
Validating Ontologies with OOPS!

María Poveda-Villalón, Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez

Ontology Engineering Group. Departamento de Inteligencia Artificial.

Facultad de Informática, Universidad Politécnica de Madrid. Spain

 {mpoveda, mcsuarez, asun}@fi.upm.es

Abstract. Ontology quality can be affected by the difficulties involved in on-

tology modelling which may imply the appearance of anomalies in ontologies.

This situation leads to the need of validating ontologies, that is, assessing their

quality and correctness. Ontology validation is a key activity in different ontol-

ogy engineering scenarios such as development and selection. This paper con-

tributes to the ontology validation activity by proposing a web-based tool,

called OOPS!, independent of any ontology development environment, for de-

tecting anomalies in ontologies. This tool will help developers to improve on-

tology quality by automatically detecting potential errors.

Keywords: ontology, pitfalls, ontology evaluation, ontology validation

1 Introduction

The emergence of ontology development methodologies during the last decades has

facilitated major progress, transforming the art of building ontologies into an engi-

neering activity. The correct application of such methodologies benefits the ontology

quality. However, such quality is not always guaranteed because developers must

tackle a wide range of difficulties and handicaps when modelling ontologies [1, 2, 11,

15]. These difficulties can imply the appearance of anomalies in ontologies. There-

fore, ontology evaluation, which checks the technical quality of an ontology against a

frame of reference [18], plays a key role in ontology engineering projects.

Ontology evaluation, which can be divided into validation and verification [18], is

a complex ontology engineering process mainly due to two reasons. The first one is

its applicability in different ontology engineering scenarios, such as development and

reuse, and the second one is the abundant number of approaches and metrics [16].

One approach for validating ontologies is to analyze whether the ontology is con-

form to ontology modelling best practices; in other words, to check whether the on-

tologies contain anomalies or pitfalls. In this regard, a set of common errors made by

developers during the ontology modelling is described in [15]. Moreover, in [10] a

classification of errors identified during the evaluation of different features such as

consistency, completeness, and conciseness in ontology taxonomies is provided. Fi-

nally, in [13] authors identify an initial catalogue of common pitfalls.

In addition, several tools have been developed to alleviate the dull task of evaluat-

ing ontologies. These tools support different approaches like (a) to check the consis-

tency of the ontology, (b) to check the compliance with the ontology language used to

build the ontology or (c) to check modelling mistakes. In this context, our goal within

this paper is to present an on-line tool that supports the automatic detection of pitfalls

in ontologies. This tool is called OOPS! (OntOlogy Pitfall Scanner!) and represents a

new option for ontology developers within the great range of ontology evaluation

tools as it enlarges the list of errors detected by most recent and available works (like

MoKi
1
 [12] and XD Analyzer

2
). In addition, OOPS! is executed independently of the

ontology development platform without configuration or installation and it also works

with main web browsers (Firefox, Chrome, Safari and Internet Explorer
3
).

The remainder of this paper is structured as follows: Section 2 presents related

work in ontology evaluation techniques and tools while Section 3 describes the pitfall

catalogue taken as starting point in our evaluation approach. Section 4 shows OOPS!

architecture and an illustrative use case. In Section 5 the user-based evaluation carried

out over OOPS! is detailed. Finally, Section 6 outlines some conclusions and future

steps to improve OOPS!.

2 State of the Art

In the last decades a huge amount of research on ontology evaluation has been per-

formed. Some of these attempts have defined a generic quality evaluation framework

[6, 9, 10, 17], other authors proposed to evaluate ontologies depending on the final

(re)use of them [18], others have proposed quality models based on features, criteria

and metrics [8, 3], and in recent times methods for pattern-based evaluation have also

emerged [5, 14,]. A summary of generic guidelines and specific techniques for ontol-

ogy evaluation can be found on [16].

Despite vast amounts of frameworks, criteria, and methods, ontology evaluation is

still largely neglected by developers and practitioners. The result is many applications

using ontologies following only minimal evaluation with an ontology editor, involv-

ing, at most, a syntax checking or reasoning test. Also, ontology practitioners could

feel overwhelmed looking for the information required by ontology evaluation meth-

ods, and then, to give up the activity. That problem could stem from the time-

consuming and tedious nature of evaluating the quality of an ontology.

To alleviate such a dull task technological support that automate as many steps in-

volved in ontology evaluation as possible have emerged. In 2002 Fernández-López

and Gómez-Pérez [7] developed ODEClean providing technological support to Onto-

Clean Method [19] in the form of a plug-in for the WebODE ontology development

environment. Few years later, ODEval
4
 [4] was developed to help users evaluating

RDF(S) and DAML+OIL concept taxonomies. Within those tools that support OWL

ontologies we can find some developed as plug-ins for desktop applications as

XDTools plug-in for NeOn Toolkit and OntoCheck plug-in for Protégé. This kind of

1 https://moki.fbk.eu/website/index.php (Last visit on 14-04-2012)
2 http://neon-toolkit.org/wiki/XDTools (Last visit on 14-04-2012)
3 You may experience some layout strange behaviours with Internet Explorer.
4 Even thought the approach described in the bibliographic documentation addresses OWL

ontologies the on-line application available at http://oeg1.dia.fi.upm.es/odeval/ODEval.html

only works with RDF(S) and DAML+OIL ontologies.

http://neon-toolkit.org/wiki/XDTools
http://oeg1.dia.fi.upm.es/odeval/ODEval.html

tools have two main disadvantages: (a) to force the user to install the ontology editor

in which they are included as a plug-in and (b) to tend to be outdated, and sometimes

incompatible, as long the core desktop applications evolve to new versions. Other

tools rely on web based technologies as MoKi [12] that consists on a wiki-based on-

tology editor that incorporates ontology evaluation functionalities. In this case, al-

though a testing user account is provided to try out the tool, an installation process is

also required to set up the wiki system. Finally, command line tools like Eyeball
5

have been proposed. Eyeball is also available as Java API, what makes its use more

suitable for users with technological background. In order to provided a more user-

friendly version of Eyeball a graphical user interface is also provided, however it is

still in an experimental phase.

As already mentioned in Section 1, different ontology evaluation tools can follow

different approaches, and therefore check the ontology quality against different kind

of issues. After performing an analysis of available tools we have realized that the

following six dimensions
6
 (Fig. 1) can be identified with respect to ontology quality:

 Human understanding dimension refers to whether the ontology provides enough

information so that it can be understood from a human point of view. This aspect is

highly related to the ontology documentation and clarity of the code.

 Logical consistency dimension refers to whether (a) there are logical inconsisten-

cies or (b) there are parts of the ontology that could potentially lead to an inconsis-

tency but they cannot be detected by a reasoner unless the ontology is populated.

 Modelling issues dimension refers to whether the ontology is defined using the

primitives provided by ontology implementation languages in a correct way, or

whether there are modelling decision that could be improved.

Human

understanding

Real world

representation

Ontology

language

specification

Logical

consistency

Modelling

issues

Semantic

applications

Fig. 1. Ontology Evaluation Dimensions

 Ontology language specification dimension refers to whether the ontology is

compliant (e.g., syntax correctness) with the specifications of the ontology lan-

guage used to implement the ontology.

5 http://jena.sourceforge.net/Eyeball/
6 It should be noted that this enumeration is not intended to be exhaustive and there could be

more aspects to check an ontology against.

http://jena.sourceforge.net/Eyeball/

 Real world representation dimension refers to how accurately the ontology repre-

sents the domain intended for modelling. This dimension should be checked by

humans (e.g., ontology engineers and domain experts).

 Semantic applications dimension refers to whether the ontology is fit for the

software that uses it, for example checking availability, format compatibility, etc.

The results of the comparative analysis performed over available tools that support

ontologies written in OWL (including OOPS!) with respect to the six aforementioned

dimensions is shown in Table 1. This table presents the comparison according to (a)

three general characteristics (whether they are IDE
7
 independent, if a GUI

8
 is pro-

vided or whether an installation process is needed) and (b) the ontology quality di-

mensions they consider, to some extent, into their algorithm. Ticks () appearing in

Table 1 mean that the given tool fulfils a general characteristic or it addresses a di-

mension; while crosses () mean that the tool does not fulfil the characteristic or does

not provide any support for the given dimension. In this sense, we say that an ontol-

ogy evaluation tool addresses a given dimension if it checks the ontology quality

against at least one issue related to that dimension. For example, when a given tool

checks whether the ontology contains individuals belonging to two disjoint classes,

we can argue that this tool addresses the logical consistency dimension.

Table 1. Ontology evaluation tools comparison.

 XD-Tools OntoCheck EyeBall Moki OOPS!

General Characteristics
IDE development independent

GUI provided

(experimental)

No installing process required

Ontology Evaluation Dimensions
Human understanding

Logical consistency

Modelling issues

Ontology language specification

Real world representation

Semantic applications

3 Pitfall Catalogue so far

One of the crucial issues in ontology evaluation is the identification of anomalies or

bad practices in the ontologies. As already mentioned in Section 1, different research

works have been focused on establishing sets of common errors [15, 10, 11, 13].

Having the pitfall catalogue presented in [13] as starting point, we are performing a

continuous process of maintenance, revision, and enlargement of such a catalogue as

long as we discover new pitfalls during our research. Up to the moment of writing this

paper, 5 new pitfalls have been included in the catalogue (P25-P29). Thus, the current

7 Integrated Development Environment
8 Graphical User Interface

version of the catalogue
9
 consists on the 29 pitfalls shown in Table 2. Pitfalls in such

a table are grouped by the quality dimensions presented in Section 2.

Table 2. Catalogue of pitfalls grouped by ontology quality dimension.

Human understanding Modelling issues

 P1. Creating polysemous elements

 P2. Creating synonyms as classes

 P7. Merging different concepts in the same class

 P8. Missing annotations

 P11. Missing domain or range in properties

 P12. Missing equivalent properties

 P13. Missing inverse relationships

 P19. Swapping intersection and union

 P20. Misusing ontology annotations

 P22. Using different naming criteria in the on-
tology

 P2. Creating synonyms as classes

 P3. Creating the relationship “is” instead of
using ''rdfs:subClassOf'', ''rdf:type'' or

''owl:sameAs''

 P4. Creating unconnected ontology elements

 P5. Defining wrong inverse relationships

 P6. Including cycles in the hierarchy

 P7. Merging different concepts in the same class

 P10. Missing disjointness

 P17. Specializing too much a hierarchy

 P11. Missing domain or range in properties

 P12. Missing equivalent properties

 P13. Missing inverse relationships

 P14. Misusing ''owl:allValuesFrom''

 P15. Misusing “not some” and “some not”

 P18. Specifying too much the domain or the

range

 P19. Swapping intersection and union

 P21. Using a miscellaneous class

 P23. Using incorrectly ontology elements

 P24. Using recursive definition

 P25. Defining a relationship inverse to itself

 P26. Defining inverse relationships for a sym-
metric one

 P27. Defining wrong equivalent relationships

 P28. Defining wrong symmetric relationships

 P29. Defining wrong transitive relationships

Logical consistency

 P5. Defining wrong inverse relationships

 P6. Including cycles in the hierarchy

 P14. Misusing ''owl:allValuesFrom''

 P15. Misusing “not some” and “some not”

 P18. Specifying too much the domain or the

range

 P19. Swapping intersection and union

 P27. Defining wrong equivalent relationships

 P28. Defining wrong symmetric relationships

 P29. Defining wrong transitive relationships

Real world representation

 P9. Missing basic information

 P10. Missing disjointness

As part of the maintaining process of the pitfall catalogue, our intention is to ex-

tend it also with pitfalls proposed by users. Up to now, the suggestions from users are

gathered using a form where they can describe what they consider to be a pitfall. In

such a form, users can also add information about (a) how this suggested pitfall could

be solved, (b) how important it could be to solve the pitfall when it appears, and (c)

how it could be automatically detected. After a revision process the suggested pitfalls

could be included in the catalogue.

4 OOPS!

OOPS! is a web-based tool, independent of any ontology development environment,

for detecting potential pitfalls that could lead to modelling errors. This tool is in-

tended to help ontology developers during the ontology validation activity [18], which

can be divided into diagnosis and repair. Currently, OOPS! provides mechanisms to

9 The official catalogue consists on the list of the pitfalls as well as their descriptions and it

can be found at http://www.oeg-upm.net/oops/catalogue.jsp.

http://www.oeg-upm.net/oops/catalogue.jsp

automatically detect as many pitfalls as possible, thus helps developers in the diagno-

sis activity. In the near future OOPS! will include also prescriptive methodological

guidelines for repairing the detected pitfalls.

In this section we first explain the internal architecture of OOPS! and its main

components (Section 4.1), followed by an exemplary use case showing how OOPS!

helps ontology developers during the validation activity (Section 4.2).

4.1 How OOPS! is internally organized

Fig. 2 presents OOPS! underlying architecture in which it can be seen that OOPS!

takes as input an ontology and the pitfall catalogue in order to produce a list of

evaluation results. OOPS! is a web application based on Java EE
10

, HTML
11

,

jQuery
12

, JSP
13

 and CSS
14

 technologies. The web user interface consists on a single

view where the user enters the URI pointing to or the RDF document describing the

ontology to be analyzed. Once the ontology is parsed using the Jena API
15

, it is

scanned looking for pitfalls from those available in the pitfall catalogue (Section 3).

During this scanning phase, the ontology elements involved in potential errors are

detected; in addition, warnings regarding RDF syntax and some modelling sugges-

tions are generated. Finally, the evaluation results are displayed by means of the web

user interface showing the list of appearing pitfalls, if any, and the ontology elements

affected as well as explanations describing the pitfalls.

OOPS!
Web User Interface

RDF Parser

Evaluation
results

Pitfall Catalogue

P1 P2 P29…

Scanner

Pitfall Scanner
P2 P29… Warning

Scanner
Suggestion

Scanner

Fig. 2 OOPS! architecture

The “Pitfall Scanner” module, shown in Fig. 2, implements the automatic detection

of a subset of 21 pitfalls of those included in the catalogue
16

. This subset includes

pitfalls related to the following dimensions: (a) human understanding (P2, P7, P8,

P11, P12, P13, P19, P20, and P22); (b) logical consistency (P5, P6, P19, P27, P28,

10 http://www.oracle.com/technetwork/java/javaee/overview/index.html
11 http://www.w3.org/html/wg/
12 http://jquery.com/
13 http://www.oracle.com/technetwork/java/javaee/jsp/index.html
14 http://www.w3.org/Style/CSS/
15 http://jena.sourceforge.net/
16 http://www.oeg-upm.net/oops/catalogue.jsp

and P29); (c) real world representation (P10); and (d) modelling issues (P2, P3, P4,

P5, P6, P7, P10, P11, P12, P13, P19, P21, P24, P25, P26, P27, P28, and P29). It is

worth mentioning that since the catalogue consists on a list of pitfalls defined in natu-

ral language, they have to be transformed into a formal or procedural language in

order to detect them automatically. Currently, this transformation is implemented in

OOPS! as a Java class for each of the 21 pitfalls. In order to detect a greater range of

pitfalls, developers should implement the appropriate Java class and plug it into the

Pitfall Scanner” module. Up to now, OOPS! provides an on-line form
17

 where users

can suggest new pitfalls by describing them in natural language and attaching dia-

grams if needed. Once a pitfall suggestion is reviewed and accepted, it can be in-

cluded in OOPS! by implementing the corresponding Java class as already mentioned.

The automatic detection of pitfalls has been approached in two different ways. On

the one hand, some pitfalls (namely P3, P7, P12, P20, P21, and P22) have been auto-

mated by checking general characteristics of the ontology, for example the use of

more than one naming convention to detect P22 (Using different naming criteria in

the ontology). On the other hand, other pitfalls (namely P2, P4, P5, P6, P8, P10, P11,

P13, P19, P24, P25, P26, P27, P28, and P29), related to the internal structure of the

ontology, have been translated into patterns that indicate that a pitfall appears when a

pattern is spotted. Fig. 3 shows some of the patterns used to detect pitfalls within

OOPS!; for example, the pattern used to detect P5 (Defining wrong inverse relation-

ships) consist on pairs of relationships defined as inverse but where the domain of one

of them is not equal to the range of the other. Up to now, these patterns are spotted

programmatically by means of a Java class; however, our aim is to transform into

SPARQL
18

 queries as many patterns as possible in future releases of OOPS!.

The module “Warning Scanner” identifies cases where a class or property is not

defined as such by means of the corresponding OWL primitive, that is, related to the

“ontology language specification” dimension presented in Section 2. It is worth men-

tioning that currently there is not a Java class looking for all the cases within the on-

tology. Instead, these warnings are spotted on running time during the execution of

the “Pitfall Scanner” module so that only the classes and relationships related to the

other pitfalls detection are flag up.

Finally, the module “Suggestion Scanner” looks for properties with equal domain

and range axioms and proposes them as potential symmetric or transitive properties.

4.2 How OOPS! works

OOPS! main functionality is to analyze ontologies
19

 (a) via the URI in which an on-

tology is located or (b) via text input containing the source code of the ontology. As a

result of the analysis, OOPS! informs developers about which elements of the ontol-

ogy are possibly affected by pitfalls.

17 http://www.oeg-upm.net/oops/submissions.jsp
18 http://www.w3.org/TR/rdf-sparql-query/
19 The input ontology must be implemented in OWL (http://www.w3.org/TR/2009/REC-owl2-

primer-20091027/) or RDF (http://www.w3.org/TR/2004/REC-rdf-primer-20040210/).

P25. Defining a relationship inverse to itself

<owl:inverseOf>

P5. Defining wrong inverse relationships

ClassA

ClassB

ClassC

propertyS

propertyT

<owl:inverseOf>

P6. Including cycles in the hierarchy

ClassA

ClassB

…

<rdfs:subClassOf>

ClassA
<rdfs:subClassOf>

<rdfs:subClassOf>

P19. Swapping intersection and union

ClassA

ClassC
propertyS

<owl:ObjectProperty>

propertyS

∪

ClassB

ClassA

ClassC
propertyS

∪

ClassB

P28. Defining wrong symmetric relationships

<rdfs:domain>

<owl:SymmetricProperty>

propertyS

<rdfs:range>

ClassA ClassB

Fig. 3. Example of patterns defined to detect pitfalls

Fig. 4 shows OOPS! home page
20

 where a user can enter an ontology to be ana-

lyzed via URI or RDF coding. This page also presents a brief description of OOPS!.

In addition, the menu in the right side of the web site contains links to (a) documenta-

tion related to OOPS! (the pitfall catalogue, a user guide, and a technical report) and

(b) papers related to OOPS! and the research behind it. In addition, two different ways

in which users can send their suggestion are also provided: (1) a questionnaire to send

feedback after using the tool and (2) a form to suggest new pitfalls.

As result of analyzing the ontology provided by the user, OOPS! generates, as it is

shown in Fig. 5
21

, a new web page listing the appearing pitfalls in the ontology. This

list provides information about (a) how many times a particular pitfall appears, (b)

which specific ontology elements are affected by such a pitfall, and (c) a brief de-

scription about what the pitfall consist on.

It is worth mentioning that OOPS! output points to ontology elements identified as

potential errors but they are not always factual errors as sometimes something can be

considered a factual errors depending on different perspectives (such as the particular

ontology being analyzed, its particular requirements, the characteristics of the domain

intended for modelling, etc.). In this sense, there are seven pitfalls (P3, P8, P22, P25,

P26, P28, and P29) that should be repaired when detected by OOPS! as they certainly

20 http://www.oeg-upm.net/oops
21 For the sake of clarity some screenshots have been reduced keeping the interesting infor-

mation for each example.

point to modelling problems within the ontology; while the rest of pitfalls appearing

in OOPS! output must be manually checked in order to discern whether they point to

factual problems in the ontology being analyzed.

URI

RDF code

Fig. 4 OOPS! home page

Pitfall name Pitfall frequency

Pitfall description

Ontology elements
affected by the pitfall

Fig. 5 Example of evaluation results web page generated by OOPS!

OOPS! shows the result for each pitfall in three different ways depending on the

kind of pitfall. There are pitfalls that affect individual elements in the ontology, others

affect more than one element, and there are also pitfalls that do not affect particular

ontology elements but the whole ontology. In the following, an example of OOPS!

execution is shown in order to clarify the different types of results a user can get from

OOPS! and how to interpret them. For illustrating the example we are using the Se-

mantic Web Conference Ontology
22

 (SWC).

After executing OOPS! with the SWC ontology, we obtain a summary of the pit-

falls encountered as presented in Fig. 6 . Such a figure shows that 11 pitfalls have

been detected as well as 1 suggestion and 1 warning. For the sake of simplicity, not

all results will be detailed but only those contributing to an explanation of different

kind of outputs or interpretations.

Fig. 6 Evaluation results for SWC ontology

As already mentioned, some pitfalls can affect individual ontology elements, other

pitfalls can affect more than one element in the ontology, and others can affect the

whole ontology. Fig. 7 shows an example
23

 of a pitfall (P08. Missing annotations) that

affects individual ontology elements. In this case, the output is grouped by (a) ele-

ments that have neither rdfs:label or rdfs:comment defined and (b) elements

that have no rdfs:comment.

Fig. 8 shows an example of a pitfall (P05. Defining wrong inverse relationships)

that affects more than one ontology element. In this case, when OOPS! detects a po-

tential mistake while defining inverse relationships it provides the pair of relation-

ships involved in such pitfall.

Fig. 9 shows a particular example of pitfall (P22. Using different naming criteria in

the ontology), which affects the whole ontology. It is worth mentioning that the on-

tology elements shown in Fig. 9 represent just arbitrary example as P22 points to the

22 Official URI is http://data.semanticweb.org/ns/swc/swc_2009-05-09.rdf. As the results

shown in this paper may be affected by possible updates on the original ontology there is a

copy of the ontology code used in this example on 18-04-2012 that can be found at

http://www.oeg-upm.net/files/mpoveda/EKAW2012/swc_2009-05-09.rdf.
23 As it is shown in the top part of the example there have been found 156 cases of this pitfall,

however just an excerpt of the results is shown due to space constraints. This case may also

apply to further examples.

http://data.semanticweb.org/ns/swc/swc_2009-05-09.rdf

fact of having different naming criteria along the ontology instead of between particu-

lar elements.

Fig. 7 Excerpt of an example of evaluation results for P08: Missing annotations

Fig. 8 Example of evaluation results for P05: Defining wrong inverse relationships

Fig. 9 Example of evaluation results for P22: Using different naming criteria in the ontology

5 User-based Evaluation of OOPS!

OOPS! has been used in different research and educational projects with positive

feedback and interesting comments from the developers involved in each case. In this

section we briefly summarize a set of such cases, presenting qualitative results
24

.

24 Quantitative results are not provided because to test the same real case using the proposed

tool and without the tool was not feasible due to the effort needed.

The first case we can mention is the use of OOPS! in the context of two Spanish

research projects called mIO!
25

 and Buscamedia
26

. Both projects involved the devel-

opment of two ontologies about user context in mobile environments and multimedia

information objects respectively. In both projects the validation activity was carried

out using OOPS!. After the diagnosis phase, the ontologies were repaired accordingly

to OOPS! output. It is worth mentioning that by the time when the validation activi-

ties were carried out (September 2011) OOPS! did not provide a graphical user inter-

face, but it was provided to ontology developers involved in the projects as a .jar file

and its output was given in a .txt file.

A total of seven ontology developers were involved in the ontology validation ac-

tivities within mIO! and Buscamedia use cases. Such developers provided positive

feedback about (a) OOPS! usefulness, (b) the advantages of being IDE independent

and (c) coverage of pitfalls detected by OOPS! in comparison with other tools. They

also provided very valuable feedback about aspects that could be improved in OOPS!

as for example (a) providing a graphical user interface, (b) providing more informa-

tion about what the pitfalls consist on, and (c) considering the imported ontologies

during the analysis. All these comments were taking into account and implemented in

subsequent releases of OOPS!. Other suggestions as (a) to allow the evaluation of

subsets of pitfalls and (b) to provide some recommendations to repair the pitfalls

found within the ontology are currently considered as future work to be included in

next releases.

The second case refers to a controlled experiment to test the benefits of using

OOPS! during the ontology validation activity that was carried out with master stu-

dents. This experiment was performed during the ATHENS course that took place in

November 2011 at Universidad Politécnica de Madrid. Twelve master students work-

ing in pairs executed the experiment. Before the experiment, students were provided

with (a) some explanations about OOPS! and ontology evaluation concepts, (b) the

detailed tasks to be performed during the experiment, and (c) two different ontologies

to be evaluated. After the experiment, we gathered students’ feedback using question-

naires. Most of the students considered that OOPS! was very useful to evaluate the

ontologies at hand and that its output shows clearly what are the problems detected

and in which elements. Again in this experiment, main proposed feature to be added

in OOPS! was to include guidelines about how to solve pitfalls. In addition, some of

the students commented that it could be useful (a) to associate colours to the output

indicating how critical the pitfalls are, like error and warnings recognition in many

software IDEs and (b) to provide a way to see the lines of the file that the error con-

sidered is originated from.

Finally, we announced the release of the tool thorough several mailing lists
27

 re-

lated to the Semantic Web so that all the people interested in analyzing their ontolo-

gies can use OOPS! and send feedback after that. Up to now we have received four

feedback responses from users not related to any project or any controlled experiment.

This feedback shows that even though all of the users think that OOPS! is very useful,

three of them will always use it within their ontology developments or recommend it

25 http://www.cenitmio.es/
26 http://www.cenitbuscamedia.es/
27 For example http://lists.w3.org/Archives/Public/semantic-web/2012Mar/0064.html

to a colleague while one of them will do sometimes. Also some strengths of the tool

were explicitly pointed out by users as
28

: “easy to use”, “no installation required”,

“quick results” and “good to detect low level problems in ontologies”. However, the

richest side of this feedback is the set of proposals to improve the tool. The most im-

portant feedback in this regard refers to (a) show which pitfalls do not appear in the

ontology, (b) include reasoning processes so that OOPS! would not complain when a

property inherits domain/range from its superproperty, and (c) allow the evaluation of

subsets of pitfalls.

Apart from the feedback received through the web questionnaire, we have also re-

ceived comments and questions about OOPS! by email, what reveals users willing-

ness to adopt this type of tools within their ontology developments. Within these

feedback emails users also pointed out the need of developing systems like OOPS! in

the context of ontological engineering. In addition, the following improvements for

our tool were received: (a) to discard pitfalls involving terms properly marked as

DEPRECATED following the OWL 2 deprecation pattern, (b) to take into account the

different namespaces used within the ontology, (c) to look for URI misuse as using

the same URI as two types of ontology elements, and (d) to look for non-standard

characters in natural language annotations.

6 Conclusions and Future Work

Ontology evaluation is a key ontology engineering activity that can be performed

following a variety of approaches and using different tools. In this paper we present

(a) an evaluation approach based on the detection of anomalies in ontologies and (b)

an on-line tool called OOPS! that automatically detects a subset of pitfalls from those

gathered in a pitfall catalogue.

OOPS! represents a step forward within ontology evaluation tools as (a) it enlarges

the list of errors detected by most recent and available works (e.g. MoKi [12] and XD

Analyzer), (b) it is fully independent of any ontology development environment, and

(c) it works with main web browsers (Firefox, Chrome, Safari, and Internet Explorer).

OOPS! has been tested in different settings (research and educational projects)

with positive feedback from the ontology developers who evaluated their ontologies.

Such ontology developers provided also interesting suggestions to improve the tool.

Both feedback and suggestions have been provided via the feedback questionnaire

available in OOPS! website. Apart from particular projects, OOPS! has been already

used by other ontology developers who belong to different organizations (such as

AtoS, Tecnalia, Departament Arquitectura La Salle at Universitat Ramon Llull, and

Human Mobility and Technology Laboratory at CICtourGUNE). In fact, OOPS! is

freely available to users on the Web. In addition, OOPS! is currently being tested by

Ontology Engineering Group
29

 members in order to debug it and extend its function-

ality.

As part of the continuous process of improving OOPS!, currently we are working

in the improvement of the rules applied to automatically detect pitfalls to make them

28 The following comments have been taken literally from the feedback questionnaires.
29 http://www.oeg-upm.net/

more accurate. In addition, we are also working on the maintenance of the pitfall cata-

logue. For this purpose, OOPS! web site includes a form to suggest new pitfalls, what

allows extending the catalogue in a collaborative way. In addition, as long as we dis-

cover new pitfalls during our research, they will be included in the current catalogue.

New releases of OOPS! could include the detection of both new pitfalls proposed by

users and new errors identified by us. In this regard, more ambitious plans are (a) the

development of a formal language to define pitfalls so that a user can define in a for-

mal way the pitfalls to be detected, and (b) the implementation of mechanisms so that

OOPS! can automatically interpret and process the defined pitfalls without encoding

them manually.

Based on the feedback we have already received, we have planned to improve

OOPS by allowing the validation of groups of pitfalls the user is interested in. To do

this, we are going to classify pitfalls in different categories according to the ontology

quality criteria identified in [9] and [10]. This new feature will provide more flexibil-

ity to the ontology validation, since it will allow users to diagnose their ontologies just

with respect to the dimensions or pitfalls they are interested in.

Regarding increasing OOPS! features to help the user in the activity of repairing

the detected pitfalls, our plan is to provide more detailed descriptions about the pit-

falls and some prescriptive methodological guidelines about how to solve them. Our

plans also include associating priority levels to each pitfall according to the different

types of consequences they can convey when appearing in an ontology. This feature

will be useful to prioritize actions to be taken during the repairing task.

Finally, future plans also include making REST services available in order to allow

other developments to use and integrate the pitfall scanner functionalities within their

applications.

Acknowledgments. This work has been partially supported by the Spanish projects

BabelData (TIN2010-17550) and BuscaMedia (CENIT 2009-1026).

References

1. Aguado de Cea, G., Gómez-Pérez, A., Montiel-Ponsoda, E., Suárez-Figueroa, M.C. Natural

language-based approach for helping in the reuse of ontology design patterns. In Knowl-

edge Engineering: Practice and Patterns, Proceedings of EKAW 2008, LNCS 5268, pp. 32–

47, 2008.

2. Blomqvist, E., Gangemi, A., Presutti, V. Experiments on Pattern-based Ontology Design. In

Proceedings of K-CAP 2009, pp. 41-48. 2009.

3. Burton-Jones, A., Storey, V.C., and Sugumaran, V., and Ahluwalia, P. A Semiotic Metrics

Suite for Assessing the Quality of Ontologies. Data and Knowledge Engineering, (55:1)

2005, pp. 84-102.

4. Corcho, O., Gómez-Pérez, A., González-Cabero, R., Suárez-Figueroa, M.C. ODEval: a Tool

for Evaluating RDF(S), DAML+OIL, and OWL Concept Taxonomies. In: 1st IFIP Confer-

ence on Artificial Intelligence Applications and Innovations (AIAI 2004), August 22-27,

2004, Toulouse, FRANCE

5. Djedidi, R., Aufaure, M.A. Onto-Evoal an Ontology Evolution Approach Guided by Pattern

Modelling and Quality Evaluation, Proceedings of the Sixth International Symposium on

Foundations of Information and Knowledge Systems (FoIKS 2010), February 15-19 2010,

Sofia, Bulgaria.

6. Duque-Ramos, A., López, U., Fernández-Breis, J. T., Stevens, R. A SQUaRE-based Quality

Evaluation Framework for Ontologies. OntoQual 2010 - Workshop on Ontology Quality at

the 17th International Conference on Knowledge Engineering and Knowledge Management

(EKAW 2010). ISBN: ISSN 1613-0073. CEUR Workshop Proceedings. Pages: 13-24. 15

October 2010. Lisbon, Portugal.

7. Fernández-López, M., Gómez-Pérez, A. The integration of OntoClean in WebODE Onto-

Clean method. In Proceedings of the Evaluation of Ontology based Tools Workshop

EON2002 at 13th International Conference on Knowledge Engineering and Knowledge

Management (EKAW02). Spain 2002.

8. Flemming, A. Assessing the quality of a Linked Data source. Proposal.

http://www2.informatik.hu-berlin.de/~flemming/Proposal.pdf

9. Gangemi, A., Catenacci, C., Ciaramita, M., Lehmann J. Modelling Ontology Evaluation and

Validation. Proceedings of the 3rd European Semantic Web Conference (ESWC2006),

number 4011 in LNCS, Budva. 2006

10. Gómez-Pérez, A. Ontology Evaluation. Handbook on Ontologies. S. Staab and R. Studer

Editors. Springer. International Handbooks on Information Systems. Pp: 251-274. 2004.

11. Noy, N.F., McGuinness. D. L. Ontology development 101: A guide to creating your first

ontology.Technical Report SMI-2001-0880, Standford Medical Informatics. 2001.

12. Pammer, V. PhD Thesis: Automatic Support for Ontology Evaluation Review of Entailed

Statements and Assertional Effects for OWL Ontologies. Engineering Sciences. Graz Uni-

versity of Technology.

13. Poveda, M., Suárez-Figueroa, M.C., Gómez-Pérez, A. A Double Classification of Common

Pitfalls in Ontologies. OntoQual 2010 - Workshop on Ontology Quality at the 17th Interna-

tional Conference on Knowledge Engineering and Knowledge Management (EKAW 2010).

ISBN: ISSN 1613-0073. CEUR Workshop Proceedings. Pages: 1-12. 15 October 2010. Lis-

bon, Portugal.

14. Presutti, V., Gangemi, A., David S., Aguado, G., Suárez-Figueroa, M.C., Montiel-Ponsoda,

E., Poveda, M. NeOn D2.5.1: A Library of Ontology Design Patterns: reusable solutions for

collaborative design of networked ontologies. NeOn project. (FP6-27595). 2008.

15. Rector, A., Drummond, N., Horridge, M., Rogers, J., Knublauch, H., Stevens, R., Wang, H.,

Wroe, C. Owl pizzas: Practical experience of teaching owl-dl: Common errors and common

patterns. In Proc. of EKAW 2004, pp: 63–81. Springer. 2004.

16. Sabou, M., Fernandez, M. Ontology (Network) Evaluation. Ontology Engineering in a Net-

worked World. Suárez-Figueroa, M.C., Gómez-Pérez, A., Motta, E., Gangemi, A. Editors.

Pp. 193-212, Springer. 2012. ISBN 978-3-642-24793-4

17. Strasunskas, D., Tomassen, S.L. The role of ontology in enhancing semantic searches: the

EvOQS framework and its initial validation. Int. J. Knowledge and Learning, Vol. 4, No. 4,

pp. 398-414.

18. Suárez-Figueroa, M.C. PhD Thesis: NeOn Methodology for Building Ontology Networks:

Specification, Scheduling and Reuse. Spain. Universidad Politécnica de Madrid. June 2010.

19. Welty, C., Guarino, N. Supporting Ontological Analysis of Taxonomic Relationships. Data

and Knowledge Engineering. September 2001.

http://www2.informatik.hu-berlin.de/~flemming/Proposal.pdf

