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Abstract

The OPA model calculates the long-term risk of cas-

cading blackouts by simulating cascading outages and

the slow process of network upgrade in response to

blackouts. We validate OPA on a detailed 19402 bus

network model of the Western Electricity Coordinating

Council (WECC) interconnection with publicly avail-

able data. To do this, we examine scalings on a se-

ries of WECC interconnection models with increasing

detail. The most detailed, 19402 bus network has more

tree structures at the edges of the main mesh structure,

and we extend the OPA model to account for this. The

higher-risk cascading outages are the large cascades

that extend across interconnections, so validating cas-

cading models on large networks is crucial to under-

standing how the real grid behaves. Finally, exploring

networks with mixed mesh and tree like structure has im-

plications for the risk analysis for both the transmission

grid and other network infrastructures.

1. Introduction

Cascading outages are the main way that electric

transmission grid blackouts become widespread. While

there are many different models and simulations of cas-

cading outages producing plausible sequences of out-

ages [1, 2], a necessary next step is to validate these

models. Indeed the IEEE PES cascading failure work-

ing group is vigorously pursuing the benchmarking and

validation of cascading outage simulations [3, 4].

Cascading outages and blackouts occur at all scales,

but the larger blackouts that cascade across intercon-

nections, although infrequent, have higher risk than the

smaller blackouts because the probability distribution of

blackout size has a heavy tail, making large blackouts

more likely than might be expected [5]. Therefore it is

important to validate cascading models and simulations

for large interconnections.

The OPA model1 [6–9] simulates cascading blackouts

in power grid transmission systems as a complex system

in which the the reliability is shaped over time by the

grid evolution and the engineering responses to black-

outs. This paper validates OPA on a series of models of

the Western Electricity Coordinating Council (WECC)

interconnection in North America with publicly avail-

able data, including the observed historical distribution

of blackout size. Here we concentrate on the probability

distribution of blackout size and other measures of the

cascading; the duration and cost components of black-

out risk are also challenging and are discussed and ap-

proximately quantified in [10].

Our network models of the WECC range from 1553

buses to 19402 buses, allowing the examination of

scalings and topology as the model detail increases.

Importantly, the smaller network models have mainly

a meshed character, whereas the 19402 bus network

model has a meshed central portion that has many ap-

pendages of tree-like form. Therefore we extend the

OPA model to properly account for this change in topo-

logical structure in the 19402 bus network model.

Previous work [11] validated the OPA model using

data from the WECC on the 1553 bus network. This

paper describes the following further advances:

1. Validation on 9402 and 19402 bus network models of

the WECC interconnection. This is enabled by rewriting

OPA to be much faster [12].

2. Description of network size scaling and change in

structure as the network model of the interconnection

is made more detailed. While familiar to many engi-

neers, the fact that differently detailed models of the

same transmission grid can have a different topological

1OPA stands for “Oak Ridge National Lab, Power Systems Engi-

neering Research Center, and University of Alaska”.
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structure, or regions with different structure, seems to

have been overlooked in the complex network literature.

3. Enhancement of OPA, originally designed for net-

works with mainly a meshed structure, to handle net-

works that also have significant tree structures.

4. Enhancement of OPA to better model load variation.

The rest of the paper is organized as follows. Sec-

tion 2 summarizes the OPA model. The model networks

of the WECC system used in this paper are described in

Section 3 and summary review of the available WECC

data is given in Section 4. Section 5 presents the ini-

tial results of the OPA model, showing some problems

when applied to the 19402 bus model. Section 6 investi-

gates the reason for the problems and Section 7 presents

a new modification of OPA addressing those issues. Fi-

nally, discussion and conclusions are given in Section 8.

2. OPA Model

The OPA model, which is defined in detail in [6–8],

describes the complex dynamical evolution of a power

transmission system. There are two timescales: a fast

timescale describing the cascading process of the black-

outs and a slow time scale describing the evolution of

the grid. In the fast timescale, OPA models the transmis-

sion lines, loads and generators using the DC load flow

approximation. The evolution of the system starts from

a good dispatch solution for a given network, then for

each day, independent random line outages are triggered

with probability p0. Whenever a line is outaged, the gen-

eration and load are redispatched using standard linear

programming methods. The cost function is weighted to

ensure that load shedding is avoided where possible. If

any lines were overloaded during the optimization, then

these lines are outaged with a fixed probability p1. This

leads to a process of testing for outages and redispatch

that is iterated until there are no more line outages. The

total load shed is then the total power lost during the

blackout. The way the cascading is modeled neglects

many of the details of the cascading processes in a real

blackout and the timing of events, but it does represent

in a simplified way a process of cascading overloads and

outages that is consistent with some of its basic features.

In the slow timescale, OPA carries out the complex sys-

tem dynamics of the transmission grid that is evolving

in response to a slowly increasing power demand and

also whose reliability is shaped via engineering that up-

grades the system in response to blackouts. The slow

complex system dynamics is carried out first by multi-

plying each day all loads by a fixed parameter g that rep-

resents the daily rate of increase in electricity demand,

which we take to be about 2% a year. To maintain coor-

dination between generation capacity and transmission

capacity, the generation maximum power increases after

a period of time T when the capacity margin decreases

below a given critical level ∆P/P . A second process in

the slow time scale is that when a blackout occurs, the

lines involved in the blackout have their line flow limits

increased slightly by multiplying by a parameter µ. That

is, the parts of the system involved in the last blackout

are upgraded. For model simplicity, the grid topology

remains fixed in the upgrade of the lines. A list of the

main OPA parameters is given in Table 1.

Table 1. Main OPA parameters
p0 0.106/NL probability initial line outage

p1 63.0/NL probability an overloaded

line outages

γ 1.07 width of load variation

∆P/P 0.2 critical margin

µ 1.07 line upgrade rate

T 365 time to build new generators

NL is number of lines in network

NL = 2114 (1553 bus network)

NL = 3345 (2504 bus network)

NL = 22113 (19402 bus network)

On top of the increase of the averaged load, there is

also a daily variation on the demand to represent the

varying conditions of the power grid. In this paper,

the modeling of the variation of the demand has been

changed and is discussed in the Appendix.

Given assumptions about blackout cost [5], OPA can

calculate the distribution of blackout size over the long-

term and hence the blackout risk, accounting for the way

that the power grid evolves as blackouts shape this risk.

Therefore these calculations can be used to evaluate the

long-term impact of transmission system upgrades on

the risk of small blackouts and of large blackouts. These

calculations for an evolving grid do not address the short

term risk of blackout of a fixed power grid.

3. WECC network models

We have three model networks of the WECC trans-

mission system with increasing detail; they have 1553,

2504, and 19402 buses respectively, and are shown

in Fig. 1. As expected, the overall global structure

of the three networks is very similar. However, as

the modeling detail increases, the detailed network

structure changes. The 19402 bus network has many

more tree-type structures attached to the main meshed

part of the network. The 1553 bus network has 11%

tree-type lines, the 2504 bus network has 19% tree-type
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Figure 1. Three model networks with 1553,

2504, and 19402 buses respectively. The

bottom right frame blows up a small por

tion of an edge of the 19402 bus network

to show tree structures.

lines, while the 19402 bus network has 56% tree-type

lines. The ratio of lines to busses for the 1553 and 2504

bus networks is approximately 1.35, whereas the 19404

bus network has the lower (more tree-like) ratio of 1.14.

This is also indicated by the network clustering, which

reduces by more then a factor of 4 from 0.078 for the

1553 bus network to 0.019 for the 19402 bus network,

showing that there are less possible paths between any

two buses chosen randomly for the 19402 bus network.

We use the smaller 1553 bus network explore param-

eters, because the calculations are faster and we can get

very good statistical information by performing the cal-

culations for 200 000 simulated days. The objective

of this parameter exploration is to find a set of param-

eters which lead to results that are consistent with the

WECC data. To have a consistent set of parameters for

the other two networks, we apply the following scaling

conditions:

p0NL = constant

p1NL = constant
(1)

where NL is the number of lines of the network. All the

other parameters are the same for the three networks.

We found in the past using artificial networks that this

way of scaling the parameters gives consistent results.

4. Historical data for WECC outages

There are a variety of data available (or potentially

available) on blackouts and outages of the WECC trans-

mission grid. They are all important for validation of

the modeling of the blackout complex system dynam-

ics. The main source of data on blackouts in the North

American grid is the North American Electrical Reli-

ability Council (NERC). This data includes power lost,

number of customers with service, duration of the black-

out, etc. Analysis of this data [5, 10, 13] shows the exis-

tence of power law regions in the probability distribution

function and in the rank function of the blackout size as

measured by the power lost.

Another source of information we have used is the

detailed transmission line outage data for 8864 outages

recorded by a WECC utility over a period of ten years

[14], which is similar to that collected by the Transmis-

sion Availability Data System [15]. The value of this de-

tailed outage data for validation is noted and the authors

are very grateful that this data has been made available.

Given the data available to us, we must assume that this

data, which is only for one WECC utility, is represen-

tative of data for the whole WECC. The data has been

processed to extract information on cascading events, in-

cluding the probability distribution of outages in the first

generation, the probability distribution of the total num-

ber of outages after cascading, and the probability dis-

tribution of the number of generations (iterations) in the

cascades. Details of the data processing are in [16].

We also extracted from the detailed outage data the

average propagation λ. This is the standard Harris esti-

mator for the cascade propagation [16, 17]. λ is calcu-

lated by taking the average of the ratio of child failures

(generation i) to parent failures (generation i-1) over all

the cascading events. This parameter provides impor-

tant information on how cascades propagate that needs

to be matched by the model. Another issue in compar-

ing with data is the definition of a blackout. The thresh-

olds for a reportable blackout include uncontrolled loss

of 300 MW or more of firm system load for more than

15 minutes from a single incident, load shedding of 100

MW or more implemented under emergency operational

policy, loss of electric service to more than 50 000 cus-

tomers for one hour or more, and other criteria detailed

in the United States Department of Energy form EIA-

417. Since we are carrying out the calculations over

many decades in order to have good statistics and we

have a constant increase in the demand during this pe-

riod of time, it does not make sense to use a fixed thresh-

old for the power loss. Instead we use a threshold for

the power shed normalized to the power demand. This

threshold is 0.0001 for a blackout with cascading and for

a blackout with no cascading, which implies a localized

event, we use a threshold of 0.0004.
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5. Solution for 1553 and 2504 bus networks

and scaling to the 19402 bus network

Exploring the parameters listed in Table 1, one can

find multiple solutions for the 1553 bus network that

match the WECC data reasonably well. Maintaining

the parameters in reasonable ranges we can find a few

solutions relatively close to each other. Here, we only

discuss one typical solution. The scaling laws in (1) are

then used to obtain the parameters p0 and p1 for the 2504

bus network. This scaling works well. The parameters

obtained for these two networks are listed in Table 1.

As examples of how the numerical results from OPA

match the WECC data, first we show in Fig. 2 the rank

function for the load shed normalized to the power de-

mand for the 1553 and 2504 bus model networks com-

pared to the data. The agreement is very good for all

range of values.

Another important data characteristic to match with

the model is the probability distribution of the number

of line outages per blackout. The results for the 1553

and 2504 bus model networks are shown in Fig. 3 and

the agreement is good. Both sets of results show that

the model can reproduce very well the tails of the distri-

butions and so we can expect to reproduce the average

cascade propagation in the blackouts. To test that we

compare in Fig. 4 the λ function for the two model net-

works and the data. We limit the comparison to the first

20 iterations because the size of the model networks lim-

its the number of iterations. Thus, using a larger sized

network we should be able to extend this comparison to

a larger number of iterations. In this limited case, the

comparison shown in Fig. 4 is satisfactory. Other data

characteristics are also matched by the model, but due

to limited space we will present only these three mea-

sures in this paper.

The next step in this validation is to scale these results

to the 19402 bus network using the appropriate scaling

factors (1). The result of the scaling for the 19402 bus

network compared with the data for the rank function for

the load shed normalized to the power demand and the

probability distribution function of the number of line

outages per blackout is shown in Fig. 5. The compari-

son fails fairly badly in this case, and is caused by the

mixture of topological structures in the 19402 bus net-

work as discussed in the next section.

6. Reducing the tree-like parts of the 19402

bus network

As mentioned earlier, the 19402 bus network has

substructures with different network topological charac-

ter. In particular, there are many filamentary and tree-

like subnetworks attached to the main meshed structure.

This can be seen in Fig. 1, which enlarges a small por-

tion of the boundary of the 19402 bus network.

We built three new networks by peeling off or com-

pacting some of these substructures:

1. An 8590 bus network is obtained from the 19402 bus

network by substituting for the tree-like structures at-

tached to the core network. Each tree is substituted with

a single bus with the total load and generation of the tree.

2. A 7427 bus network is obtained from the 19402 bus

network by substituting for the appendix structures at-

tached to the core network. An appendix is defined as

a subnetwork connected to the core network by a single

bus. Note that an appendix can contain a loop. Each ap-

pendix is substituted by a single bus with the total load

and generation of the appendix.

3. A 4866 bus network is obtained from the 7427 bus

network by substituting chains of buses (that is, consec-

utive buses with degree 2) with a single bus with the

chain total load and generation.

The three networks are shown in Fig. 7, and are not

intended to be good models for the WECC; they are

built to study the effects of suppressing tree-like parts

of 19402 bus network. With these reduced networks we

can test the scaling given by (1) and compare the results

with the data. Figs. 6 and 8 show the rank function

for the load shed normalized to the power demand for

the three networks together with the WECC data. (For

estimating the propagation λ in the 4866 bus network

in Fig. 8, there is more noise for larger λ due to limited

data). We clearly do not encounter the problem that

we had with the 19402 bus network in Fig. 5. The

numerical results describe the data very well. The same

happens with the probability distribution function of

the number of outages and iterations per blackout and

the λ propagation function shown in Figs. 6 and 8. The

study in this section of the hypothetical removal of the

tree-like substructures identifies the problem for the

realistic 19402 bus network.

7. Enhanced OPA model

As described in Section 6, the problem with the scal-

ing with size comes from the regions of the 19402 bus

network with a tree-like structure. The two parameters

that define the probability of outage, p0 and p1, scale

following (1) for a fixed topology, but their values can

have a different impact on the complex system dynam-

ics of the cascading depending on the topology of the

network. Thus to model the electric grid adequately, we

must consider different values of the parameters for the

regions with different topology.
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Figure 2. Rank function for the load shed normalized to the power demand for the historical
data and the 1553 and 2504 bus networks

We first found that varying the value of the initial

failure probability p0 for the tree-like region did not sig-

nificantly change the results, so we retain the same value

of p0 throughout the network. As mentioned earlier,

the values used for both p0 and ∆P/P are determined,

within a range, by the real grid data. The important pa-

rameter here is p1, the probability that an overloaded line

outages. Determining p1 is more complicated because

its real-world counterpart combines a number of factors

and is therefore difficult to determine directly from the

real grid data. We therefore determine p1 phenomeno-

logically by adjusting it within a physically reasonable

range to make the OPA output fit the real world data. It

should be noted that p1 is not an arbitrary factor, rather

a poorly determined physical parameter, and one of the

factors which affects p1 is the topology. We modified p1
by dividing the value of p1 for the tree-like lines by 10.

Requiring a decrease in p1 for the tree-like lines makes

qualitative sense because of the different upgrading that

follows from the different ways that power is redis-

tributed and load is shed in tree-like versus a meshed

topologies. In particular, in a tree-like part of the

network supplying load, outage of a line disconnects all

downstream buses and always causes some blackout and

hence in OPA always a line upgrade, while in a meshed

network there are several paths to provide load power,

and a line outage more rarely causes a blackout. There-

fore for a balanced upgrade of all the network, overloads

in the tree-like portion must outage less frequently.

The tenfold decrease in p1 for the tree-like lines was

confirmed empirically by running OPA to show that it

is adequate to describe the WECC data. Figs. 9 and 10

show the rank function for the load shed normalized to

the power demand and probability distribution function

of the number of line outages per blackout for the 19402

bus network. There is very good agreement with data

and the mismatch shown in Fig. 5 is no longer present.

Obtaining sufficient statistical accuracy for these results

on the 19402 bus network required 50 days of computa-

tion. The parameters for the computations are in Table 1.

8. Conclusion

Proper risk analysis requires a well validated model.

For this, it is important to simulate cascading on large

network models in order to properly represent the

interconnection-scale cascades that are the highest risk

cascading blackouts. Accordingly we extend and vali-

date the OPA model on a 19402 bus network model of

the WECC.

OPA was previously designed and validated on

smaller WECC network models with primarily a meshed

structure [11]. However, in this paper we show that the

tree-like portions of large transmission network models

behave differently then the meshed networks. This high-

lights a general conclusion that researchers should be

mindful of the heterogeneous structure of large power

grid networks. We therefore extend OPA to model the

tree-like portions of a larger network by reducing the

probability of overloaded line outaging in the tree-like

portions of the network. This bulk probability can be

phenomenologically determined for the different parts

of the network and combined with the other OPA pa-

rameters obtained from data in [11] to satisfactorily re-
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Figure 3. Probability distribution of the number of line outages per blackout for the historical

data and the 1553 and 2504 bus networks

produce observed bulk statistical features of the WECC

obtained from observed data, including the distribution

of blackout sizes, the average propagation, and the dis-

tribution of the number of line outages. This constitutes

validation of the more complete heterogeneous grid. We

also improve the modeling of load variation in OPA.

While the OPA model represents cascading processes

in a fairly simple manner, it has the unique feature

of computing the long-term reliability of the power

system as the network slowly upgrades in response to

blackouts. The inclusion of the continual engineering

efforts to maintain reliability in the modeling may

well be responsible for its successful reproduction of

observed WECC statistics. The validation of OPA on

a large network model increases confidence in this

approach to modeling the long-term reliability with

respect to cascading blackouts.
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Appendix: New model for load variation

The OPA model previously used a constant distribu-

tion of the variation of the demand to determine its vari-

ability. This has some problems. If we change the width

of the variation of the demand keeping constant the

critical margin, we see an abrupt change of the complex

system dynamics when the edges of this width are closer

to the critical margin, causing an abrupt increase in the

frequency and size of blackouts. Another consequence

of having a flat distribution for the variation of the

demand is that the probability of blackouts is relatively

independent of the width of the demand variation and

increases sharply when this reaches the critical margin.

These results do not seem very reasonable, so we have

built a demand variation model which is more consistent

with available data. The New England ISO has made

available electricity demand data for every hour of 304

days, which is 7296 hours. These data allow an estimate

of the variations of the peak demand. There are daily pe-

riodic changes and yearly periodic changes that we sub-

tract from the data, because we do not want the average

variation of the demand but rather the statistical fluctu-

ations around these periodic daily and yearly variations.

Since the OPA model uses the peak of the daily de-

mand, for each day we can calculate the maximum load.

Fig. 11 shows this maximum load as a function of the

day during a year. Then, we fit the data in Fig. 11 with

a+b sin
[

2π

180
x+ c

]

, where x is the day in the sequence.

The result of this fit is shown in Fig. 11 as a continuous

line. Therefore, this fit can be used to describe the yearly

evolution of the daily peak value of the load demand.

Subtracting this averaged value from the data, we obtain

the daily variation of the peak demand. We normalize

these values to the averaged value of the demand to

get the relative variation of the demand and we can use

this daily data to find its distribution. The distribution

together with a Gaussian fit is shown in Fig. 11.

From these results, we incorporated in OPA a varia-

tion of the load demand based on a Gaussian distribution

with a standard deviation of 7% as indicated by Fig. 11.

To avoid events with very large demand variations which

do not make sense, we limit the maximum variation

to three standard deviations from the mean. This new

method of modeling the demand variation is driven by

observed data and avoids the problems discussed at the

start of the Appendix.
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Figure 5. Rank function for the load shed normalized to the power demand and the probability

distribution of the number of line outages per blackout for the 19402 bus network compared

with historical data.

Figure 6. Rank functions of load shed normalized to the power demand, and the number of line

outages for the 4866, 7427, and 8590 bus networks.
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Figure 7. Three model networks of 8590, 7427, and 4866 buses reduced from 19402 bus network.

Figure 8. Rank functions of iterations per blackout and average propagation λ for the 4866,
7427, and 8590 bus networks.
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Figure 9. Match of 19402 bus network OPA results with data. Lefthand: Rank function for load

shed normalized to power demand. Righthand: PDF of number of line outages per blackout.

Figure 10. Match of 19402 bus network OPA results with historical data. Lefthand: Distribution

of the number of iterations per cascade. Righthand: Average propagation λ in each iteration.

Figure 11. Lefthand: Maximum load as a function of the day during a year and a sinusoidal fit.
Righthand: Distribution of the variation of the load around the sinusoidal average.
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