence of diabetes or hypertension) as 
reported by participants. After tenfold cross-validation, 
the genotype-only models reported a predictive perfor-
mance (AUC) of 0.56 for both diabetes and hyperten-
sion and increased to 0.68 for the full model (genotype 
and covariates together). Similarly, when filtering for par-
ticipants of European ancestry, the genotype-only mod-
els reported a predictive performance of 0.57 and 0.53, 
increasing to 0.69 and 0.66 in the full model, respectively. 
We compared the performance of these models using 
DeLong’s method [59] with no statistical significance 
(See Additional file 4 for additional metrics). The imbal-
ance ratio of both cohorts was an important factor that 
impacted the accuracy of these models. Additionally, the 
majority proportion of participants of mostly European 

Fig. 1 Genome‑wide association results. A type 2 diabetes, and B hypertension. Top boxes show Q‑Q plots, while bottom figures show Manhattan 
plots with two levels of significance of p < 5 × 10–8 (red line), and p < 1 × 10–6 (blue line)
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ancestry also explains the small differences in perfor-
mance between both types of models. Figure 2 shows the 
comparison between AUC curves in both phenotypes.

The European Bioinformatics Institute (EBI) developed 
the PGS Catalog [31], which is an open resource of pub-
lished polygenic scores (including variants, alleles, and 
weights). We investigated those published PRS for T2D 
and hypertension. For those with reported AUC, we also 
obtained the number of variants, number of individuals 
whose data was used to train the model under various 
ancestry groups. See Additional file 5 for more informa-
tion on the PGS Catalog reported scores.

Our models are comparable to previously published 
PRS models. Figure 3 shows the comparison in reported 
AUC for those models in the EBI PGS catalog including 
our own models. The average AUC between these mod-
els was 0.70. The small number of variables used by our 
models (125 for T2D and 666 for hypertension) makes 
them comparable to those reported by Tanigawa et  al. 
[43] who also used the BASIL algorithm. Likewise, the 
number of individuals whose data was used to train the 
models is modest in comparison with large academic and 
clinical databases. Nevertheless, the predictive perfor-
mance does not seem to be overtly affected by the num-
ber of individuals in the study or the number of included 
variants highlighting that genetic array data from DTC 

repositories carry immense promise for the development 
of PRS tools aimed at improving early detection and pre-
vention of T2D and hypertension.

Discussion
In this study we generated PRS for T2D and hypertension 
from a heterogeneous dataset housing a combination of 
genetic data and self-reported information from a DTC 
genetics company. See Additional file  6, for more infor-
mation about this cohort. Despite a relatively modest 
predictive ability our PRS models are able to identify sub-
sets of users at substantially increased risk of presenting 
T2D or hypertension. This finding is remarkable because 
it suggests that the ever-increasing availability of genetic 
data from DTC providers, most of it not annotated for 
traits of clinical relevance, can be leveraged to generate 
predictive tools able to improve diagnosis and prevention 
of diseases with genetic determinants.

Our study tested the possibility of inverting the model 
regarding genetic and phenotypic data acquisition in a 
research study. Individuals participating in our study 
shared their genetic array information from other DTC 
providers and were invited to take an online survey 
regarding their general health condition. We found no 
difference in predictive performance between our trained 
models that included respondents from all inferred 

Fig. 2 Area under the curve (AUC). Comparison of receiver operating characteristic (ROC) between two models Full model and European only 
model. Results for A) type 2 diabetes (T2D) were 0.68 and 0.69, respectively; while for B) hypertension were 0.68 and 0.66, respectively. After 
applying the DeLong [59] method of ROC comparison the models were not significantly different
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ancestries and those models with respondents from 
European heritage, due to the fact that 86% of our data-
base was of European origin. The genetics of our PRS 
models for T2D and hypertension are supported by our 
ability to replicate known variants from publicly available 
independent GWAS studies.

Multiple array types were available in our database, and 
imputation across platforms (up-imputing) was neces-
sary to harmonize these diverse datasets. The fact that 
individuals can self-report their genomic information 
could potentially corrupt the file being uploaded into our 
platform. However, applying appropriate quality control 
(QC) principles proved to successfully enable traditional 
GWAS and PRS analyses.

DTC platforms can offer a wide range of information 
about personal wellness, ancestry, physical characteris-
tics, and traits. Advances in genomic research have led 
the DTC genomics industry to flourish and make accu-
rate yet easy to interpret genomic results. Strict privacy 
policies of many companies disallow them to share cus-
tomers’ data without their consent. These platforms 
can serve as informative repositories giving actionable 
insights that aid traditional clinical approaches. The 
approach of subject recruitment for various complex 
phenotypes via online surveys is opening up multiple 

avenues to complement conventional research and 
clinical strategies. DTC platforms also provide conveni-
ence along with a wider reach to recruit participants 
from various locations. They surpass barriers of single-
point data collection centers to language restrictions 
thus allowing the aggregation of data from places with 
different ancestries and demographics. Democratiz-
ing the access to these genetic platforms and prediction 
tools will likely boost progress in precision medicine. In 
the future, we plan to investigate how federated learn-
ing approaches can further improve the possibility to 
increase the power of studies in DTC genomic analysis, 
but also how meta-analysis can be done in combination 
with academic and clinical datasets (including those from 
large consortiums).

We have shown that our DTC platform and research 
strategy has the potential to replicate the previously 
reported results with a very fast turnaround time. The 
participation of individual customers in our platform 
allowed the generation of a rich dataset that enabled the 
creation of PRS cardiometabolic models. The compara-
ble predictive performance of our models also is a great 
indication of how we can quickly contribute more PRS 
models to the larger scientific community. As it stands 
right now, publicly available PRS models for T2D and 

Fig. 3 Comparison of PRS published in the EBI PGS Catalog for T2D and Hypertension. The color of the bubble represents the population ancestry 
that was included to build the PRS model. The size of the bubble represents the number of variables (variants) that ended up in the model after 
training. The x‑axis shows the number of individuals used to train the model. The y‑axis shows the AUC results as reported in the EBI PGS Catalog. 
The horizontal line shows the average AUC across all models
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hypertension have an AUC of 0.7 on average as shown 
in Fig. 3. This is still a low accuracy, and it is even lower 
when compared to the small difference between the full 
and genotype-only models. However, even in our heter-
ogeneous DTC platform, we have been able to replicate 
the findings seen in academic and government-funded 
biobanks.

T2D and hypertension are multifactorial diseases that 
are impacted by genetic and environmental determi-
nants, including lifestyle factors like nutrition and exer-
cise habits. Nevertheless, the inherent limitation of PRS 
models to provide accurate disease predictions compels 
the need to interpret these findings with caution, espe-
cially when they come from DTC genetic services. The 
clinical actionability of PRS models has yet to be deter-
mined through pragmatic trials involving real-world 
data. We hope to provide a novel source of informa-
tion that can shed light on this important issue. There-
fore, providing personalized information about T2D and 
hypertension predisposition is poised to improve early 
diagnosis and prevention bringing precision medicine at 
scale for all.
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