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Abstract

We validate the OPA cascading blackout simulation

on a 1553 bus WECC network model by establishing

OPA parameters from WECC data and comparing

the blackout statistics obtained with OPA to historical

WECC data.

1. Introduction

Over the last fifteen years, a range of models for

simulating cascading failure blackouts have emerged

[1], [2], and now it would advance the general state

of the art to validate these models. This paper uses

data for the Western Electricity Coordinating Council

(WECC) electrical transmission system to validate the

OPA model on a 1553 bus grid model of the WECC.

The 1553 bus grid model was developed in a California

Energy Commission project [3] for analysis of extreme

blackout events and is shown in Fig. 1.

The OPA model [4], [5] is a simulation that cal-

culates the patterns of cascading blackouts of a power

transmission system under the slow, complex dynamics

of an increasing power demand and the engineering

responses to failure. The individual cascades are mod-

eled by probabilistic line overloads and outages in a

DC load flow model with LP generation redispatch.

(O–P–A stands for Oak ridge–Pserc at wisconsin–

Alaska, indicating the institutions of the authors when

OPA was first conceived.) Section 3 gives a more

detailed summary of OPA and its main parameters.

Validation of cascading failure models is necessary to

find out which aspects of real blackouts are reproduced

by the various models, and is crucial in determining

what sort of conclusions can reasonably be drawn from

model results, and what are the model limitations.

In the case of cascading failure models, validation is

particularly important, because it is currently infeasible,

and perhaps inherently infeasible, to model and simu-

late all the mechanisms of cascading failure in great

detail.

We pursue the validation of OPA in the following

steps:

1) Review available data to extract some global

parameters for WECC that can determine OPA

input parameters (Section 2).

2) Examine available historical blackout and outage

data of the WECC [6], [7]. This is the key

statistical data to compare with the OPA results

(Section 4).

3) Present the OPA results with parameters from

WECC on the WECC 1553 bus network and

compare them with the historical data (Section 5).

4) Discuss the strengths and limitations of OPA

in the validation and indicate future work (Sec-

tion 6).

2. Global WECC parameters

One of the first pieces of data used in trying to

determine the parameters for modeling the Western

interconnect is simply the average rate of increase of

the electricity demand in recent years. For California

the peak demand from 1980 to 2005 increases at

a constant rate of 1.93% a year. Fig. 2 shows this

constant rate of increase in data from the California

Energy Commission [8].

Also, the U.S. Energy Information Administration

has on its website [9] data for the net internal energy

demand for the last ten years. A plot of these data in

Fig. 3 shows that net internal demand has increased at a

rate of 2.37% per year. The conclusion from these data

is that an annual rate of growth of 2% is a reasonable

value to model the rate of electrical usage growth in

WECC.

Other information available from the Energy In-

formation Administration [7] is the capacity margin

for the last 10 years in WECC. Fig. 4 shows a plot

of the capacity margin. The summer capacity margin

oscillates around 20% with some large deviations. This

value, 20%, is also the one estimated by NERC [10]

for the year 2011. Therefore, in what follows, 20% is a

reference value for the summer capacity margin in the

modeling of WECC.
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Fig. 1. I553 bus model of WECC grid (bus place-

ment not geographic).

Fig. 2. California peak electricity demand from

1980 to 2005.

Fig. 3. Net internal energy demand for the last ten

years.

Fig. 4. California capacity margin from 1980 to

2006.
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It is important to know the day-to-day variation of

the demand. By looking at the hourly variation of the

demand, it is possible to select the peak daily demand

and to construct a time series of the daily peak demand.

There is an yearly modulation of the demand that

can be eliminated and from the remaining data it is

possible to get a measure of the random daily variation.

From data from different parts of the USA, a value

between 10% and 15% seems a reasonable estimate

with California in general being near 15%.

The next piece of information is the frequency of

blackouts in WECC. The NERC data on (reportable)

blackouts from 1984 to 2006 gives this information.

The triggers of the blackouts can be classified in three

groups: 1) Equipment failure, 2) Limits in generation

and 3) Weather. Table I gives the annual frequencies

for these three types of blackouts.

TABLE 1. Annual frequency of blackouts in the

western interconnect from 1984 to 2006

Equipment failure 0.0075
Limit in generation 0.0029

Weather 0.0252

Total 0.0368

Using the rate of real increase of the demand, the real

critical margin, and real daily load fluctuation level, the

other OPA parameters can then be adjusted so that the

OPA model gives the correct blackout frequency.

3. OPA model summary & key parameters

The OPA model [4], [5], [11] has two timescales:

a fast timescale of cascading blackouts and a slow

evolution of the grid. In the fast timescale, OPA rep-

resents transmission lines, loads and generators with

the usual dc load flow approximation. Starting from a

solved base case, blackouts are initiated by independent

random line outages with probability p0. Whenever a

line is outaged, the generation and load are redispatched

using standard linear programming methods. The cost

function is weighted to ensure that load shedding is

avoided where possible. If any lines were overloaded

during the optimization, then these lines are outaged

with a fixed probability p1. The process of redispatch

and testing for outages is iterated until there are no

more outages. The total load shed is, then, the power

lost in the blackout. The modeling of the cascade

neglects many of the cascading processes in blackouts

and the timing of events, but it does represent in

a simplified way a dynamical process of cascading

overloads and outages that is consistent with some basic

network and operational constraints. It is necessary to

provide some variation or noise in the input conditions

to represent the varying conditions of the power grid

so that a realistic variety of cascades can occur. This is

done by making the pattern of loads vary up and down

randomly about the average load, and the magnitude of

this load variation is controlled by the parameter γ.

In the slow timescale, OPA models the complex

dynamics of the transmission grid evolving in response

to a slowly increasing power demand and the increases

in system capacity caused by the engineering responses

to blackouts. The slow dynamics is carried out by

the following small changes applied each time a po-

tential cascading failure is simulated: All loads are

multiplied by a fixed parameter λ that represents the

rate of increase in electricity demand. If a blackout

occurs, then the lines involved in the blackout have

their line flow limits increased slightly by multiplying

by a parameter µ. That is, the parts of the system

involved in the last blackout are upgraded. The grid

topology remains fixed in the upgrade of the lines

to ensure a realistic grid topology of the upgraded

system in a simple way, and avoid the formidable

complexities of realistic automation of the addition

of new lines in transmission system expansion. To

maintain coordination between generation capacity and

transmission capacity, the generation maximum power

increases automatically when the capacity margin is

below a given critical level ∆P/P . The slow timescale

evolving power grid modeled in OPA enable the study

of the grid as a complex system. This distinctive feature

of OPA is discussed in much more detail in [4], [5],

[11].

We now summarize the main parameters of OPA.

This discussion refers to the basic OPA model, without

n-1 constraints [11] or other possible modifications of

the system modeling or operation [12]. A main input

to OPA is a model network, in this case, the 1553 bus

WECC network model [3]. In addition, Table 2 gives

the four basic parameters that control the slow time

evolution of the system in OPA.

TABLE 2. Input parameters for OPA slow time

evolution

λ Daily rate of increase of load demand
µ Rate of upgrade of overloaded lines

after blackout
∆P/P Capacity margin

γ Controls the daily variation of the loads

The WECC data presented in section 2 have already

determined the rate of increase of the demand λ, the

generation margin ∆P/P , and the daily variance of the

loads γ. The rate of upgrade µ is then determined in
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Fig. 5. Western interconnect cumulative distribu-

tion of observed blackout size in MW from NERC

data.

order to give a reasonable mean value for the frequency

of the blackouts. There are two other parameters p0
and p1 shown in Table 3 that also affect the frequency

and the detailed properties of the blackout dynamics.

We must determine p0 and p1 in order to match the

historical data for the Western interconnect.

TABLE 3. Key parameters of OPA cascading

dynamics

p0 probability of random initial line outage
p1 probability of an overloaded line outaging

4. Historical data for WECC outages

There are a number of different types of data avail-

able (or potentially available) on blackouts and outages

of the WECC transmission grid. They are all important

for validation of all types of modeling of the blackout

dynamics. The main source of data on blackouts in the

North American grid is the North American Electrical

Reliability Council (NERC). This data, which is inher-

ently filtered by reportability criteria, is available on

the web [6]. Analysis of this data [13], [14], [3] shows

the existence of power law regions in the probability

distribution function and in the rank function of the

blackout size. There are a number of different ways of

characterizing the blackout size, but here, the amount

of load shed associated with the blackout is the main

measure used. Fig. 5 shows a plot of the cumulative

distribution function of the observed blackout size for

the western interconnect together with a fit to the power

law region of the distribution.

Fig. 6. Probability distribution of outages in the first

generation, and the probability distribution of the

total outages after cascading.

Another valuable source of information on failures

is the TADS transmission line outage data for 8864

outages recorded by a WECC utility over a period

of ten years [7]. The value of this TADS data for

validation is noted and the authors are very grateful that

this data has been made available. Because this is the

only data currently available to us, we have to assume

that this data for one WECC utility is representative of

data across the entire WECC. The data for the WECC

utility has been processed [15] to extract information

on cascading events. For this analysis it is necessary to

group the line outages first into different cascades, and

then into different generations or stages within each

cascade. One result of the grouping of the outages

into cascades and generations is that there are 5227

cascades and the longest cascade has 110 generations.

From this analysis, come a series of important char-

acteristics that can be used to compare with the OPA

model results. Some of these characteristics extracted

from the analysis of the cascades are: the probabil-

ity distribution of outages in the first generation, the

probability distribution of the total number of outages

after cascading, and the probability distribution of the

number of generations in the cascades. These results

are plotted in Figs. 6 and 7.

A third type of data used to validate the models

is the λ parameter estimated from the TADS data

that determines the propagation of the cascades. (This

propagation parameter should be distinguished from the

same symbol λ used to denote the load increase rate in

the OPA input.) The way this analysis is carried out is
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Fig. 7. Probability distribution of the number of

iterations in the cascades.

Fig. 8. The cascade propagation amount λ as a

function of generation number in a WECC utility.

to divide the cascades into generations and count all the

outages in the cascade that are “children” and divide

this by all the outages that are their “parents” [15]. This

gives the propagation λ averaged over the number of

generations. Fig. 8 shows a plot of the result of this

analysis; that is, the propagation λ as a function of the

generation number.

These characteristics shown in Figs. 5-8 provide

results characteristic of the Western interconnect that

can be be compared to OPA results for validation. If

successful, the OPA model should be able to describe

these data.

5. OPA results on WECC 1553 bus model

Having essentially determined the parameters of

Table 2 directly from the data, the next step is an

exploration of parameters p0 and p1 to get the best

description of the data plotted in Figs. 6-8. The full

list of parameter values is given in Table 4.

TABLE 4. OPA parameters for WECC 1553 bus

model

µ 1.07 Upgrade rate

p0 0.0001 Probability of a random
line failure

p1 0.10–0.05 Probability that an overloaded
line outages

γ 1.15 Controls variance of loads

∆P/P 0.2 Critical generation margin

λ 1.00005 Daily multiplier increasing
load demand

Let us examine the different results from this choice

of parameters. First is the frequency of blackouts. In

OPA and for previous statistical studies, a blackout was

defined to be an load shedding event which has size

S = Load shed/Power demand greater than 0.00001.

However, this definition of blackout size is not the

same as the definition of a reportable blackout from

the NERC point of view, and here we need a blackout

size definition consistent with that used in the NERC

data. The NERC data arise from government incident

reporting requirements. The thresholds for the report

of an incident include uncontrolled loss of 300 MW

or more of system load for more than 15 min from

a single incident, load shedding of 100 MW or more

implemented under emergency operational policy, loss

of electric service to more than 50000 customers for 1 h

or more, and other criteria detailed in U.S. Department

of Energy form EIA-417. The definition for a real

system is complex, but in the present calculations, an

effective criterion is the loss of 300 MW or more.

Therefore, a blackout is an event with S > 0.003.

With this choice of criterion and for the parameters

of Table 4, the frequency of the blackouts is between

0.03 and 0.04, depending on the value of p1. This is

consistent with the value of the blackout frequency

for the western interconnect given in Table 1. Fig. 9

shows a comparison of the cumulative distributions of

blackouts obtained in the OPA results with the NERC

data. The agreement between the data and the OPA

results shown in Fig. 9 is reasonably good.
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Fig. 9. Rank function for the normalized load shed from OPA for the WECC 1553 bus network and

parameters of Table 4 compared with the data for the western interconnect.

Fig. 10. The distribution of outages in the first generation and total outages from OPA for the WECC 1553

bus network and parameters of Table 4 compared with the data.

The next step is the comparison of the distribution

of outages in the first iteration and total outages.

Fig. 10 shows this comparison. Again the agreement

is very good and the OPA model seems to give a

remarkable description of these data. It is important

to notice the difference of the initial distribution and

the total one. This difference was clear in the data

shown in Fig. 6, and it is an indication of the nonlinear

hybrid system dynamics involved in cascading. Finally,

Fig. 11 shows a comparison of the distribution in

the number of generations of the cascade and the

propagation parameter λ with data.

The comparisons in Fig. 11 are the least satisfactory

of all the ones presented in this paper. The likely

reason is that the system grid model of 1553 buses is

still too small and cascades die out too soon. Therefore

there is a need to look at larger network models in

order to get a more satisfactory comparison for these

quantities. This is being done by testing how the

results scale with network size, particularly with a

2510 bus WECC model [3].
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Fig. 11. The distribution in the number of iterations of the cascade and the parameter λ from OPA for the

WECC 1553 bus network and parameters of Table 4 compared with the data.

6. Discussion of OPA validation

Using WECC parameters and the WECC 1553 bus

network, a very reasonable agreement is obtained be-

tween the statistical data on blackouts from the Western

interconnect and the OPA results. This serves to sub-

stantially validate the OPA model for estimating the

statistical distributions of blackout size in terms of lines

outaged and load shed on this 1553 bus network.

A set of parameters has been found giving sufficient

agreement with WECC data to allow the use of the

1553 bus network case as a reference case to study

the long-term WECC blackout statistics. Using this

model and these parameters, it is now possible to

determine and explore critical clusters of lines that are

more vulnerable lines during cascading events [16] and

metrics associated with large blackout risk [17].

Not so well predicted is the cascade propagation for

later generations of the cascade. We strongly suspect

that this discrepancy can be resolved by using larger

network models of WECC, and we are continuing to

investigate how the match of OPA with the WECC data

scales with the size of the system model.

OPA simply represents only one cascading failure

mechanism, namely cascading line overloads and out-

ages, using standard and basic power system modeling

assumptions such as DC load flow and LP generator

redispatch. However, OPA is distinguished from other

cascading simulations by also representing the complex

feedback by which the power system slowly evolves

and self-organizes over time, responding with system

upgrades to both load growth and the blackouts. It

is well known in the context of control theory that

feedback loops strongly determine system performance

and that feedback makes the system performance rel-

atively insensitive to the modeling of the plant being

controlled. The analogy between complex systems and

control systems makes it plausible to suggest that the

modeling of the complex system feedback loop that

regulates the long-term system reliability may well be

crucial for the promising results in validating OPA on

the WECC, and that modeling the complex systems

feedback in OPA makes the results less sensitive to

modeling of the cascading outage mechanisms.
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