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Abstract

A reliable prediction of two-phase flow through porous media requires the development

and validation of models for flow across multiple length scales. The generalized network

model is a step towards efficient and accurate upscaling of flow from the pore to the core

scale. This paper presents a validation of the generalized network model using micro-CT

images of two-phase flow experiments on a pore-by-pore basis. Three experimental secondary

imbibition datasets are studied for both sandstone and carbonate rock samples. We first present

a quantification of uncertainties in the experimental measurements. Then, we show that the

model can reproduce the experimental fluid occupancies and saturations with a good accuracy,

which in some cases is comparable with the similarity between repeat experiments. However,

high-resolution images need to be acquired to characterize the pore geometry for modelling,

while the results are sensitive to the initial condition at the end of primary drainage. The

results provide a methodology for improving our physical models using large experimental

datasets which, at the pore scale, can be generated using micro-CT imaging of multiphase

flow.

Keywords Generalized network model · Validation · Micro-CT image · Two-phase flow ·

Pore scale

1 Introduction

Predicting flow properties of porous media—for instance, relative permeability and capillary

pressures under different displacement paths, wettability and flow rates—is essential in the

study of subsurface flow processes. Field-scale observations and experimental measurements

at smaller scales provide a significant insight into the physical processes on their own (Andrew

et al. 2014; Berg et al. 2016; Bultreys et al. 2016; Gao et al. 2017; Pak et al. 2015; Lin
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et al. 2017; Roman et al. 2016; Rücker et al. 2019; Singh et al. 2017). However, in most

cases the full picture can only be revealed by using mathematical/computational models

to reproduce these observations (Akai et al. 2019; Berg et al. 2016; Bultreys et al. 2018).

Another challenge in field observations and experimental measurements is that they are often

costly and time-consuming. Therefore, complementing experimental measurements with

reliable computational models, and continuous evaluation and improvement of these models

is essential in their evolution towards more predictive tools for optimizing the processes

involved.

For centimetre- to metre-sized rock samples, especially in carbonates that have pores of

very different radii, a hierarchy of simulations at different scales needs to be used. This

involves running several flow simulations at different length scales to obtain the parameters

needed for the larger-scale simulations; this includes nm to µm, µm to mm, mm to cm and

cm to block upscaling. Here, nm, µm, mm, cm stand for domain sizes in the order of several

nanometres, micrometres, millimetres and centimetres, respectively, and block stands for the

block sizes used in reservoir simulation models. These models need to be validated, and in

most cases calibrated, against different data sources, for instance experimental or high-fidelity

simulation data, to improve the flow of information—model inputs and outputs—from the

sub-pore to field-scale models of multiphase flow.

Different numerical methods have been developed to study two-phase flow across these

length scales, from molecular simulations studying flow at the nm scale, to reservoir simula-

tion models that incorporate the results of cm to block upscaling and predict the field-scale

behaviour of flow (Meakin and Tartakovsky 2009). Direct pore-scale numerical methods

such as finite volume and lattice Boltzmann methods have been widely used to obtain the

flow properties of different pore structures (Armstrong et al. 2016; Frank et al. 2018; Shams

et al. 2018; Tahmasebi et al. 2017; Xie et al. 2017), and even to obtain the flow properties of

core samples few millimetres across (Arrufat et al. 2014; Raeini et al. 2014; Ramstad et al.

2012) at the expense of a higher computational cost or lower accuracy. For instance, fluid

layers cannot be resolved accurately for typical resolutions used to make direct simulations

practical on sufficiently large samples. Additionally, due to capillary time-step constraints

(Denner and van Wachem 2015), the computational cost of direct simulations grows rapidly

when lowering the capillary number towards the capillary dominated flow regime. Pore net-

work models, on the other hand, take the flow properties of single pore and throats as an

input and can model flow efficiently over cm-scale samples and at low capillary numbers

typical of subsurface processes. The higher computational efficiency of pore network models

makes it possible to run sensitivity studies for various parameters (for the effects of wetta-

bility, viscosity, flow rate, spatial or temporal variations in rock properties and for different

displacement scenarios, for instance) that are important in two-phase flow through porous

media. However, since a coarse discretization is used to describe the void space and different

approximations are used during flow simulations, rigorous validation studies are needed to

asses and improve the accuracy of pore network models.

A significant degree of uncertainty is involved in this upscaling practice, due to measure-

ment and modelling errors as well as the inherent sensitivity of flow to perturbations in the

initial and boundary conditions and to small changes in fluid and rock properties, for instance.

Therefore, the validation and calibration of these models requires, respectively, quantifying

and minimizing the mismatches between the model predictions and experimental data at

different scales and on large datasets. Examples of such data, for the case of pore network

models, for µm to mm upscaling, are repeated (Andrew et al. 2014) and four-dimensional

(space-time domain) images of multiphase flow through mm-sized rock samples (Berg et al.
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2016; Gao et al. 2017; Singh et al. 2017), and micro-model experiments (Lenormand et al.

1988; Yang et al. 2017).

An alternative approach is to validate the numerical model by comparing its predictions

with an alternative higher-fidelity model (Durlofsky 1991; Raeini et al. 2018; Tchelepi et al.

2007; Xiao et al. 2017). Direct finite volume or lattice Boltzmann simulations can be con-

sidered as the higher-fidelity model for validating pore network models. In this approach,

both models can have exactly the same input. Therefore, there would be no uncertainty due

to model inputs in the validation workflow. Nevertheless, direct simulations, in turn, need

to be validated using analytical solutions (Shams et al. 2017), experimental data on micro-

models (Chapman et al. 2013) and rock samples (Akai et al. 2019), to quantify and minimize

numerical errors. Such numerical validations are important for understanding the physics

and contributing factors that control flow at the sub-pore scale.

Earlier network models focused on reproducing only upscaled properties, such as relative

permeability, capillary pressure and resistivity index (Aghaei and Piri 2015; Øren et al. 1998;

Ruspini et al. 2017; Valvatne and Blunt 2004). However, network models have free parame-

ters; for instance, the input contact angle is not well constrained in most cases. Moreover, the

experimental relative permeabilities themselves are sensitive to flow conditions (Reynolds

et al. 2014) and rock heterogeneity. Therefore, a prediction of upscaled properties for few

particular rock types is not sufficient for examining the reliability of pore network models

(Bondino et al. 2013; Idowu et al. 2013) and validations using richer datasets are needed.

Pore-by-pore validations of the network models, using direct simulations (Raeini et al. 2018;

Varloteaux et al. 2013), multidimensional experimental data obtained from micro-CT imag-

ing (Bultreys et al. 2018) or micro-model studies (Yang et al. 2017), can be considered as

major steps towards reliable models of two-phase flow through porous media.

The generalized network flow simulator used in this paper has been validated using direct

simulations on synthetic geometries (Raeini et al. 2017, 2018) as well as through comparison

with experimental core-scale relative permeability (Raeini et al. 2018). The aim of this paper

is to validate this model on a pore-by-pore basis using the multidimensional datasets obtained

from micro-CT scans of two-phase flow experiments. We first quantify the pore-scale uncer-

tainty in experimental measurements using repeated two-phase flow micro-CT experiments

by Andrew et al. (2014). Then, we evaluate the generalized network model’s predictive capa-

bility using (1) micro-CT images of two-phase unsteady-state displacement by Andrew et al.

(2014), (2) micro-CT images of dynamics of two-phase flow by Singh et al. (2017), and

(3) micro-CT images of two-phase flow at different fractional flows during steady-state dis-

placement by Gao et al. (2017). We investigate the accuracy of the model in predicting fluid

occupancies at pore and throat centres as well as in computing pore saturations.

2 Workflow

The aim of this study is to establish the workflow for evaluating and improving the network

model prediction of local flow parameters, such as fluid occupancy, saturation and conduc-

tivity, using experimental micro-CT measurements. Here, we use pores and throats as the

elements of the network model used in the validation to quantify and compare the local

experimental and model occupancies and saturations. Pores represent the wide regions of the

void space, while throats are restrictions, defined by a topological analysis of the pore space

using the distance map, the distance of each void voxel in an image to the nearest solid. A

pore centre is a local maximum in the distance map. A throat surface is where the distance
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map increases on either side towards two distinct pore centres. Throat centres are the local

maxima of the distance map on the throat surfaces. In the generalized network model, every

voxel in an image is assigned to a unique pore and throat (Raeini et al. 2017). This allows us

to compute the pore saturations (volume fraction of fluids in each pore) from an experimen-

tally obtained image of fluids in the void space. Furthermore, the fluid occupancy of each

pore and throat centre is quantified using an indicator function (α); if the fluid at a pore or

throat centre is the non-wetting phase, we set α = 1; otherwise, α = 0. This definition of

fluid occupancy is a single point or single voxel measure, determined by the fluid occupancy

of the voxel nearest to the pore or throat centre. In contrast, the fluid saturation of a pore

measures an average value for the fraction of its voxels occupied by a fluid phase; it can

take any value in the range So ∈ [0, 1], where So denotes the non-wetting phase saturation.

Computing other flow properties such as fluid conductivity or interface curvatures from the

experimental micro-CT images requires high-resolution images of fluid phases, which can

be used as input to direct single- or two-phase flow simulations, and will be considered in

future work.

2.1 Network FlowModel

The generalized network extraction (Raeini et al. 2017) serves as a discretization of the void

space into pore bodies and further into sub-elements called half-throat connections. Each half-

throat is parameterized using its corner sub-elements. Corner half angles, cross-sectional

areas and volumes are obtained directly from the analysis of the underlying image. Flow

conductivities are calculated from an upscaling of Navier–Stokes equations solved directly

on the segmented micro-CT image so that the network can reproduce the permeability of the

underlying image accurately.

The generalized network flow model (Raeini et al. 2018) simulates capillary dominated

two-phase flow through the extracted network assuming quasi-static displacement. It has

two main components: (a) modelling displacement of fluid phases by tracking the interfaces

between them and (b) computing flow and electrical conductivity in each network element

and upscaling them to obtain the network macroscopic flow properties. To simulate two-phase

flow for different flooding cycles, the capillary pressure at the inlet side of the network is

changed in small steps and the location of fluid interfaces is updated assuming local capillary

equilibrium in each pore and throat:

Pc = Po − Pw = σκ, (1)

where κ is the interface curvature, computed based on MS-P theory (Mayer and Stowe 1965;

Princen 1969), as discussed in detail in Raeini et al. (2018). The locations of fluid–fluid–

solid contact lines are recorded and tracked as fluid interfaces pass through pore or throat

centres or meet each other leading to snap-off or layer collapse. Once the saturation of the

network has changed sufficiently (by 1% in this paper), the conductivity of fluids in each

corner is computed and averaged to obtain a flow conductivity for each throat. Finally, a

viscous pressure drop is applied between the inlet and outlet sides of the network to obtain

the fluid phase (α) pressures at each pore and the flow rates in each throat, t , by solving for

mass balance on each pore, p:

∑

t∈p

qα
t = 0, (2)

qt = g
q
t (Φadj − Φp), (3)

123



Validating the Generalized Pore Network Model Using Micro-CT… 409

where qt is the total flow rate passing through the throat, g
q
t is the throat conductivity, and

Φadj −Φp is the viscous pressure drop between the pore and its adjacent pore on the opposite

side of the throat. Despite the approximate nature of this equation, it does not affect the

results presented in this paper significantly, since the viscous pressure drop can be considered

negligible compared to interfacial forces when modelling pore-scale displacement events at

low capillary numbers. The upscaled relative permeability (kr) of the network is then obtained

using Darcy’s law, from the total flow rate (Q) of each phase passing through the inlet or

outlet throats:

Q =
K kr A

µL
(Φinlet − Φoutlet), (4)

where µ is the fluid viscosity, K is the single-phase permeability of the sample, A is its total

cross-sectional area, L is its length, and Φinlet − Φoutlet is the applied pressure drop along

the sample.

Here, we validate the network predictions of fluid occupancy and saturation, which are con-

trolled by the accuracy of computed interface locations and the order of computed threshold

curvatures for different displacement events. For simplicity, we assume capillary dominated

displacement: we use an interfacial tension of σ = 0.03 N/m, and apply a viscous pressure

drop of 1 Pa in all our simulations which can be considered negligible compared to typical

threshold capillary pressures. The computed interface curvatures depend on input contact

angles and the approximations made to describe the geometry (corner angles, areas and

inscribed radii) of the network elements, as discussed in Raeini et al. (2018). Therefore, any

discrepancy between the predicted fluid distributions and their experimentally imaged coun-

terparts reflects the accuracy of interface tracking in the flow model as well as discrepancies

in the representation of these input fluid and rock properties.

2.2 Experimental Data

We use the micro-CT data generated by Andrew et al. (2014), Singh et al. (2017) and Gao

et al. (2017) to validate the generalized network model. Table 1 shows an overview of these

experimental data.

The experiments by Andrew et al. (2014) were performed by injecting CO2 into small

core samples fully saturated with pre-equilibrated brine to establish an initial condition after

primary drainage. The imbibition cycle was performed in the reverse direction to flush the

CO2 out, while maintaining a low capillary number, to reach the residual CO2 saturation. The

drainage and the imbibition experiments were repeated five times, and a micro-CT image

was taken at the end the first drainage and after all imbibition experiments.

The dynamic experiment by Singh et al. (2017) was performed using an oil–water fluid

pair, by first injecting oil into the sample (primary drainage) followed by water injection

in the opposite direction at a very low flow rate (capillary number of 1.26 × 10−9). Here,

the fluid configuration was imaged at the pore scale with a time resolution of approximately

1 min, which allows the pore-by-pore filling sequence to be determined. The experimental

images were obtained for both drainage and imbibition; here, we primarily study the imbi-

bition process. Overall, 416 micro-CT images were taken during the imbibition experiment.

In addition to the fluid occupancy, the higher image resolution allows us to calculate the

mismatch in saturation on a pore-by-pore basis. Even if the occupancy is correct, we may

place an erroneous volume of wetting phase in the corners of the pore space in our model.

A similar experiment as in Gao et al. (2017) on a Bentheimer sandstone was performed

by the same authors specifically for use in pore network modelling and validation (Bultreys
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Table 1 A summary of the images and network properties used in our validation, including number (N ) of
scans taken during imbibition experiments, length, diameter, voxel size, porosity (φ) and the number of pores
and throats of the extracted networks

Bentheimer
(Andrew et al. 2014)

Bentheimer
(Gao et al. 2017)

Ketton (Andrew
et al. 2014)

Ketton (Singh
et al. 2017)

Nscans 5 6 5 417

Diameter 6.3 mm 6.1 mm 4.5 mm 3.8 mm

Length 19.7 mm 5.1 mm 14.2 mm 3.3 mm

Voxel size 6.3 µm 3.58 µm 4.5 µm 3.28 µm

Npores 66,520 32,306 26,891 6158

Nthroats 116,128 74,567 40,664 11,558

φ (visible) 0.151 0.194 0.133 0.118

S̄oi 0.552 0.612 0.495 0.452

S̄or 0.348 ± 0.026 0.472 0.298 ± 0.011 0.167

The average saturations at the beginning (S̄oi ) and end (S̄or ) of water-injection experiments are also presented
as fractions of the visible pore space in the images. The micro-CT images at the end of repeated imbibition
experiments by Andrew et al. (2014) are used to compute the standard deviation (± symbols) in the trapped
non-wetting phase saturation, S̄or

et al. 2018) with high-quality dry and multiphase images to accurately quantify the pore

geometry, fluid occupancy and saturation. The experiments were performed by increasing

the fractional flow of water, in several steps, and waiting for the pressure drop to be stabilized.

The micro-CT images were acquired at fractional flow rates of fw = 0, 0.15, 0.3, 0.70, 0.85

and 1. The capillary number in these experiments was sufficiently low (capillary number of

3.8 × 10−7) that the oil and water were observed to flow in fixed pathways at each fractional

flow (Gao et al. 2017). This suggests that a quasi-static network model can be considered as

a good approximation to the flow process. However, we cannot model the exact boundary

conditions, since the inlet arrangement of the oil and water was not imaged.

2.3 Mismatch Indicators

To validate the model, we compute and report a series of mismatch indicators between

the flow properties, here fluid occupancy and saturation, of the network model and their

experimentally obtained counterparts. The experimental micro-CT images were mapped onto

pore network elements. This allows us to efficiently compute the mismatch between pairs of

pore or throat data for large four-dimensional datasets; Fig. 1 illustrates this workflow using

a 3D visualization of the difference between a set of experimental data by Gao et al. (2017)

and a network model simulation.

We use the mean difference, MD, and the mean absolute difference, M |D| as intuitive

measures of mismatch between experimental data and model predictions. For any two-phase

flow parameter (ψ), such as fluid occupancy (ψ = α) or saturation (ψ = So) of pores and

throats, the mean difference and mean absolute difference between any two datasets (a and

b) are defined as:

M D(ψ) =

∑n
i=1 wi (ψ

a
i − ψb

i )
∑n

i=1 wi

= ψa − ψb, (5)
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Fig. 1 Visualization of fluid occupancies at pore centres (connected by throat lines). Left column shows the
experimental results by Gao et al. (2017), at water fractional flows of: fw = 0, 0.7 and 1. The middle column
shows a generalized network flow simulation using a contact angle of 45◦, and the right column shows the
difference between the model and the experiment at each pore and throat centre

M |D(ψ)| =

∑n
i=1 wi |ψ

a
i − ψb

i |
∑n

i=1 wi

. (6)

The term wi is a weighting factor which is chosen to be the volume of each pore and throat

(subscript i). The pore volumes are the sum of the volume of the voxels associated with the

pore, bounded by its throat surfaces. Similarly, the throat volume is obtained by counting the

voxels in its corner elements, located on either side of the throat surface and extended up

to the adjacent pore centres; see Raeini et al. (2017). When computing the mismatches for
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Fig. 2 Uncertainties in experimental pore and throat centre fluid occupancy presented in terms of the mean
difference (bottom left side of each plot) and the mean absolute difference (top right side of each plot) between
pairs of the repeated imbibition experiments by Andrew et al. (2014)

fluid occupancies, we perform the summation on both pores and throats, while the saturation

discrepancies are computed using the pore saturations.

As Eq. 5 shows, the mean difference, MD, can be viewed as the difference between

the average or upscaled values of the experimental or simulated data. The values in the

summation of this indicator can cancel each other, and the result represents the mismatch in

a single upscaled property (which can be the average experimental and model saturation for

instance). On the other hand, the mean absolute difference (M |D|) is the normalized sum of

all the pore-by-pore discrepancies.

The rock samples used in this study all have cylindrical shapes. When computing the

mismatch indicators, we exclude the pores and throats within 10% of the sample length from

the inlet and outlet sides of the network, and within 10% of the sample radius from the

circumference of the network. These pores are excluded to reduce boundary effects on the

mismatch indicators.

3 Uncertainty in Pore-Scale Experimental Data

In Fig. 2, we present a summary of the mismatch indicators between pairs of the repeated

experiments on a Bentheimer sandstone and a Ketton carbonate, which are the most repro-

ducible out of the five rock samples studied in Andrew et al. (2014).

The results in Fig. 2 show that the average fluid saturations and occupancies are fairly

consistent between repeated experiments. The standard deviations in average fluid occupancy

of the five images at the end of imbibition experiments are 0.03 and 0.012 for Bentheimer

and Ketton, respectively. Similarly, the magnitude of mean differences between fluid occu-

pancy, M D(α), of pairs of experiments is 3.3% and 1.5%. The variations in average residual

saturations are in the same order too; see Table 1.

The pore-by-pore uncertainty in the fluid occupancy, presented in terms of the mean

absolute difference between each two experiments, M |D(α)|, is in the range of 5.6–13.2%

(average 9.8%) for Bentheimer sandstone, and in the range 11.2–17.7% (average 15.4%) for

Ketton carbonate. The differences in the uncertainties obtained for the two rock types can
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be either due to the differences in Soi (see Table 1) of the experiments, or due to differences

in the wettability and pore geometry of the two samples and requires further investigation.

Another observation is that although all experiments start from a fully water-saturated initial

condition, the experiments that are closer repeat cycles (the near diagonal entries in Fig. 2)

tend to have a lower M |D| compared to those further apart. This indicates that there could

be small but permanent changes in the sample properties that accumulate as the experiments

are repeated. It is challenging to reproduce such trend using our model as it is difficult to

quantify its underlying cause, considering the finite resolution of the micro-CT images.

Overall, the results presented in this section show the importance of the repeated exper-

iments in quantifying the uncertainties in experimental measurements. In addition, these

results show the best possible match with a single experiment that we can aim to obtain using

our model, without using the experimental results to constrain the model inputs.

4 Validation UsingMicro-CT Images of Two-Phase Flow

Here, we compare the generalized network model predictions with the unsteady-state two-

phase micro-CT experiments by Andrew et al. (2014), Singh et al. (2017) and the steady-state

experiments by Gao et al. (2017).

Our network model simulations mimicked the unsteady-state experiments. We first ran

a primary-drainage simulation to obtain the initial condition for the subsequent imbibition

simulation. The drainage simulation was stopped when MD(α) = 0, between the model and

the experimental image at the end of drainage. Although this implies that the total volume

of the pores and throats whose centres are filled by each phase in the model are roughly the

same as in the experiment, the individual pore-by-pore occupancies do not match exactly.

The pore-by-pore discrepancies were estimated using the mean absolute difference (M |D|,

Eq. 5), as an indicator for the accuracy of the model in reproducing the drainage experiment.

We studied the effect of contact angle by performing sensitivity analyses on how these

mismatch indicators changed when varying the input contact angle during the subsequent

imbibition simulations. Furthermore, the contact angle sensitivity study was repeated for

different drainage end points, to study the effect of the mismatch at the beginning of imbibition

on the model–experiment discrepancies introduced during imbibition.

4.1 Repeated Unsteady-State Experiments

First, we compare network model predictions with the repeated experiments by Andrew

et al. (2014), discussed in the previous section. The generalized network extraction requires

a high-resolution image for accurate parameterization of network elements (Raeini et al.

2018). Although the location of the CO2, hence the fluid occupancy, can be identified clearly

using these images, dry scans of the void space were not taken prior to the experiments. To

obtain an image of the void space, we averaged the drainage and the five imbibition images

to obtain an image with sufficient contrast between the pore space and the solid phase. We

used these images to evaluate the network model predictive capability when dealing with

low image resolution during network extraction. A set of comparisons between experiments

and network models extracted from higher-resolution dry images (Table 1) are presented in

the following sections.

Figure 3 shows the mean absolute difference between pairs of experimental and simulated

pore and throat fluid occupancies for the experiments on Bentheimer and Ketton by Andrew
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Fig. 3 A comparison between uncertainties in experimental fluid occupancy (Fig. 2) and flow simulations
on a generalized network extracted from low-resolution void space images. At the beginning of Bentheimer
imbibition simulation (end of primary drainage), the mismatch is M |D(α)| = 30% and increases by roughly
2% during imbibition. The initial mismatch is 20% for Ketton and increases by roughly 14% by the end of
imbibition

Fig. 4 Effect of contact angle on the average of the discrepancies in fluid occupancy between the model and
the repeated imbibition experiments by Andrew et al. (2014), for the Bentheimer (left) and Ketton (right)
experiments. The circles have areas proportional to the average of pore-by-pore discrepancies, M |D|, for each
simulation, and are coloured by the mismatch in average occupancy, MD(α)

et al. (2014). The results were obtained from simulations with a uniform input contact angle

of θ1 = 15◦, which produced the best match for both images; see Fig. 4 for a sensitivity study

on the effect of contact angle on the average discrepancy between the experiments and the

model.

The initial mismatch, at the beginning of imbibition simulation (the end of primary

drainage), is M |D(α)| = 30% for Bentheimer and increases by roughly 2% during imbi-

bition. The initial mismatch is 20% for Ketton and increases by 14% during the imbibition

simulation presented in Fig. 3. Figure 4 shows that the difference between the results for dif-

ferent contact angles is less than 4% for contact angles less than 50◦. The overall mismatch

is about 20% higher than the average mismatch between pairs of experimental data. The

discrepancies could be due to the poor image quality, or due to errors in the representation
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Fig. 5 A comparison between the Ketton experiment (Singh et al. 2017) at the beginning of imbibition (end of
drainage) and different steps during the drainage simulation, as a function of average network saturation. As a
base case in our sensitivity studies, the end of drainage was chosen at a initial water saturation of Swi = 0.45.
where the network has the same average occupancy as the experiment, MD(α) = 0

of displacement in the model. To test if the former is the origin of the larger mismatch, a

set of comparisons between network model predictions and experiments for which higher-

resolution dry scans are available are presented in the following sections.

4.2 Unsteady-State Experiments on Ketton Carbonate

This section compares network model predictions with the dynamic oil-brine experiment on

the Ketton sample by Singh et al. (2017); see Table 1.

4.2.1 Drainage Simulation

To find the initial condition for imbibition simulations, we first ran a drainage simulation with

receding contact angles of zero. Figure 5 shows how different mismatch criteria, between

different simulation steps and the image at beginning of the imbibition experiment, change

during the drainage simulation.

Figure 5 shows that the drainage simulation with a saturation of Sw = 0.45 has the same

average occupancy as the experiment at the beginning of imbibition; this was chosen as the

stopping criterion for drainage to obtain the initial condition for the imbibition simulations

presented in the next section. At this saturation, although the network has the same total

volume of pores and throats filled with each phase as in the experiment, the individual

occupancies do not match exactly on a pore-by-pore basis. Other discrepancies at the network

saturation of Sw = 0.45 (at MD(α) = 0) are: MD(So) = 5%, M |D(α)| = 15% and

M |D(So)| = 17%. These discrepancies are expected to affect the subsequent imbibition

simulations which are studied in the following section.

We chose the average occupancy match for selecting the imbibition initial condition

because it only reflects the errors in the computed entry pressures, which determine the order

of filling events. Nevertheless, the entry pressures themselves can be affected by approx-

imation errors during flow simulations as well as the uncertainties arising from the void

space segmentation and contact angle variations that are not known in detail. We expect the
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Fig. 6 Effect of contact angle on the mismatch between experimental and model fluid occupancy, M|D(α)|,
and saturation, M|D(So)|, for water imbibition into Ketton carbonate. A uniform contact angle of θi = θ1 was
used for all pores and throats. The circles have areas proportional to the average of pore-by-pore discrepancies,
M |D|, for each simulation, and are coloured by the mismatch in average (MD) saturation (So) or occupancy
(α), as indicated by the colour legends

thresholds used during the segmentation to affect the fluid occupancy less than the saturation;

the fluid occupancy is computed based on the voxels in pore and throat centres, which are

furthest away from the fluid–solid interface whose exact location can be affected by the seg-

mentation thresholds. The network saturations, in addition to these factors, can be affected

by the numerical approximations during saturation computation as well as the uncertainties

in acquisition and segmentation of the experimental images of the fluid distributions. The

6% discrepancy between the average saturation match and the average occupancy match, in

Fig. 5, reflects these additional errors and uncertainties.

4.2.2 Imbibition Simulation

During the dynamic imbibition experiment on the Ketton sample (Singh et al. 2017), a micro-

CT scan was taken every 1 min and a total of 417 images were acquired. We assumed that

each image corresponded to the simulation step that had, on average, the same number of

pore and throats filled with each phase as the image. In other words, we compared the results

of each experimental image to the simulation step with an average occupancy closest to the

image. The mismatches for all the images were then averaged to obtain a single value for the

whole imbibition cycle.

Similar to the previous section, we considered the contact angle as an unknown parameter

and ran a sensitivity analysis to investigate its effect on the discrepancy between experiments

and simulations. Figure 6 compares the experiments with simulations for different input

contact angles, where, in each simulation, a single contact angle was assigned to all the pores

and throats. Similarly, the saturation and occupancy discrepancies when a random distribution

of contact angles in the range [θ1, θ2] was used in the simulations are shown in Fig. 7, for

different combinations of θ1 and θ2.

The results in Fig. 6 show that the best match for the Ketton fluid occupancy is M|D(α)| =

20.9%, averaged over all the images during imbibition. The mismatch at the beginning of

imbibition simulation is 14.4% which increases to about 30% at the end of imbibition.

This model–experiment mismatch is about twice the maximum mismatch obtained for the
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Fig. 7 Effect of contact angle on the mean absolute difference between experimental and model (left) fluid
occupancy and (right) saturation. The circles have areas proportional to, and are coloured by, the average
of pore-by-pore discrepancy in occupancy (left) and saturation (right). The contact angles were assigned at
random from a uniform distribution, θi ∈ [θ1, θ2]

experiment–experiment pairs, presented in the previous section, in Fig. 2. These experiment–

model mismatches show an improvement of roughly 4% compared to the results presented

on a coarse image of Ketton in the previous section; this shows the importance of having

high-resolution micro-CT images for accurate parametrization of the pore space and its

crevices, which allow both the displacement processes and the saturation within each pore

and throat to be predicted accurately. The average saturation discrepancy, at the best match

for fluid occupancy, was M |D(So)| = 19.3% and MD(So) = 6.2%. Although the pore-by-

pore saturation and occupancy can have a higher discrepancy of M |D(So)| = 19.3% and

M|D(α)| = 20.6%, the total (network) saturations are predicted more accurately (MD(So) =

6.2%) and are potentially in the range of experimental uncertainty in saturation computation

from the micro-CT images. Although the models with weakly water-wet contact angles

(30–70◦) show a better match with the experiment, the discrepancies show only a weak

correlation with contact angle; this is partly due to the high initial water saturation at the

beginning of imbibition which reduces the contact of the oil phase to solid walls and reduces

the contribution of contact angle. Another factor can be the smaller size of the image which

exacerbates boundary effects. The simulations with a uniform contact angle distribution

(Fig. 7) are comparable to those with a single contact angle for all pore and throats. The

random variations in the contact angle do not have a major impact on these results which

are averaged over thousands of pores. Note that it is possible to calibrate (fine-tune) the

network model inputs—contact angle or other model parameters—to improve the match

between the network model and experiments. However, the objective of this study is to use

the experimental data only to validate the model, i.e. evaluate its predictive capability for the

cases where detailed multiphase flow experiments are not available.

4.2.3 Effect of Initial Condition at the Beginning of Imbibition

The results presented in the previous section shows that the discrepancies introduced during

the primary-drainage simulation (at the beginning of imbibition) are higher compared to the

discrepancies added during imbibition. To investigate the effect of the initial condition on the
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Fig. 8 Effect of the initial saturation (end point of the primary drainage) on the network occupancy mismatch
with the experiments by Singh et al. (2017)

mismatches during imbibition simulations, we repeated the contact angle sensitivity analysis

for different initial water saturations, shown in Fig. 8.

These results show that a change of ± 10% in the imbibition starting saturation can lead to

a change of around ± 2% in the occupancy mismatch, from its lowest value of 21% for Swi =

0.45–0.55 to 24% for Swi = 0.35. These results show that, for this particular case, the effect

of initial mismatch on the discrepancies during imbibition is more pronounced compared to

the effect of contact angle.

4.3 Steady-State Experiments on Bentheimer Sandstone

In this section, we use the steady-state imbibition experiments of oil–water flow through the

Bentheimer sandstone by Gao et al. (2017) (see Table 1) to validate the generalized network

model.
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Fig. 9 A comparison between the Bentheimer experiment at a fractional flow rate of fw = 0 and different
steps during the drainage simulation. The network has the same occupancy as the experiment at a saturation
of Sw = 0.30, which was chosen as the drainage end point (initial condition for imbibition simulations) for
the base case

4.3.1 Drainage Simulation

The experimental image at the fractional flow of fw = 0 was used to set the end point of the

primary-drainage simulation that determined the initial condition for the imbibition cycle.

Similar to the previous section, in Fig. 9 we show how different mismatch indicators vary as

the drainage simulation progresses.

Figure 9 shows a discrepancy in the network saturation which is slightly higher than the

results for Ketton sample presented in the previous section (Fig. 5). The network has the same

occupancy as the image at a network saturation of Sw = 0.30, while the image saturation is

Sw = 0.37. This indicates that the network model underpredicts the saturation by roughly

7% compared to the image saturation. This can be attributed to numerical approximation

errors as well as the uncertainties in segmentation and the differences in boundary conditions

between the simulation and the experiment.

During subsequent flow simulations, the model’s drainage end point was chosen to have the

same average occupancy as the image at the beginning of imbibition experiments (MD(α) = 0

at Swi = 0.30), with other discrepancies of MD(So) = 10%, M |D(α)| = 19.6% and

M |D(So)| = 20.1%.

4.3.2 Imbibition

The experimental images at fractional flow rates of fw = 0.15, 0.3, 0.70, 0.85 and 1 were used

to validate the imbibition simulation. Similar to the previous section, the simulation results

were recorded at different saturation steps, after each 1% change in the network saturation,

and compared to each experimental image. The mismatches for each image were recorded

when the model had an average occupancy closest to the image. Finally, the results obtained

for the five experimental images were averaged to obtain a single set of mismatch indicators

for the whole imbibition cycle. The mismatch values are reported for pore and throat fluid

occupancy as well as for pore saturation.
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Fig. 10 Effect of contact angle on the discrepancies in (left) fluid occupancy and (right) saturation between
the model and the steady-state oil–water experiments on Bentheimer sandstone. A uniform contact angle of
θi = θ1 was used for all pores and throats in the model. The circles have areas proportional to the average
of pore-by-pore discrepancies, M |D|, for each simulation, and are coloured by the mismatch in average MD

saturation (So) or occupancy (α), as indicated by the colour legends

Fig. 11 Effect of contact angle on the mean absolute difference in (left) fluid occupancy and (right) saturation,
between the model and the steady-state oil–water flow experiments on Bentheimer sandstone. The contact
angles were assigned at random from a uniform distribution, θi ∈ [θ1, θ2]. The circles have areas proportional
to, and are coloured by, the average of pore-by-pore discrepancy in occupancy (left) and saturation (right)

Figure 10 shows the results when a single contact angle was used for all pores and throats

in the model. Figures 11 shows the results when a random assignment of contact angles from

a range of θi ∈ [θ1, θ2] was used.

The saturation pore-by-pore discrepancy decreased by roughly 2% over the imbibition

cycle for contact angles less than 50◦. The initial mismatches were M |D(α)| = 19.6% and

M |D(So)| = 20.1% at a fractional flow of fw = 0 which changed to 21.0% and 18.5%,

respectively, at fw = 1 (end of imbibition). The mismatch does not change significantly

during imbibition. This can be explained by the fact that the filling events in imbibition are

easier to predict on a pore-by-pore basis in this water-wet case, since the invading phase

(water) is well connected (hence the invasion front covers almost all pores and throats in the

network) and therefore each filling event does not have as big impact on subsequent events.
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In contrast, in drainage, each filling event can open a different invasion path and initiate a

different chain of subsequent events and capillary fingers. Another explanation can be that

boundary conditions and the initialization of fluid saturations at the beginning of the steady-

state imbibition experiment are not compatible with the network model simulation which

resembles an unsteady-state experiment.

The mismatch between the experiment and the model at the end of the imbibition is just

7% higher than the maximum mismatch between pairs of experimental data on Bentheimer,

shown in Fig. 2, and 10% higher than their average. These results show an improvement

of around 10% compared to the mismatches presented for the end of the simulations on

the coarse Bentheimer image presented in Fig. 4. This shows that, for high-quality images

of the void space, the network model can represent the experimental measurements more

accurately, despite the presence of other sources of uncertainty such as image resolution,

segmentation, boundary conditions and the wettability distribution of the rock samples. The

errors at the end of drainage simulation are comparable to the errors during the imbibition

simulation; this suggests that the greatest cause of the residual error in imbibition is in the

initial condition for imbibition.

4.3.3 Effect of Initial Condition at the Beginning of Imbibition

To investigate the effect of the initial condition on the mismatches during imbibition, in

Fig. 12, we have repeated the contact angle sensitivity analysis presented in the previous

section while varying the initial water saturations as well.

The results in Fig. 12 show that a change of ±10% in the imbibition starting saturation can

lead to a change of roughly ± 3% in the occupancy mismatch (from its lowest value of 18.5%

at Swi = 0.25 to 25.7% at Swi = 0.45). The shape of the mismatch as a function of contact

angle does not change significantly. Moreover, the results do not show a significant sensitivity

to contact angle when the contact angle was lower than 60◦. Furthermore, these results show

that water saturations in our model are underestimated by roughly 6% in both the Bentheimer

sandstone and the Ketton simulations presented in the previous section. This discrepancy

can be corrected by using the experimental saturations, or direct simulations, to calibrate the

network model parameters. Improving the pore-by-pore mean absolute differences, however,

requires eliminating various sources of uncertainties, experimental or modelling; in other

words, both the model and its input parameters (pore geometry and contact angle) need

to be improved. Note, however, that all these cases are challenging, since an intermediate

saturation is reached after primary drainage. In many situations, almost all the pores are filled

after drainage, which inevitably leads to a low initial discrepancy.

5 Conclusions

We have quantified the experimental uncertainties in the pore-scale fluid occupancy and sat-

uration for a set of carbonate and sandstone samples. This analysis shows that the uncertainty

can vary from rock to rock, in the range of 5–17% for the case of simple sandstone and car-

bonate rocks. The network model predicts these parameters with a good accuracy, having a

pore-by-pore mismatch of around 17–30%, accumulated over both the primary drainage and

the imbibition cycles, while the average saturation and occupancies match with discrepancies

less than 10%.
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Fig. 12 Effect of initial saturation (end point of the primary-drainage simulation) on the network occupancy
mismatch for the experiments by Gao et al. (2017). The circles have areas proportional to the pore-by-pore
occupancy mismatch, M |D(α)|, for each simulation, and are coloured by the mismatch in average saturation,
MD(So)

The workflow presented here can be considered as a starting point for the use of exper-

imental data, and higher-fidelity simulation data, to validate and improve reliability of the

upscaling models. Further improvements in the network model predictive capability can be

achieved by using direct simulation on micro-CT images, on sample sizes that are sufficiently

small for a limited number of direct simulations. These simulations have the advantage that

in addition to occupancy and saturation, flow and electrical conductivities can be used in the

validation as well. These validations, which make use of both experimental data and direct

simulations, help to ensure that the network model produces reliable results for different rock

types and wettabilities.
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