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ABSTRACT Antimicrobial resistance (AMR) is a major public health problem that re-

quires publicly available tools for rapid analysis. To identify AMR genes in whole-

genome sequences, the National Center for Biotechnology Information (NCBI) has

produced AMRFinder, a tool that identifies AMR genes using a high-quality curated

AMR gene reference database. The Bacterial Antimicrobial Resistance Reference Gene

Database consists of up-to-date gene nomenclature, a set of hidden Markov models

(HMMs), and a curated protein family hierarchy. Currently, it contains 4,579 antimi-

crobial resistance proteins and more than 560 HMMs. Here, we describe AMRFinder

and its associated database. To assess the predictive ability of AMRFinder, we mea-

sured the consistency between predicted AMR genotypes from AMRFinder and resis-

tance phenotypes of 6,242 isolates from the National Antimicrobial Resistance Moni-

toring System (NARMS). This included 5,425 Salmonella enterica, 770 Campylobacter

spp., and 47 Escherichia coli isolates phenotypically tested against various antimicro-

bial agents. Of 87,679 susceptibility tests performed, 98.4% were consistent with pre-

dictions. To assess the accuracy of AMRFinder, we compared its gene symbol output

with that of a 2017 version of ResFinder, another publicly available resistance gene

detection system. Most gene calls were identical, but there were 1,229 gene symbol

differences (8.8%) between them, with differences due to both algorithmic differ-

ences and database composition. AMRFinder missed 16 loci that ResFinder found,

while ResFinder missed 216 loci that AMRFinder identified. Based on these results,

AMRFinder appears to be a highly accurate AMR gene detection system.
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Antimicrobial resistance (AMR) is a major public health problem, with an estimated

23,000 deaths annually in the United States attributable to antimicrobial resis-

tant infections (https://www.cdc.gov/drugresistance/threat-report-2013/index.html). The

ongoing evolution of multidrug resistance ensures that AMR will continue to be a

health challenge for years to come. As described in the National Strategy on Combating

Antibiotic Resistant Bacteria report (1), there is a critical need to understand how AMR

is related to bacterial genotype, both to enhance AMR mechanism discovery and to

enable AMR diagnostics. One key method to establish this link is genome sequencing,

which can also be used for surveillance purposes.

Traditionally, AMR has been identified using phenotypic assays. The gold standard

for measuring antimicrobial susceptibility is based on standardized dilution- or
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diffusion-based in vitro antimicrobial susceptibility testing (AST) methods, where ex-

tensive research and testing have been performed to correlate AST measurements with

clinical outcomes (2). Increasingly, molecular methods are being used in resistance

surveillance and, in some cases, also to guide clinical therapy. These methods range

from PCR detection of known resistance elements (3) to mass spectrometry-based

methods (4–8). Whole-genome shotgun sequencing (WGS) has been integrated into

the clinical and public health settings, though the use of WGS has focused primarily on

outbreak identification and tracking (9, 10). Along with epidemiological uses, there is

great potential for the use of WGS to aid AMR detection (11–16). Accurate assessment

of AMR gene content enables the discovery of novel resistance variants and can serve

as the basis for predicting resistance phenotypes without the need for time-consuming

phenotypic tests (12, 17, 18).

An in silico approach to assessing AMR content requires comprehensive and accu-

rate AMR gene databases, as well as tools that can reliably identify AMR genes. There

are many databases and tools using a variety of approaches and data sources, as

described in a recent review (19). While some tools exclusively use BLAST-based

approaches (20), others incorporate hidden Markov model (HMM) approaches (21).

BLAST-based approaches are able to identify specific alleles and closely related genes.

However, BLAST-based methods use arbitrary cutoffs that can miscall AMR genes or

even misattribute resistance to non-AMR genes (e.g., misidentification of metallo-beta-

hydrolases as metallo-beta-lactamases [22]). HMM approaches facilitate a hierarchical

classification of AMR proteins, from alleles to gene families, but curation and validation

of HMM libraries are required. Tools also differ based on whether they analyze nucle-

otide or protein sequences. Additionally, some tools are only available through a Web

interface, while others can be operated on local servers, providing more flexibility to

users. Researchers attempting to use currently available AMR databases must choose

between these different database resources. Some contain collections of alignments of

resistance genes for use in HMMs (21). Others consist of collections of nucleotide or

protein sequences of either individual resistance genes or resistance-related mobile

elements (23, 24). Some databases are actively curated, such as the Comprehensive

Antibiotic Resistance Database (CARD) (24, 25), ResFinder (23), and the Lahey Clinic

database (https://www.lahey.org/Studies/; now hosted and maintained by the National

Center for Biotechnology Information [NCBI] as part of the NCBI’s Bacterial Antimicro-

bial Resistance Reference Gene Database), while others are not actively updated.

Separate groups curate different classes of genes, and even a single class of genes (e.g.,

beta-lactamases) can be curated by multiple groups. In addition, some data resources

include allelic variation of housekeeping genes that can confer or contribute to

resistance, while others focus exclusively on acquired or common but not universal

chromosomal resistance mechanisms (here referred to for brevity as “acquired”). As-

sessing and comparing these resources and tools is also challenging, as there are few

high-quality strain collections that have been extensively genotyped and phenotyped

and that are also publicly available.

Here, we describe the development of a comprehensive AMR gene database, the

Bacterial Antimicrobial Resistance Reference Gene Database, and the development of

AMRFinder, an AMR gene identification tool, along with publicly available data sets to

test AMR gene detection methods. To identify AMR genes from sequence data, we

created over 560 AMR HMMs (22) and curated over 4,579 AMR protein sequences,

placing both in a hierarchical framework of gene families, symbols, and names in collab-

oration with multiple groups, including CARD (22). We then developed AMRFinder to

leverage both the content and structure of this database to accurately identify and name

AMR gene sequences.

Our database is protein-based since AMR gene nomenclature, including beta-

lactamase allele designation, is defined by protein identity and similarity. Working in

protein space also enables the use of protein-based HMMs that have been informed by

biological data to discover potentially novel AMR genes. AMRFinder’s hierarchical

framework of gene families, symbols, and names is designed to report accurate gene
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symbols (e.g., blaKPC-2), as the gene symbol is usually the key data type used in

high-throughput genomic surveillance of AMR.

To validate this system for high-throughput use, we used a collection of isolates

from the National Antimicrobial Resistance Monitoring System (NARMS) program, a U.S.

surveillance system that tracks critically important food-associated pathogens collected

from a range of sources and multiple laboratories that have undergone extensive

susceptibility testing and whole-genome shotgun sequencing. We compare our results

to earlier surveys AMR in foodborne isolates, and we also compared AMRFinder perfor-

mance with that of a version of ResFinder 2.0 released in 2017.

RESULTS

We constructed a database of AMR genes, the Bacterial Antimicrobial Resis-

tance Reference Gene Database (https://www.ncbi.nlm.nih.gov/pathogens/isolates

#/refgene/), based on protein sequences that are publicly available and accessioned in

RefSeq. We also constructed a set of HMMs that have manually curated and validated

cutoffs. We built a tool, AMRFinder, that uses our reference database of protein

sequences, the HMM set, and a protein family hierarchy to apply protein names as well

as gene names to annotated bacterial genomes with the most specification possible

based on the sequence evidence. The AMRFinder tool generates a report of the names,

symbols, and coordinates of acquired AMR genes along with descriptions of the

evidence used to identify the sequence (https://www.ncbi.nlm.nih.gov/pathogens/

antimicrobial-resistance/AMRFinder/).

Validation of AMRFinder using genotype/phenotype correlations. To verify and

validate the results of the AMRFinder system, we analyzed a collection of isolates that

were sequenced and susceptibility tested as part of the NARMS program. We then

compared the resistance patterns predicted by AMR genes identified in the genome

sequence to the results of the phenotypic susceptibility tests (and, when tested, point

mutations). We further compared the resistance gene calls made by AMRFinder to calls

from the commonly used resistance gene finding tool ResFinder (23).

A total of 6,301 NARMS isolates with both phenotypes and whole-genome shotgun

sequences were compiled, and 59 were removed for quality reasons described

above, leaving 6,242 isolates for this analysis (Fig. 1). After assembly and annota-

tion, AMRFinder was used to generate a list of 16,003 AMR gene calls, yielding 132

unique genes and alleles. Resistance predictions for the 132 genes and alleles observed

in the set of 6,242 isolates were compiled from the literature (Table S4) and used to

predict resistance.

For the entire set, 87,679 susceptibility tests were performed. A high proportion,

98.4% (86,276), were consistent with predictions based on the resistance genotypes

(acquired resistance genes, and, when tested, point mutations). Of the 13,903 tests that

were predicted to be resistant, 95.5% were observed to be resistant (positive predictive

value [PPV] � 0.955), while of the 73,776 tests expected to be susceptible, 99.2% were

observed to be susceptible (negative predictive value [NPV] � 0.992; Table 1). A total

of 2,136 of the 6,242 isolates (34.2%) were pansusceptible. Gentamicin and streptomy-

cin susceptibility calls in Salmonella enterica were the most common incorrect predic-

tions, accounting for 38% of inconsistent calls (532/1,403). In total, 17% of all isolates

(1,053) had one or more inconsistent calls between genotype and phenotype.

Escherichia coli and Salmonella enterica genotype-phenotype associations.

Escherichia coli isolates had the highest consistency, with 99.7% (656/658) of suscep-

tibility tests predicted by the resistance genotype. Within S. enterica isolates, 98.0% of

susceptibility tests were consistent with the resistance genotype, with a PPV of 0.94 and

an NPV of 0.992 (Table 2). No resistance to amikacin or meropenem was observed or

predicted among E. coli and S. enterica isolates.

None of the 47 E. coli isolates was resistant to either nalidixic acid or ciprofloxacin,

nor were any predicted to be. S. enterica displayed high consistency for both cipro-

floxacin and nalidixic acid (Table 2). When decreased susceptibility (resistant [R] or

intermediate [I]) versus susceptibility (susceptible [S]) is used to categorize ciprofloxacin
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phenotypes (26), S. enterica isolates had high positive predictive values (PPV � 0.891)

and high negative predictive values (NPV � 0.997). For nalidixic acid, the positive

predictive value was quite low (PPV � 0.3). Thirty-five qnr� isolates (71.4%) were

susceptible to nalidixic acid, but they had an MIC of one doubling dilution below the

nalidixic acid breakpoint of 32 �g/ml (Fig. 2); 13 qnr� isolates were resistant to nalidixic

acid. These results are consistent with previous work that indicates that qnr loci might

not be very effective at conferring resistance to nalidixic acid even though qnr loci can

significantly increase nalidixic acid MICs (27). Of the 80 isolates that had ciprofloxacin

resistance mutations, 79 were resistant to nalidixic acid. Thus, in S. enterica, the

presence of qnr genes or known point mutations conferred either resistance or de-

creased susceptibility to ciprofloxacin.

Only six of 11 S. enterica isolates predicted to be azithromycin resistant were resistant.

These six resistant isolates carried mph(A); however, one azithromycin-susceptible isolate

also carried mph(A). The other four susceptible isolates carried either the ere(A) or abc-f

FIG 1 Data processing and analysis flow. Processing steps and isolate inclusion and exclusion criteria are
indicated by arrows, with the number of isolates retained in each phase indicated in the colored boxes.
Thirty-eight isolates were excluded if their AST phenotypes in three or more drug classes differed from
predictions based on acquired AMR genes.

TABLE 1 Consistency between antibiotic susceptibility phenotypes and genotype-based
predictions for all NARMS isolatesa

No. of isolates predicted

by genotype

No. of phenotype observations

Resistant Susceptible

Resistant 13,122 781
Sensitive 622 73,154

aOverall consistency was 98.4% of susceptibility tests performed, with a PPV of 0.955 and an NPV of 0.992.

Feldgarden et al. Antimicrobial Agents and Chemotherapy

November 2019 Volume 63 Issue 11 e00483-19 aac.asm.org 4

https://aac.asm.org


resistance genes; these isolates did not have elevated MICs near the top end of the

susceptible range.

As expected, we observed that 718 out of 725 S. enterica isolates (99.0%) with one

or more blaCMY-family genes were resistant to amoxicillin-clavulanic acid. As observed

previously (26), other beta-lactamases conferred decreased or intermediate suscepti-

bility to amoxicillin-clavulanic acid (Fig. 3). In total, 92.6% of isolates (50/54) that carried

a blaPSE/blaCARB family beta-lactamase (a novel blaCARB allele or blaCARB-2) displayed

intermediate susceptibility to amoxicillin-clavulanic acid, while over half of those

isolates (9/17) with a blaHER family beta-lactamase displayed intermediate susceptibility

to amoxicillin-clavulanic acid, with the remainder having an MIC of 8 �g/ml, which is

the highest MIC categorized as susceptible. blaTEM isolates had a similar pattern, with

nearly half displaying intermediate susceptibility to amoxicillin-clavulanic acid.

Overall, the presence or absence of acquired gentamicin and kanamycin resistance

genes was a good predictor of susceptibility phenotypes (Table 2). Of the 2,820

Salmonella isolates that were tested for susceptibility to amikacin, none were resistant,

nor were they predicted to be resistant. However, we noticed that several reported

gentamicin and kanamycin resistance genes conferred decreased susceptibility to

gentamicin and kanamycin even if the MICs were not high enough to qualify as resistant

(Fig. 4a and b). The majority of aac(3)-IV� isolates (36/47) and 26% of ant(2�)-Ia� isolates

displayed intermediate susceptibility to gentamicin. Many aac(6=)-Ib� isolates were

susceptible to gentamicin, but the MICs of these isolates were higher than those of

isolates lacking known resistance genes. While most kanamycin resistance genes were

associated with phenotypic resistance, 13% of ant(2�)-Ia� isolates had intermediate

susceptibility.

As noted previously, streptomycin susceptibility calls accounted for a large fraction

of the inconsistent calls, with many such isolates containing putative streptomycin

resistance genes. There were no obvious direct relationships between particular resis-

tance genes and streptomycin susceptibility (see Table S7). We examined whether

partial genes (defined as 50% to 90% of the closest reference protein length) affected

susceptibility calls. Partial genes accounted for only 6.4% of streptomycin discrepancies,

suggesting this observation is not due to potential nonfunctional genes. While the

TABLE 2 S. enterica susceptibility and consistency with AMRFinder genotypic predictiona

Antibiotic

No. of isolates

% consistentc % resistant PPVd NPVSusceptibleb Resistantb

Amikacin 2,820 0 100.0% 0.0% NC 1
AMC 4,622 (7) 718 (38) 99.2% 14.0% 0.99 0.992
Ampicillin 3,734 (27) 1,620 (44) 98.7% 30.7% 0.984 0.988
Azithromycin 2,592 (5) 6 (1) 99.8% 0.3% 0.545 0.999
Cefoxitin 4,686 (67) 658 (14) 98.5% 12.4% 0.908 0.997
Ceftiofur 4,093 (13) 697 (13) 99.5% 14.7% 0.982 0.997
Ceftriaxone 4,652 (8) 744 (21) 99.5% 14.7% 0.989 0.996
CHL 5,214 (5) 202 (4) 99.8% 3.8% 0.976 0.999
Ciprofloxacine 5,283 (14) 114 (14) 99.5% 2.4% 0.891 0.997
Co-trimoxazole 5,343 (8) 69 (5) 99.8% 1.4% 0.896 0.999
Gentamicin 4,692 (109) 571 (53) 97.0% 11.5% 0.84 0.989
Kanamycin 3,382 (23) 412 (67) 97.7% 12.3% 0.947 0.981
Meropenem 609 0 100.0% 0.0% NC 1
Nalidixic acid 5,294 (35) 15 (81) 97.9% 1.8% 0.3 0.985
Streptomycin 3,291 (254) 1,756 (76) 93.9% 33.7% 0.877 0.977
Sulfonamide 3,763 (35) 1,572 (55) 98.3% 30.0% 0.978 0.986
Tetracycline 2,558 (42) 2,776 (49) 98.3% 52.1% 0.985 0.981

aOverall consistency was 98.0%, with a PPV of 0.94 and an NPV of 0.992.
bThe number of isolates with genotypes consistent with either phenotypic susceptibility or resistance to a
given antibiotic is shown, with the number of isolates with genotypes inconsistent with either susceptibility
or resistance to a given antibiotic displayed in parentheses; values of zero in parentheses have been
dropped for clarity.

c“% consistent” describes the percentage of isolates with a phenotype consistent with genotype.
dNC means the value cannot be calculated as there are no expected resistant isolates.
eFor ciprofloxacin, the no. of resistant isolates included isolates with intermediate and resistant MIC results.
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mechanism of discordance between streptomycin resistance genes and susceptibility is

unclear, this relationship has been observed in multiple surveys of Enterobacteriaceae

(15, 17, 26, 28, 29; see also Table S8).

Campylobacter genotype-phenotype associations. Campylobacter coli had the

lowest consistency, with 96.7% of susceptibility tests consistent with the resistance

genotype, a PPV of 0.904, and an NPV of 0.982 (Table 3). In total, 98.9% of phenotypes

were accurately predicted for Campylobacter jejuni, with PPV � 0.971 and NPV � 0.992

(Table 4).

In C. coli and C. jejuni, fluoroquinolone resistance was associated with point muta-

tions, not with acquired genes (Tables 3, 4). Based on previous reports (12), we

examined the relationship between gyrA mutations previously determined to confer

fluoroquinolone resistance and fluoroquinolone-resistant isolates among these Cam-

pylobacter species isolates. All but two fluoroquinolone-resistant and no fluoroquino-

lone-susceptible C. coli isolates possessed a GyrA T86I mutation (Table S5). In C. jejuni,

84/85 isolates with GyrA T86I mutations were resistant to ciprofloxacin, and 83/85 were

resistant to nalidixic acid; three C. jejuni isolates without known fluoroquinolone

resistance mutations were resistant to both quinolones; no unique mutations were

found in these three isolates.

All C. jejuni isolates were susceptible to azithromycin, erythromycin, and telithro-

mycin, with only six C. jejuni isolates displaying resistance to clindamycin (Table 4).

None of the clindamycin-resistant C. jejuni isolates had any screened known resistance

mutations or novel mutations at screened sites, suggesting novel resistance mutations

in either 23S or the 50S/L22 subunit (Table S5). Macrolide resistance was far more

common in C. coli (Table 3), with most resistant isolates possessing an A2075G mutation

in 23S (Table S6), as has been observed previously (12).

AMRFinder-ResFinder comparison. ResFinder is a widely used AMR determinant

detection program (23). To assess the relative accuracy of AMRFinder, we compared the

9

4484

FIG 2 Qnr loci affect ciprofloxacin (a) and nalidixic acid (b) MICs in S. enterica. Columns on the x axis correspond to observed MIC values; brackets below indicate
the susceptible, intermediate, or resistant (SIR) values for those MICs. On the y axis, colored bars indicate the percentage of isolates sharing the same genotype
with a given MIC value. Numbers above each column indicate the number of isolates observed with that MIC and genotypes. In the side legend, the number
in parentheses is the number of isolates with the corresponding genotype. “No genes” indicates those isolates lacking any predicted fluoroquinolone resistance
genes. oqxAB indicates the presence of these fluoroquinolone resistance genes in an isolate. “qnr” indicates the presence of one of the following Qnr family
genes: QnrB2, QnrB19, QnrB77, QnrS1, QnrS2, or an unassigned QnrB family allele. “oqxAB, qnr” indicates an OqxAB, QnrB19 genotype. Point mutations for
ciprofloxacin (a) are indicated by the gene in which they occurred, followed by the site and changed residues.
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gene symbol calls at similar positions in the two tools. As described in Materials and

Methods, discrepant gene symbol calls were classified into the following four different

categories: synonyms, overspecification (e.g., calling a novel or partial blaTEM allele as

blaTEM-1), underspecification (e.g., calling an actual blaTEM-1 allele a blaTEM family allele),

and miscalls (e.g., mislabeling a full-length, 100% identical sequence as a different,

known full-length sequence).

Overall, out of 14,023 AMR genes identified by both AMRFinder and ResFinder, there

were 1,229 gene symbol discrepancies (Table 5 and Table S8). These discrepancies

could be mapped to 42 gene symbols out of a total of 132 unique AMRFinder gene

symbol calls. ResFinder misidentified 247 genes with an exact match to a known AMR

gene or allele (e.g., misidentifying blaOXA-193 as blaOXA-61), and overspecified the gene

symbol in 977 cases, representing 18 misidentified gene symbols and 21 overspecified

gene symbols out of the set of 132 unique AMR gene symbols. AMRFinder underspeci-

fied three gene symbols, representing five cases.

The ResFinder misclassifications resulted from either the absence of the matching

sequence in the ResFinder database used in this study or a lack of correspondence

FIG 3 Beta-lactamases confer unexpected decreased susceptibility to amoxicillin-clavulanic acid in S. enterica. x and y axes in
Fig. 3. Allelic variants within a beta-lactamase family are grouped together under the family name; an isolate can have multiple
alleles belonging to the same family. blaPSE family beta-lactamases are either CARB-2 or unassigned CARB alleles. blaCMY family
beta-lactamases were either novel blaCMY alleles or the CMY-2 allele. blaHER indicates either the HER-3 allele or a novel HER-family
allele. blaTEM indicates either a novel TEM allele or TEM-1. “No genes” indicates those isolates lacking beta-lactamases.
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between the closest nucleotide hit and actual observed sequence. For example, 32

aac(6=)-Ib family genes, including 22 known 100% identity aac(6=)-Ib4 sequences, were

miscalled as aac(6=)-Ib-cr by ResFinder. The gene aac(6=)-Ib-cr contributes to decreased

fluoroquinolone susceptibility and confers amikacin and tobramycin resistance, while

aac(6=)-Ib4 does not confer resistance or decreased susceptibility to amikacin, cipro-

floxacin, or tobramycin. We would note that none of the 16 S. enterica aac(6=)-Ib4�

isolates that also were tested for susceptibility to amikacin were resistant to amikacin,

supporting the AMRFinder call of aac(6=)-Ib4. In 977 instances, ResFinder overspecified

the gene symbol, as it calls the closest hit as the correct gene symbol. Many of these

were novel, unnamed allelic variants of beta-lactamase families (n � 699; Table S8), and

ResFinder reported the closest hit (e.g., blaOXA-61 when a novel blaOXA sequence was

observed).

FIG 4 Gentamicin (a) and kanamycin (b) resistance in S. enterica. Format as described for Fig. 2 except aminoglycoside-modifying genes are grouped together
by family. “No genes” indicates isolates lacking any predicted gentamicin and kanamycin resistance genes, respectively.

TABLE 3 C. coli susceptibility and consistencya

Antibiotic

No. of isolates

% consistentc % resistant PPVd NPVSusceptibleb Resistantb

Azithromycin 265 29 100.0% 9.9% 0.763 1
Ciprofloxacin 207 87 100.0% 29.6% 1 1
Clindamycin 248 29 (17) 94.2% 15.6% NC 0.844
Erythromycin 265 29 100.0% 9.9% 0.763 1
Florfenicol 294 0 100.0% 0.0% NC 1
Gentamicin 288 6 100.0% 2.0% 1 1
Nalidixic acid 201 (3) 87 (3) 98.0% 30.6% 1 0.986
Telithromycin 257 (16) 21 94.6% 7.1% 0.553 1
Tetracycline 80 (3) 210 (1) 98.6% 71.8% 0.989 0.988

aOverall consistency was 96.7%, with a PPV of 0.904 and an NPV of 0.982.
bThe number of isolates with genotypes consistent with either susceptibility or resistance to a given
antibiotic is shown, with the number of isolates with genotypes inconsistent with either susceptibility or
resistance to a given antibiotic displayed in parentheses. Values of zero in parentheses have been dropped
for clarity.

c“% consistent” describes the percentage of isolates with a consistent phenotype. For macrolides and
fluoroquinolones, consistency estimates include point mutation data.
dNC means the value cannot be calculated as there are no expected resistant isolates.
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We also examined the loci that were missed by either ResFinder or AMRFinder.

ResFinder did not find 1,147 AMR loci that AMRFinder identified (Table 6). Most of the

missed loci (81.2%) belonged to drug or disinfectant classes that ResFinder does not

cover, namely, bleomycin and quaternary ammonium compounds. Bleomycin resis-

tance is included in the AMRFinder database and is highly associated with the clinically

relevant NDM family carbapenemases (30), while qac enzymes can be linked to multiple

resistance genes and are of regulatory interest in agriculture and in clinical surveillance

(31). The next largest set of discrepancies belonged to AMR genes or alleles that were

not represented in the ResFinder database (8.8%). The default setting length of 60% of

the reference sequence also resulted in 111 missed calls. Of 66 genes not found by

ResFinder that could be assessed by susceptibility data (out of the total of 111), 53

genes were consistent with the susceptibility data (associated with a resistant pheno-

type), while 13 were not.

AMRFinder missed 16 loci that ResFinder found. In all 16 cases, these were frame-

shifts or in-frame stop codons that resulted in a translated protein that either was not

identified at all or had a stop codon position that differed from the ResFinder stop

position by more than 40 bp. Of the three loci that AMRFinder missed that were

assessed phenotypically, all of which were frameshifts, two were resistant in spite of the

apparent frameshift, while one was susceptible. There were also 21 instances of an

aph(6)-I like gene that was divergent from AMR genes in either the ResFinder or the

AMRFinder protein databases. Due to this divergence, the two systems identified

proteins that differed in length and thus had divergent start and stop sites, and were

therefore called as misses. Given the small number of apparent frameshifts in our

isolate collection, it is difficult to assess the role of frameshifts with regard to these

particular data. From a general perspective of susceptibility prediction, failure to detect

frameshifts would lead to the overestimation of resistance, since pseudogenes would

be identified incorrectly as functional resistance genes.

DISCUSSION

We developed and populated a highly curated database with hierarchical struc-

ture for AMR proteins, manually curated cutoffs, and associated hierarchical names.

AMRFinder uses this AMR protein database, HMMs, a hierarchy of AMR protein families,

and a custom rule set to identify AMR genes. In addition, AMRFinder reports the

evidence used to make each call so that users can evaluate its strength and their

confidence in the call.

We observed high consistency between the presence of acquired AMR determinants

and resistance phenotypes in a collection of over 6,200 NARMS isolates. We note,

however, that, as part of our sample consisted of isolates that were resistant to one or

more antibiotics, our choice of isolates might overestimate the overall PPV while

TABLE 4 C. jejuni susceptibility and consistencya

Antibiotic

No. of isolates

% consistent % resistant PPVb NPVSusceptible Resistant

Azithromycin 476 0 100.0% 0.0% 0 1
Ciprofloxacin 386 (1) 86 (3) 99.2% 18.7% 0.989 0.992
Clindamycin 470 0 (6) 98.7% 1.3% NC 0.987
Erythromycin 476 0 100.0% 0.0% 0 1
Florfenicol 476 0 100.0% 0.0% NC 1
Gentamicin 475 0 (1) 99.8% 0.2% NC 0.998
Nalidixic acid 385 (3) 86 (2) 98.9% 18.7% 0.977 0.992
Telithromycin 476 0 100.0% 0.0% 0 1
Tetracycline 145 (4) 325 (2) 98.7% 68.9% 0.988 0.986

aOverall consistency was 98.9%, with a PPV of 0.971 and an NPV of 0.992.
bThe number of isolates with genotypes consistent with either susceptibility or resistance to a given
antibiotic is shown, with the number of isolates with genotypes inconsistent with either susceptibility or
resistance to a given antibiotic displayed in parentheses. Values of zero in parentheses have been dropped
for clarity.
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underestimating the NPV. Incorporating mutational resistance also increased PPV and

decreased NPV for certain drugs, especially fluoroquinolones and macrolides, as resis-

tance to these drugs was predominantly mutational and not due to acquired AMR

genes. The E. coli sample was small (n � 47), and most E. coli isolates were susceptible

to most antibiotics, leading to very high consistency. In S. enterica, discrepancies in

aminoglycoside resistance and fluoroquinolone resistance typically arose from acquired

resistance genes conferring intermediate MICs or MICs at the high end of the suscep-

tible range. As other studies in foodborne pathogens have demonstrated (26, 28),

clinical breakpoints, while obviously critical for appropriate treatment, do not always

correspond to the presence or absence of resistance genes.

Beta-lactam resistance in S. enterica showed high overall correlation between resis-

tance phenotypes and genotypes. Beta-lactam resistance phenotypes and genotypes

were highly correlated in S. enterica. Elevated MICs and intermediate susceptibility

amoxicillin-clavulanic acid phenotypes in S. enterica were associated with the presence

of beta-lactamases other than blaCMY. NCBI’s Pathogen Detection system (http://ncbi

.nlm.nih.gov/pathogens), as part of a collaboration with the FDA GenomeTrakr (32),

CDC PulseNet (33), and USDA Food Safety and Inspection Service (USDA-FSIS), routinely

clusters genomes by sequence similarity, including those of the isolates described in

this report, to support outbreak and traceback investigations of clonal isolates. We

determined that these isolates belong to different single-nucleotide polymorphism

clusters, and so it does not appear that this pattern stems from chance sampling of a

single clone with an unknown resistance mechanism, although we cannot rule out an

unknown, common mechanism of decreased susceptibility. One possible explanation

for why blaPSE family-, blaHER-, and blaTEM beta-lactamase-carrying isolates would

display this phenotypic difference could be that these beta-lactamases are overpro-

duced in the presence of amoxicillin-clavulanic acid; overexpression of blaTEM-1 in E. coli

confers amoxicillin-clavulanic acid resistance (34). Alternatively, changes in permeability

or efflux could lower the intracellular concentration of either the drug or the inhibitor,

conferring intermediate or decreased susceptibility.

As found in previous studies, resistance to macrolides and quinolones in these C. coli

and C. jejuni (12) isolates is largely due to point mutations. When we screened for point

mutations in gyrA and 23S, we were able to predict phenotypes with extremely high

accuracy. This highlights the importance of point mutations in determining resistance

phenotypes. Future editions of AMRFinder will incorporate point mutation information

for Campylobacter spp., E. coli, and S. enterica.

Comparing AMRFinder to ResFinder revealed the importance of annotation and of

TABLE 5 Discrepancies by category observed in gene symbol calls by AMRFinder and
ResFinder 2.0 from 2017

Error typea AMRFinder ResFinder

Misclassification 0 247
Underspecification 5 0
Overspecification 0 977

aSynonyms are not included in this table, as they do not represent miscalls by either system.

TABLE 6 Unique proteins found by AMRFinder

Explanation No. of proteinsc % of proteins

Drug class not in ResFinder 931 81.2
Proteins below thresholdsa 111 9.7
Gene not found in ResFinder 101 8.8
Translation/frameshift errorsb 4 0.3

aIn 10 cases, ResFinder was unable to detect these, as the nucleotide sequence was too divergent from any
sequence found in the database. In 101 instances, there was no gene in the ResFinder database with �90%
DNA sequence similarity to the predicted genes.

bFrameshifts led to early stop codons, resulting in stop codon positions that differed by more than 40 bp
between the two methods.

cTotal no. of proteins, 1,147.
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a comprehensive AMR reference gene database. Protein length variation, when work-

ing with AMR proteins, can yield false conclusions. For any AMR gene detection system,

incomplete or incorrect databases can lead to AMR gene identification errors.

We also found that there were instances where the highest-scoring ResFinder hit

was either incorrect due to absence of a sequence specific enough to make the correct

call or to a reference nucleotide sequence that was divergent from the correct se-

quence. One case was the aac(6=) family aminoglycoside-modifying enzyme. Slight

nucleotide changes that result in protein differences can result in the gain or loss of

fluoroquinolone and aminoglycoside resistance (35). When we reran the isolate assem-

blies with conflicting results using ResFinder 3.1 (download date, 13 April 2019), we

found mixed results. For the 30 aac(6=)-Ib4 full-length alleles, we found that ResFinder

misidentified these alleles as aac(6=)-Ib3, as aac(6=)-Ib4 was not included in the

ResFinder database; a one-amino-acid difference represented by a single nucleotide

between aac(6=)-Ib3 and aac(6=)-Ib4 changes the phenotype from amikacin, kanamycin,

and tobramycin resistance to gentamicin resistance (36). This finding highlights the

importance of database completeness. We also observed miscalls of QnrB alleles

(quinolone resistance) and OXA-61 family beta-lactamases due to the closest nucleo-

tide hit not corresponding to the correct protein hit. Using a newer version of ResFinder

as described above, 181/647 disagreements resolved, as the correct allele was included

in the ResFinder database; however, 466/647 disagreements could not be resolved, as

multiple alleles were returned, including the correct allele, that could not be distin-

guished from the correct allele by ResFinder output of nucleotide identity or coverage.

AMRFinder, by having a nested hierarchical classification of AMR proteins into families,

is able to appropriately name novel AMR genes, which can avoid imputing incorrect

function by overspecifying the gene name. Without a clear interpretation of what

similarity, but not complete identity, to known AMR genes means, using a “highest

scoring hit” approach can lead to false conclusions regarding AMR gene content.

Although allele miscalls might appear to be minor, and in many cases do not affect

susceptibility patterns, there are cases where these differences have profound effects

on the predicted resistance phenotype. As mentioned above, very minor differences in

aminoglycoside-modifying enzymes can result in significant differences in susceptibil-

ity. Recent work with KPC family beta-lactamases has revealed that a subset of alleles,

including blaKPC-8, confer resistance not only to carbapenemases, but also to ceftazidime-

tazobactam (36). blaKPC-8 was first described in 2008 before ceftazidime-tazobactam

existed as a treatment option. In some circumstances, accurate identification down to

the allele level is crucial to characterizing the relationship between resistance genotype

and phenotype. Comparisons in this study used older versions of both the AMRFinder

and ResFinder databases out of necessity, as both systems are continuously improving

their databases. Since we locked down the databases for both systems, as of 1

September 2018, the ResFinder database has grown from 2,254 nucleotide sequences

to 3,307 (a 35% increase), and the AMRFinder database has increased by 17%, from

3,921 protein sequences to 4,579. These improvements may increase the accuracy of

both systems.

We also note that the CARD system has recently been released as a software tool

(24). We encourage the development and release of new tools and encourage addi-

tional comparisons among various AMR gene detection systems and databases.

Note that reliability of WGS-based methods is dependent on the accuracy of the

underlying WGS data. This problem has been addressed previously for methods that

directly search sequencing reads to find AMR genes (37) but not for assembly-based

approaches. Low-level contamination or poor-quality sequence data can lead to inac-

curate assessments; this is a particular problem with “greedy” assemblers that will

assemble very low-coverage regions. Consensus assemblers run the risk that nearly

identical orthologous genes or low-level sequence contamination might yield an

incorrect sequence. Low-quality assemblies can also result in partial genes, making

assessment of resistance genes challenging. To increase the accuracy and reliability of
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AMR gene identification, NCBI has developed an assembler that emphasizes base

accuracy, increasing the reliability of allele identification (38).

In analyzing these data, we also encountered several issues. There are two compet-

ing, partially overlapping aminoglycoside-modifying enzyme nomenclature systems.

This makes constructing reference gene databases, as well as validating these data-

bases and their associated tools, extremely difficult. We also discovered that, in

developing the genotype-phenotype matrix, there are many alleles and genes that

have either not been characterized phenotypically at all or have only been character-

ized against a subset of antibiotics. This was a particular problem with the beta-

lactamases, where in some cases alleles were characterized phenotypically before the

advent of currently used drugs. In addition, some genes are described very broadly.

Terms such as “cephalosporin-hydrolyzing” or “aminoglycoside-modifying” do not aid

accurate prediction. While these terms can be useful when confronted with a novel

allele or gene, in that they avoid making unwarranted statements about phenotype, we

would encourage more phenotypic assessment of novel and existing genes using

well-standardized methods and quality control, such as the CLSI or EUCAST standards,

to guide WGS-based methods and increase our basic understanding of AMR. It would

also help to have more phenotypic data publicly available and linked to existing

genome sequences (https://www.ncbi.nlm.nih.gov/biosample/docs/antibiogram/).

In AMRFinder, we have adopted a protein-focused approach, as opposed to a

nucleotide-oriented approach, for several reasons. First, protein annotation and simi-

larity comparisons against both reference proteins and using HMMs with appropriate

cutoffs can aid in determining if the gene is in frame and of correct length, whereas a

nucleotide approach can miss nonsense mutations. Second, the protein sequence

encodes the AMR function. Even single-amino-acid changes can significantly alter

resistance phenotypes, and this variation should be explicitly captured. Third, there can

be discordance between nucleotide and protein sequences, leading to the misassign-

ment of alleles and thus potentially to incorrect prediction of AMR phenotypes. Note,

however, that there can be upstream mutations or chromosomal versus plasmid

location effects that interfere with gene expression, and that these types of mutations

are not being reported by AMRFinder. For example, blaKPC alleles in the context of

different Tn4401 variants are expressed at different levels (39, 40). Even when we used

both nucleotide and protein approaches and removed isolates that had genotype-

phenotype discrepancies among three or more drug classes, we still observed that 17%

of isolates had one or more discrepancies between the resistance genotype and the

observed antibiogram. In spite of the high consistency for tests against single antibi-

otics, isolates tested on multiple drugs will likely have one or more discrepancies as a

simple statistical property. For example, assuming a consistency rate of 98% for each

antibiotic, 21% of isolates tested against 12 antibiotics with a consistency of 98% would

have one or more errors. Further technical refinements will be needed to lower the

per-isolate discrepancy, if clinical prediction is a primary goal.

The tool we have described, AMRFinder, uses a combined protein BLAST and HMM

approach. BLAST can identify complete or near matches to known genes. HMMs based

on curated data, on the other hand, can identify putative resistance genes that fall

below arbitrary BLAST thresholds, enabling the recognition of novel resistance genes.

By integrating both of these methods, we are able to assign the most specific functional

name possible to the AMR protein (41).

Users of AMRFinder should note that its mission is to identify encoded proteins that

have the capacity to contribute to antimicrobial resistance. The actual resistance

phenotype conferred by the proteins AMRFinder detects for any one isolate can and

will depend on additional factors, expression levels for those proteins, and contributing

factors outside AMRFinder’s current coverage, such as porin mutations or overexpres-

sion of efflux transporters. While we demonstrated high consistency between genotype

and phenotype for a collection of four foodborne pathogens, this might not occur in

other species. For those other species, AMRFinder reports a comprehensive roster of

relevant acquired or intrinsic antimicrobial resistance proteins detected, properly iden-
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tified and given informative names, but the report should not be expected to assert

that the effects of those proteins found will be a clinical resistance phenotype.

While AMRFinder is a powerful tool for identifying acquired resistance genes, our

Campylobacter results highlight the importance of assessing the role of point muta-

tions; a version of AMRFinder that is currently under development will incorporate

point mutations that confer resistance found in the three species described in this

study. To better understand the context in which AMR genes occur, NCBI is also

developing a biocide and metal resistance database to screen for genes linked to

resistance to those compounds. The latest AMRFinder software, source code, and

databases are publicly available at https://www.ncbi.nlm.nih.gov/pathogens/

antimicrobial-resistance/AMRFinder/. While this study only examined a limited set of

foodborne pathogens, NCBI’s Pathogen Detection system facilitates the analysis of

foodborne and clinical isolates to aid outbreak and traceback investigations and uses

AMRFinder to identify AMR genes from over 200,000 clinical and environmental bac-

terial isolates (https://www.ncbi.nlm.nih.gov/pathogens/), enabling the rapid identifi-

cation of isolates with important AMR-related genotypes.

MATERIALS AND METHODS

AMR gene database. The Bacterial Antimicrobial Resistance Reference Gene Database is derived
from multiple sources, including the compilation of beta-lactamase alleles and Qnr family quinolone
resistance protein alleles compiled by the Lahey Clinic team (http://www.lahey.org/studies/ [42]),
ResFinder (23), and the Comprehensive Antimicrobial Resistance Database (CARD [25]). At the request of
the Lahey Clinic team of Karen Bush, George Jacoby, and Timothy Palzkill (https://www.lahey.org/
Studies/), NCBI has assumed responsibility for assigning and curating beta-lactamase alleles. Since
January 2016, NCBI has assigned 676 new beta-lactamase alleles, which are included in our collection of
AMR proteins. We obtained compilations of resistance genes for several classes of ribosome-targeting
antibiotics from Marilyn Roberts (personal communication) (43). We obtained collections of AMR proteins
encoded in integron regions from both the Repository of Antibiotic resistance Cassettes (RAC) (44) and
the INTEGRALL database (45). Additional sources included compilations provided by collaborating groups
such as the FDA Center for Veterinary Medicine, University of Oxford (Derrick Crook), and the Klebsiella

Sequence Typing Database at the Pasteur Institute (http://bigsdb.pasteur.fr/klebsiella/klebsiella.html). These
sources were supplemented by continuous examination of review articles and new reports of resistance
proteins.

The Reference Gene Database contains a hierarchy of AMR protein families, and sequences are stored
in NCBI’s RefSeq database (22). Each protein, and each protein family, has a curated name and gene
symbol. Gene symbols can point to more than one protein sequence, while alleles point to one unique
amino acid sequence. Multiple distinct alleles within an AMR protein family may share the same
gene symbol, but each allele designation represents exactly one unique protein translation. The proteins
are arranged in protein family hierarchies based on protein homology (all families of class A beta-
lactamase belong to a family called “class A beta-lactamase”), and on function (all classes of beta-
lactamase belong to a family called “beta-lactamase,” even though one class may lack homology to the
others). For each protein family, we inspected a multiple sequence alignment of all proteins from the
family, often with additional homologs added to help establish the correct start site. From the multiple
sequence alignment, and following inspection as needed, we assessed which collected proteins carried
frameshifts, truncations or extensions from bad start site selection, or other sequence defects. At this
stage, we also reviewed the breadth of the family, and identified any outliers whose inclusion might have
resulted from a questionable prior placement. Typically, this review of a protein family occurred as
placement in the hierarchy was finalized and as a protein profile hidden Markov model (HMM) was
constructed (see below), with customized cutoff scores, to serve as the classifier that detects members
of that protein family.

The 4,579 resistance proteins in our database as of this writing confer resistance to 34 classes of
antimicrobials and disinfectants and are encoded by over 800 gene families. All underlying nucleotide
records contain complete coding sequence and are not derived from synthetic constructs. Nucleotide
sequences were oriented with the AMR protein coding region on the positive strand, and records were
constructed, where possible, to include an additional 100 bp on either side of the coding region to assist
in the design of primers. Protein records were created as described previously (22). This collection has a
standardized nomenclature to provide maximal functional information as well as ease of bioinformatic
use, and it is found under in our Reference Gene Browser (https://www.ncbi.nlm.nih.gov/pathogens/
isolates#/refgene/) as well as in RefSeq BioProject PRJNA313047.

AMR HMM construction. The ResFams (21) library of HMMs, based on sequences taken from CARD
sequences and clustered by their CARD antibiotic resistance ontology assignments, provided important
early assistance in recognizing putative AMR proteins and resolving them into discrete families. However,
to create a hierarchical classification system for AMR proteins with sufficiently fine divisions of recognized
families and cutoff values able to distinguish AMR from non-AMR proteins while searching very large
data sets, we created, calibrated, and annotated an entirely new HMM library, available at https://ftp
.ncbi.nlm.nih.gov/hmm/NCBIfam-AMRFinder/.
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Groups of related AMR proteins with similar sequences and similar gene symbols as taken from our
various sources were aligned using MUSCLE (46) or Clustal W (47), then viewed, trimmed, and culled of
misassigned, redundant, frameshifted, or fragmentary sequences using Belvu (48). The resulting curated
multiple sequence “seed” alignments were used to construct protein profile HMMs using the HMMER3
package (http://hmmer.org/) because the improved sensitivity and selectivity of HMMs built from more
inclusive seed alignments can separate more clearly true family members from outgroup sequences. In
some cases, BLAST or HMM searches recruited additional sequences that were judged valid to add to the
seed alignments so that the scores obtained in HMM search results could more clearly separate true
family members from outgroup sequences. During HMM construction, the literature was reviewed,
molecular phylogenetic trees and search results were examined, and an informative protein name was
selected for each HMM built to represent a family of AMR proteins. Cutoffs were set individually for each
HMM through a manual process that involved confirmation of the supporting literature, benchmarking
against other AMR proteins from related families, and the background of millions of additional proteins
included in NCBI’s nonredundant protein sequence database. For the minority of multigene resistance
systems in which the two or more components are required and are expected to cooccur, such as
vancomycin resistance, the list of member proteins found by the HMM for each component provided
guidance for adjusting the cutoffs for HMMs for the remaining components. Once built, each HMM that
became a part of AMRFinder received ongoing scrutiny for its fidelity in confirming placements of AMR
proteins in our hierarchy, performing correctly against large tests built for the purpose, and assessing
AMR gene lists of thousands of genomes. NCBI’s RefSeq and Prokaryotic Gene Annotation Pipeline
(PGAP) now use these HMMs to perform consistent functional annotation of AMR proteins during
automatic annotation of bacterial genomes (22). Ongoing community feedback to the NCBI helpdesk
(pd-help@ncbi.nlm.nih.gov) in response to PGAP and RefSeq annotation of AMR proteins occurs, and is
encouraged, and this will provide continual additional review of the AMRFinder HMM collection.

Identifying acquired AMR genes. (i) Protein searches. AMRFinder-prot uses the database of AMR
gene sequences, HMMs, the hierarchical tree of AMR protein designations, and a custom rule set to
generate names and coordinates for AMR genes along with descriptions of the evidence used to identify
the sequence. Software and documentation are available at https://github.com/ncbi/amr and https://
www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/AMRFinder/. Genes are reported with the fol-
lowing procedure after both HMMER and BLASTP searches are run (Fig. 5).

(ii) BLASTP matches. In AMRFinder, BLASTP (49, 50) is run with the options “-task blastp-fast
-word_size 6 -threshold 21 -evalue 1e-20 -comp_based_stats 0” against the AMR gene database
described above. Exact BLAST matches over the full length of the reference protein are reported. If there
is no exact match, then the following rules are applied. Matches with �90% identity or with �50%
coverage of the protein are dropped. If the hit is to a fusion protein then at least 90% of the protein must
be covered. A BLAST match to a reference protein is removed if it is covered by another BLAST match
which has more identical residues or the same number of identical residues, but to a longer reference
protein. A single match is chosen as the best of what remains sorting by the following criteria, in order:
(i) if it is exact; (ii) has more identical residues; (ii) hits a shorter protein; or (iv) the gene symbol comes
first in alphabetical order.

(iii) HMM matches. HMMER version 3.1b2 (http://hmmer.org/) is run using the options “-cut_tc -Z
10000” with the HMM database described above. HMM matches with a full_score of �TC1 or a
domain_score of �TC2 are dropped. All HMMmatches to HMMs for parent nodes of other HMMmatches
in the hierarchy are removed. The match(es) with the highest full score are kept. If there is an exact BLAST
match or the family of the BLAST match reference protein is a descendant of the family of the HMM then
the information for the nearest HMM node to the BLAST match are returned.

(iv) Translated DNA searches. Translated alignments using BLASTX of the assembly against the AMR
protein database were used to help identify partial, split, or unannotated AMR proteins using the options
“-task tblastn-fast -word_size 3 -evalue 1e-20 -seg no -comp_based_stats 0.” The algorithm for selecting
hits is as described above for proteins, but note that HMM searches are not performed against the
unannotated assembly.

(v) Nucleotide searches. Nucleotide-nucleotide BLAST searches were also performed for evaluation
purposes, although this is not built into AMRFinder. We collected the nucleotide sequences for all
proteins in GenBank with sequences identical to those in the AMR database. The genome assembly for
each isolate was masked at locations identified as AMR genes by AMRFinder before aligning the
remainder against the nucleotide sequences we collected above. Hits were combined to determine
coverage of the reference protein, and all 7 hits with more than 50% length and more than 90%
sequence similarity to a reference sequence were selected for analysis.

(vi) Reporting possibly nonfunctional protein sequences. No purely bioinformatic method can
perfectly differentiate between functional and nonfunctional sequences. In the interests of sensitivity and
possible epidemiological utility, AMRFinder may report hits that might be functional, but for each
reported hit, AMRFinder provides sufficient information to assess the functionality of the protein. This
information includes the percent identity of the matching sequence, the proportion of the reference
sequence that is covered by the match, the actual hit length, the reference protein length, and the HMM
matched when an HMM hit is found. Because frameshift or nonsense mutations may cause a misleadingly
high identity sequence to be detected by translated blast, AMRFinder appends “[stop]” to the protein
name for sequences where an early stop codon was detected.

Samples. The 6,242 isolates used in this study are from various NARMS projects (51) and include 294
Campylobacter coli, 476 Campylobacter jejuni, 47 Escherichia coli, and 5,425 Salmonella enterica isolates.
Sources for these isolates include human clinical S. enterica isolates from 2014 that were resistant to at
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least one antibiotic, NARMS food animal cecal testing projects, food adulterant isolates that include
Shiga-toxin producing E. coli, and routine NARMS retail meat surveillance.

There were a small number of isolates whose excessive differences between MIC tests and predic-
tions of resistance suggested artifacts from resistance gene loss, sample swaps, testing errors, mixed
cultures, or other confounding factors. We eliminated isolates where resistance calls differed from the
gene-based prediction for all tested members of three or more drug classes defined as aminoglycosides,

FIG 5 Schematic representation of the AMRFinder algorithm for (a) searching protein sequences and (b) searching
nucleotide sequences.
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beta-lactams, lincosamides, ketolides, macrolides, phenicols, quinolones, sulfonamides, tetracyclines, and
trimethoprim-sulfamethoxazole. This filter removed 38 isolates from the analyses (0.6%, Fig. 1).

Genome assembly and annotation. Illumina whole-genome shotgun reads were assembled using
SPAdes v.3.5.0 using the default parameters (52). To be included in the study we required the isolate
assemblies constructed for this study to meet the following criteria: (i) one and only one species-
appropriate, full-length, gyrA gene; (ii) �100 kb of the assembly in contigs covered by �10% of the
genome-wide average coverage; (iii) �8 Mb in size; (iv) sufficient sequence for �20-fold genome
coverage; and (v) NCBI species average nucleotide identity (ANI) matched (Fig. 1; see also reference 53).
To calculate coverage, reads for each isolate were aligned back to the assembly with Burrows-Wheeler
Aligner (BWA) version 0.7.10-r789 using the MEM algorithm and default parameters (54). SAMtools
version 1.3.1 was then used to convert alignments to read depths for each base (55). Genomes were
annotated using NCBI’s PGAP version 2.0 pipeline (22, 56). For 540 isolates, we used genome assemblies
already deposited in GenBank that met the quality thresholds for the SPAdes assemblies (Table S1).

Contig filtering. Using the genome-wide and per-contig average read depth data calculated as
described above, AMR genes identified were filtered and removed from analysis if the read depth of the
contig containing a given AMR gene was �1/10 of the average per-base read depth for the entire
assembly.

Combining results. First, redundant equal-scoring hits to the same protein or identical location on
the assembly were removed. To remove redundant detection of the same protein between translated
and protein searches, translated AMRFinder hits that overlapped over more than 75% of their length with
protein AMRFinder hits were removed as duplicates; we observed that a wide range of cutoffs yielded
the same result (data not shown). Finally, nucleotide BLAST hits that overlapped over more than 75% of
their length with either AMRFinder-prot or translated BLAST hits were removed as duplicates. A total of
14,984 (98.19%) AMR genes were identified by the annotation-based protein AMRFinder, while 268
(1.77%) were identified by translated DNA BLAST. The remaining 7 hits (0.046%) were partial proteins
identified only by nucleotide BLAST.

Identifying point mutations. Point mutations in three structural genes that confer resistance in C.

coli and C. jejuni, namely, gyrA, 50S ribosomal protein L22, and 23S rRNA, were examined (12). We
identified putative resistance mutations by blasting the protein or nucleotide sequences against the
listed accessions and predicted resistance based on the presence of the listed known resistance alleles
at any of the listed offsets. The gene gyrA was screened (GenBank accession numbers AJW58405.1 and
YP_002344422.1) for the mutations T86I, T86K, T86V, D90N, D90Y, P104S, and C257T, which predict
resistance to quinolones. For the 50S ribosomal protein L22 (GenBank accession numbers AJW59082.1
and YP_002345068.1), we predicted resistance to macrolides due to changes at positions A84D, G86E,
G86V, A88E, and A103V. The 23S rRNA (GenBank accession number CP011015.1) was screened for those
C. jejuni 23S mutations, A2074C, A2074G, A2074T, A2075G, and C2627A, which were expected to confer
resistance to macrolides as defined either by CLSI or NARMS breakpoints in Table S2 (57–59). To assess
if ciprofloxacin resistance in S. enterica could be attributed to point mutations, we screened gyrA

(GenBank accession number WP_001281271.1; A67P, D72G, V73I, G81C/S/H/D, D82G/N, S83Y/F/A, D87N/
G/Y/K, S97P, L98V, A119S/E/V, A131G, and E139A), gyrB (accession number WP_000072047.1; Y421C,
R438L, S464Y/F, and E466D), parC (accession number WP_001281910.1; T66I, G78D, S80R/I, and E84K/G),
and parE (accession number WP_000195318.1; M438I, E454G, S458P, V461G, H462Y, A499T, V514G, and
V521F) for mutations expected to confer resistance (60–63).

Correlation of antimicrobial susceptibility phenotypes with resistance gene content. After all
resistance genes were identified, isolates exhibiting phenotypic resistance were correlated with the
predicted phenotype based on presence or absence of resistance genes or point mutations for each
antibiotic (see Table S4 for predictions). Predicted phenotypes were scored as either resistant (R) or
susceptible (S), with the presence of one or more resistance-conferring genes yielding a prediction of R.
These were compared to the gold-standard observed phenotypic results, with observed susceptibility
results of intermediate (I) treated as S, with the exception of ciprofloxacin in S. enterica, for which I values
were treated as resistant, since previous work has indicated that one or more resistance genes or point
mutations are associated with an intermediate susceptibility phenotype (64, 65).

AMRFinder-ResFinder comparisons. AMRFinder uses BLAST to search protein sequences derived
from resistance genes, either against a set of annotated proteins or a nucleotide sequence, while
ResFinder uses a nucleotide database, and uses BLAST to search that database against a nucleotide
sequence (e.g., a bacterial genome). In addition, ResFinder reports the “highest-scoring” hit, even if the
underlying sequence does not support such a precise claim (e.g., calling a novel OXA allele “OXA-61”),
while the hierarchical gene structure of AMRFinder will attempt to identify an appropriate gene name
that does not provide an incorrect or overly precise name. To compare the output of AMRFinder to that
of ResFinder, we first determined if these two methods called AMR genes at nearly identical coordinates
on the same genome (the absolute difference in lengths could be no more than 40 bp). We used
ResFinder 2.0 installed locally and run on the same assemblies analyzed with AMRFinder, with the
database downloaded on 15 November 2017, and compared it with AMRFinder with the database locked
on 2 February 2017. For ResFinder, the default settings of 90% nucleotide similarity and a 60% minimum
length were used. The particular version of the AMRFinder gene database used in this study can be found
at ftp://ftp.ncbi.nlm.nih.gov/pathogen/Technical/AMRFinder_technical/feldgard_et_al_2018_amrdb.tar
.gz. AMRFinder parameters used include a 90% nucleotide similarity and 50% minimum length for
matching, and 40 disinfectant, bleomycin, and streptothricin resistance genes were included in
AMRFinder that were not in ResFinder 2.0. This allowed us to identify instances when the same gene
occurred multiple times in a genome in instances where one copy was missed or misidentified by either
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method. We then compared gene symbols produced by each method. Where gene symbols did not
agree, we assigned them to one of four categories, as follows. (i) synonyms were cases where the
identical protein was called by both methods, but the name differed [e.g., many aminoglycoside-
modifying enzymes, such as strA and aph(3�)-Ib]. (ii) Underspecified calls occurred when the protein was
100% identical to a known, named protein, but one method did not describe it with sufficient resolution
(e.g., blaTEM-1 was miscalled as blaTEM). (iii) Overspecified calls were cases where the correct name was a
less specific gene symbol, when the method provided an overspecified symbol (e.g., a novel blaTEM family
allele was miscalled as blaTEM-1). (iv) Incorrect calls occurred when an incorrect gene symbol was ascribed
to a protein (e.g., blaOXA-193 was miscalled as blaOXA-61).

Antimicrobial susceptibility testing. MICs were measured using the Sensititre system and suscep-
tibility panels designed specifically for NARMS surveillance (66). E. coli and S. enterica isolates were tested
for susceptibility to amoxicillin-clavulanic acid, ampicillin, azithromycin, cefoxitin, ceftriaxone, chloram-
phenicol, ciprofloxacin, trimethoprim-sulfamethoxazole, gentamicin, nalidixic acid, streptomycin, sul-
fisoxazole, and tetracycline; some Salmonella isolates were screened against amikacin, ceftiofur, kana-
mycin, and meropenem, depending on the composition of the NARMS panel at the time of testing.
Campylobacter spp. were screened for susceptibility to azithromycin, ciprofloxacin, clindamycin, eryth-
romycin, florfenicol, gentamicin, nalidixic acid, telithromycin, and tetracycline.

The breakpoints used for susceptibility testing were CLSI breakpoints. For antibiotics that lack CLSI
breakpoints, breakpoints established by the NARMS Working Group were used (Tables S2 and S3).

Data availability. Isolates described here are listed in Table S1 and are deposited in the Sequence
Read Archive or were independently assembled and submitted to GenBank prior to the start of the
analysis.
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