
Prospective cohort studies offer major methodological
advantages for investigating the relation between diet,
biochemical markers of nutritional or metabolic status,
and cancer risk.1 Since the incidence rates of individual
forms of cancer are relatively low, however, this type of
study must generally be very large—including several
tens of thousands of individuals—for sufficient num-
bers of cases with specific forms of disease to accrue
during 10 to 15 years’ follow-up. As the cost of such
large studies can be high, it is important to plan the
study efficiently in order to obtain as much information
as possible for a given investment of time and resources.
In addition to the number of different exposures and
disease outcomes measured, two major criteria for max-
imizing the informativeness of a study are the statistical
power to test for associations between dietary expos-
ures and disease risk, and the validity and precision

with which the magnitude of such associations can be
estimated.

A basic difficulty in epidemiological studies on diet
is that measurements of individuals’ habitual, long-
term intake levels of foods and nutrients, usually ob-
tained by means of a structured questionnaire, tend to
have rather large errors. These errors entail substantial
losses of statistical power, and often also cause bias in
estimates of relative risk as a measure of diet-disease
association. Substudies on the accuracy of the dietary ex-
posure measurements can be used to improve the design
of cohort studies (e.g. by selecting an optimal dietary
questionnaire method), or to correct for the amount of
bias in estimated measures of diet-disease association.2

As the substudies may themselves require considerable
investments of time and money, they should also be
planned efficiently to obtain the best possible level of
precision for a given investment.

In section 1 of this paper, we shall briefly present
some basic model assumptions that are often made (at
least implicitly) to estimate relative risk in epidemiological
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studies. In section 2, these basic assumptions are used
to discuss the expected magnitudes of bias in relative
risk estimates and of loss of statistical power, as a re-
sult of systematic or random errors in exposure meas-
urements. In sections 3 and 4, we shall review key
aspects of the use and design of substudies for the
‘validation’ or ‘calibration’ of dietary intake measure-
ments in the context of EPIC, a multicentre cohort study
on diet and cancer in nine Western European countries,
and discuss the use of calibration studies in improv-
ing the between-centre comparability of dietary intake
measurements.

MODEL ASSUMPTIONS
The estimation of relative risks in epidemiological
studies is most often based on the assumption of a log-
linear exposure-disease relation; that is, for a continu-
ous exposure variable T,

log (disease rate at exposure level T) = γ + θT (1)

The slope of θ of this ‘disease’ model represents the
logarithm of the relative risk for a single unit increase
in intake level. In a prospective cohort study, and given
this disease model, the log-relative risk θ can be es-
timated by, for example, Poisson regression with dis-
ease status as a binary outcome variable. An unbiased
estimation, however, requires that error-free measure-
ments of exposure level T are available. 

When the exposure level T (e.g. the individuals’
habitual intake levels of a given nutrient) is measured
with error (e.g. by means of a questionnaire), an un-
biased estimation of the log-relative risk θ requires the
simultaneous evaluation of the average magnitude of
these errors, using additional dietary intake measure-
ments obtained in a substudy. This simultaneous
estimation process implies that additional model
assumptions must be made about: i) types of meas-
urement error that may occur (‘measurement’ model),
and ii) the shape of the population distribution of true
exposure values (‘exposure’ model).3

A very basic measurement model presents the
individuals’ dietary questionnaire measurements as the
sum of true intake level (T) and an error (eQ; we shall
call this the ‘total’ measurement error):

Q = T + eQ (2a)

In many previous discussions of the effects of dietary
assessment errors on estimation of relative risks, the
errors eQ were assumed simply to be random on a
population level, with zero mean at any given value of
T. It may be more realistic, however, to allow the mean
of eQ to be different from zero at the population level,

so as to account for systematic over- or underestima-
tions of intake. Furthermore, the average magnitude of
the errors eQ may depend on the individuals’ true ex-
posure levels T being measured; that is, there may be a
covariance, γ, between the errors eQ and true intake
levels T of different individuals. A positive value for
covariance γ then describes the subjects’ tendency to
overestimate more (or underestimate less; this will also
depend on the value of the constant scaling parameter
αQ) if their true habitual intake level is higher than the
population average, and to underestimate if their true
intake level is lower; inverse tendencies are implied if
the covariance γ is negative. Taking account of these
additional assumptions, the measurement model can
also be written as

Q = αQ + βQT + εQ (2b)

Here, the coefficients αQ and βQ reflect constant and
proportional ‘scaling biases’, respectively, and sub-
sume the parts of the individuals’ total errors eQ that
can be taken as constant for all individuals, or that are
linearly dependent (on a population level) of the indi-
viduals’ true intakes level T. The term εQ—referred to
as ‘random’ error—represents the remainder of the total
error eQ that is not constant for all individuals, and that
is uncorrelated with T (i.e. Cov(εQ,T) = 0). The popu-
lation (between-subject) variances of true intake levels
and random errors will be denoted by σ2

T and σ2
εQ,

respectively.
The population distributions of true, and measured

intake are often assumed to be approximately normal.
This joint normality, combined with a linear measure-
ment model as in equation (2b), implies that the errors
eQ are also normally distributed, with constant variance
regardless of the true intake level T. The assumptions of
joint normality and of a linear measurement model,
combined with the assumption that the overall disease
rate is low, allow the expected bias in (log-) relative
risk estimates and loss of statistical power due to meas-
urement errors to be expressed by comparatively simple,
closed-form equations. Moreover, these assumptions
often also form the basis of statistical models to correct
for bias in relative risks estimated from data actually
observed, using information from substudies with
additional dietary intake measurements.

In practice the population distributions of intake
measurements often deviate from normality, which
seems to be largely due to an increased error variance
among subjects with higher true intake levels. Never-
theless, intake distributions of nutrients and major food
groups can generally be normalized by some math-
ematical (e.g. logarithmic) transformation. Model
assumptions (including that of linear relations between
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measured and true intake levels) are then often assumed
to apply to the transformed data.

Alternative statistical methods that do not require the
assumption of joint normality of true and measured
exposure distributions for the estimation of relative
risks with correction for biases due to exposure meas-
urement error have also been described. So far, how-
ever, these more complex methods have not found
widespread use in nutritional epidemiology, and dis-
cussion of these methods is beyond the scope of this
paper.

EFFECTS OF EXPOSURE MEASUREMENT
ERRORS: BIAS AND LOSS OF POWER
Throughout this paper, exposure measurement errors
are assumed to be of equal average magnitude for those
who will eventually develop a given form of disease
(‘cases’), and those who do not (‘controls’). In general,
bias in regression estimates of log-relative risk θ will
then arise only if, on average, over- or underestimations
eQ are different for individuals with high and low ex-
posure measurements Q; that is, bias arises if the total
measurement errors eQ have either a negative or a
positive covariance with the measurements Q.

Under the specific assumptions defined in the
previous section (i.e. a linear measurement model, and
joint normality of true and measured intake dis-
tributions), it can be derived that the regression of a
binary disease outcome variable on measurements Q,
rather than on true intake values T, will yield a log-
relative risk estimate θ̂* = λθ, biased by a factor λ with
an expected value of, approximately 

1
E(λ) =

βQ

ρ2
QT

(3)

where

1
ρQT =

√[1 + σ2
εQ/(β2

Qσ2
T)] (4)

is the correlation between questionnaire measurements
and the individuals’ true intake levels.4

The random part of the total measurement error,
indicated by εQ in equation (2b) and uncorrelated with
true intake level T, will always have a positive co-
variance with measurements Q; that is, positive random
errors will be more frequent among individuals with
intake measurements above the population mean, and
negative errors will be more frequent among indi-
viduals with low intake measurements. This positive
covariance between measurements Q and random meas-
urement errors causes an underestimation of the slope θ,

usually referred to as ‘attenuation bias’,2 and indicated
by the factor ρ2

QT in equation (3).
The non-random part of the total measurement error

can have either a positive or negative covariance with
measurements Q, and may thus cause a bias in (log-)
relative risk estimates that is either in the same dir-
ection, or opposite to the attenuation bias caused by the
random part of the error. When the measurement errors
have a positive covariance with true intake levels T, the
proportional scaling factor βQ will be greater than 1.0,
and dietary questionnaire measurements above the popu-
lation mean will be overestimated more than measure-
ments below the mean. In this case, the bias in estimates
of the log-relative risk θ caused by the proportional
scaling error will go in the same direction as the attenu-
ation bias caused by random errors (i.e. towards an
underestimation of θ). When the measurement errors
have a negative covariance with true intake levels T, the
proportional scaling factor βQ is smaller than 1.0 and its
related bias in estimates of the log-relative risk θ will
be opposite to that caused by the random errors εQ.

Wacholder5 recently discussed the theoretical situ-
ation where the attenuation bias (by a factor ρ2

QT) caused
by the random parts of the measurement errors are can-
celled out by an inverse, proportional scaling bias (i.e.
βQ = ρ2

QT, so that the bias factor in equation (3) equals
λ = ρ2

QT/βQ = 1.0). It can be shown (Appendix), that this
is precisely the case where the covariance between the
measurements Q and the total measurement errors eQ
equals zero. The total measurement errors eQ are then
also called ‘berksonian’, after Berkson6 who showed
that in this particular situation the measurement errors
cause no bias in estimates of the slope θ.

For dietary questionnaire measurements, the propor-
tional scaling factor βQ is generally expected to be
rather close to 1.0, whereas the squared correlation ρ2

QT
is usually smaller than 0.50. Overall, therefore, the total
errors eQ in dietary questionnaire measurements are
usually non-berksonian, and estimates of slope θ are
biased predominantly towards zero by the attenuating
effects of the random parts, εQ, of the measurement
errors. A crucial observation, however, is that a mul-
tiplication of the scale of measurements Q by an arbit-
rary factor f changes the value of βQ (to fβQ), but leaves
the value of the correlation ρQT unaffected. This implies
that the measurement errors eQ can always be made
berksonian, by choosing the value of the rescaling fac-
tor f that will make βQ equal to ρ2

QT. In the Appendix it
is shown that such a rescaling factor must be equal to
the bias factor λ with the expected value indicated in
equation (3). Thus, for questionnaire measurements
rescaled to Q′ = ν + λQ (with an appropriately chosen
value for ν), it can be shown that for any subgroup of
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individuals the true intake level is, on average, equal 
to their rescaled questionnaire measurements (i.e.
E[T|Q′] = Q′). Moreover, regressing outcome variable
Y on rescaled measurements Q′ = ν + λQ, rather than
on original measurements Q, will yield (approximately)
unbiased estimates of the slope θ. This method of re-
scaling is equivalent to the method of ‘linear approx-
imation’ described by Rosner et al.7 for the correction
of bias in logistic regression estimates of relative risk.
In studies on diet, the method is increasingly being
referred to as ‘calibration’, and the factor λ can thus
also be called the ‘calibration’ factor.

Even in the situations where the bias factor λ equals
1.0—i.e. attenuation effects due to random errors εQ are
balanced by a proportional scaling factor βQ smaller
than 1.0, so that the total measurement errors eQ are
berksonian and do not induce bias in regression estim-
ates of log-relative risk θ—the presence of random errors
εQ does affect the statistical power of a test for linear
association between disease outcome Y and true intake
level T (i.e. testing the null hypothesis that the log-
relative risk θ equals zero). The power for this type of
test can be shown to be a positive function of the
variance in true dietary intake levels ‘predicted’ by the
questionnaire measurements,8 where the predicted
intake levels X = E[T|Q] are defined as the mean true
intake levels T (for groups of individuals) for given
values of measurement Q. Under the specific model
assumptions of section 1, the variance of the predicted
intake levels can be shown to be equal to

Var(E[T|Q]) = ρ2
QTσ2

T (5)

(Appendix). This equation confirms the common
knowledge that, with decreasing values of the cor-
relation ρQT, the variation in true intake levels dis-
tinguished correctly by the questionnaire measurements
decreases, so that the statistical power progressively
drops to zero. It must be noted that the variance of pre-
dicted intake levels is identical to the variance of
perfectly calibrated questionnaire measurements Q′ =
ν + λQ (since E[T|Q] = E[T|Q′] = Q′).8

VALIDATION AND CALIBRATION
As mentioned, the power of a statistical test for diet-
disease association depends on the variation in true
intake level actually distinguished by the dietary
questionnaire measurements. Therefore, to optimize the
power, the variation of predicted dietary intake levels
should be made as large as possible. As indicated by
equation (5), this can be achieved by maximizing the
correlation ρQT, by maximizing the variance of true in-
take level σ2

T, or by a combination of both approaches.

In addition to optimizing the statistical power, it is
desirable to obtain unbiased estimates of relative risk.

Developing a questionnaire that will yield dietary
intake measurements with a high correlation ρQT, or
selecting an optimal questionnaire amongst two or more
candidate methods, implies that during this process the
correlation ρQT can be estimated. Likewise, an unbiased
estimation of the log-relative risk θ implies that the bias
factor λ can be estimated. Both objectives—estimating
the correlation coefficient ρQT, or estimating the bias
factor λ—require the conduct of preliminary ‘validity’
substudies, or of ‘calibration’ substudies, in which
questionnaire measurements are compared with addi-
tional dietary intake measurements obtained by inde-
pendent methods. The practical design requirements for
these two types of substudy differ somewhat, and are
discussed in the next two subsections.

Selecting a Dietary Questionnaire: Preliminary
Validity Studies
‘Validation’ is usually defined as the evaluation of
whether a measuring instrument really measures what it
is actually intended to. In studies on diet, however, a
major practical complication is that no methods are
available to obtain perfectly accurate measurements of
the habitual intake levels of single individuals. Con-
sequently, differences between measured and true in-
take levels cannot be evaluated for separate individuals,
but one can estimate only to what extent variation in
measurements reflects, on average, between-person vari-
ation in true, habitual intake levels. The proportion 
of the variance of questionnaire measurements Q that 
is associated with true intake level T is given by the
square of the correlation coefficient ρQT, and the cor-
relation coefficient ρQT is therefore also referred to as
the ‘validity coefficient’ of questionnaire measurements.2

The principal aim of preliminary validity studies in the
EPIC project was to estimate this coefficient.

Especially because there are no methods for a fully
accurate measurement of the true, habitual intake levels
of foods or nutrients of free-living individuals, the
analysis of dietary validity studies must be based en-
tirely on model assumptions specifying the relation to
true intake levels of the individuals’ questionnaire meas-
urements (as in equation (2b)), and of other types of
measurement taken for the purpose of comparison.
Plummer and Clayton9,10 and Kaaks et al.11 have dis-
cussed the design and analysis of dietary validity studies
in general terms of latent variable models. It was
concluded that estimation of the validity coefficient ρQT
of dietary questionnaire measurements Q requires a
comparison with at least two additional measurements
(X1, X2) per person. A crucial assumption is that the
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random errors in measurements Q,X1,X2 are independ-
ent, so that correlations between the measurements are
due entirely to their association with the same, true
intake variable.

In practice, the independence of random errors
between the three measurements can only be assumed,
but not proven. The likelihood that this assumption is
valid can be increased, however, by taking measure-
ments with different methods that have different
(suspected) sources of error. The commonest approach
to collecting the two (or more) additional measure-
ments required for a dietary validity study is to obtain 
a number of replicate measurements of the actual 
daily food intakes at regular intervals during a one-
year period, using weighed food records or 24-hour
recalls. So far, validity studies have typically included
about 100–200 subjects, using the average of 12–28
days of repeat daily food consumption records per
person as reference measurements.12,13 This was also the
basic design of the validity studies conducted during
the pilot phase of the EPIC project.14 Following this
study design, the validity coefficient ρQT is estimated
from the correlation between questionnaire measure-
ments and the individuals’ averages of k daily intake
records, R, with adjustment for the attenuating effects
due to random, within-subject (day-to-day) varia-
tions in the latter.15 It must be noted that in order to
obtain valid results this approach requires random
errors to be independent not only between question-
naire measurements and daily intake records, but also
between the replicate daily intake measurements taken
by the same method on the same individuals. Violation
of the first assumption (Cov(εQ,εR) ≠ 0) will lead to 
an overestimation of the validity coefficient ρQT;
conversely, violation of the second assumption (i.e.
(Cov(εRi ,εRj) ≠ 0, for replicate measurements Ri, Rj
taken on different occasions) will lead to an under-
estimation.

In the preliminary validity studies of the EPIC pilot
phase, replicate samples of blood and (24-hour) urine
were collected in addition to 24-hour recalls, for
measurement of biochemical markers of dietary intake
level.16,17 Biochemical markers of diet have the appeal
that variations uncorrelated with true intake level T 
(i.e. random ‘errors’ if we consider the markers as a
measurement of intake) are likely to be truly inde-
pendent of those of questionnaire measurements of
habitual intake level. On the other hand, the correlation
between marker and true intake level of a given food 
or nutrient is generally far from perfect, even when
adjustments are made for attenuation due to within-
person variations over time in the marker.18 The observed
sample correlation between marker and questionnaire

measurements can thus generally be interpreted only as
a lower limit for the correlation ρQT. Using structural
equations models,11 or an elementary factor analysis
model,18,19 another estimate of the validity coefficient
ρQT can, however, be obtained from a triangular com-
parison between questionnaire measurements, records
of daily intake and biochemical marker. The advant-
age of this triangular approach is that it avoids the
assumption of independence between errors of replicate
reference measurements taken by the same (recording)
method on the same individuals. Nevertheless, the
method still relies on the assumption of independence
between the errors of different types of measurement. If
one assumes that the only possible violation of model
assumptions may be a certain level of correlation be-
tween random errors of questionnaire measurements
and daily intake records, the estimated correlation ρQT
can still be interpreted as an upper limit for the true
validity coefficient.18

Estimating Predicted Intake Levels: Calibration
Besides selection of an optimal questionnaire method,
using validity studies during a preliminary pilot phase,
substudies with additional intake measurements are
needed to estimate the magnitude of the calibration
factor λ, to correct for bias in relative risk estimates.
Substudies designed to estimate the factor λ or, which
is equivalent, to estimate true intake levels predicted 
by the questionnaire measurements, are referred to 
as ‘calibration’ studies. The basic requirement for
calibration studies is that for at least a subsample of the
study population ‘reference’ measurements R must be
available that are free of scaling bias (i.e. R = T + εR)
with random errors εR that are independent of those of
questionnaire measurements (Cov(εR,εQ) = 0). Under
these assumptions, we can estimate the predicted intake
level E[T|Q] as the mean reference measurement con-
ditional on the level of questionnaire measurement,
E[R|Q]. Thus, questionnaire measurements are used to
classify or rank individuals according to habitual diet-
ary intake pattern, as characterized by the intake levels
of specific food groups or nutrients, and additional ref-
erence measurements are used to estimate the mean true
intake level of food or nutrients for subjects classified
or ranked differently by the questionnaire. Assuming a
continuous, linear relation between questionnaire meas-
urements and true intake levels (as in equation (2b)),
normal linear regression of R on Q can be used to
estimate predicted intake levels as X = E[R|Q] =
ν + λQ = Q′ , which is equivalent to the rescaling (cal-
ibration) of questionnaire measurements mentioned in
section 1 in this paper. Approximately unbiased esti-
mates of the log-relative risk θ can be obtained by
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regressing disease outcome Y on these estimates of
predicted intake level.

More extensive discussions of the calibration method
have been given elsewhere.7,8,20 An additional note of
interest may be that the estimates of predicted intake
levels obtained by regression of reference measure-
ments R on the questionnaire measurements can also be
seen as ‘empirical Bayes’ ’ estimates of exposure,3 and
that the calibration method has also been discussed in a
more general context of Bayesian statistics, including
the use of ‘Gibbs sampling’ methods.21

Weighed food records, or 24-hour recalls are gen-
erally thought to provide the best possible estimates of
mean intakes of different food groups and nutrients at a
population level, and thus seem to be optimal methods
for taking reference measurements in a calibration
study. It is important to realize that, with the assumed
independence between the random errors of question-
naire and reference measurements (i.e. Cov(εR,εQ) = 0),
the random errors of reference measurements are not
expected to cause bias in estimates of the calibration
factor (attenuation bias is caused only by random errors
in the predictor variable). The reference measurements
therefore do not need to give precise evaluations of an
individual’s long-term, habitual intake level, and can be
based even on a single day’s food consumption record.
Nevertheless, a sufficient number of records should be
obtained, either by including a sufficiently large num-
ber of subjects in the calibration study, or by taking
multiple records for each participant, for the calibration
study to reach a minimum level of precision. It has been
shown elsewhere that, for a given total number of daily
food consumption records collected, the standard error
of the estimated calibration factor λ will be smallest
when the calibration study includes a maximum of in-
dividuals, with only a single record each.22,23 In the EPIC
study, where reference measurements are taken by 
24-hour recall interview, this one-recall-per-person de-
sign is also optimal from a practical (logistic) and fin-
ancial viewpoint: in many EPIC study centres 24-hour
recalls can be obtained immediately when subjects come
to a research centre to return a completed dietary ques-
tionnaire (mailed to them previously) and give a blood
sample. Increasing the number of subjects in the cal-
ibration study when they make their first visit to a
research centre is less expensive than re-inviting them
for repeat interviews.

Calibration of dietary intake measurements will 
on average lead to approximately unbiased estimates 
of the log-relative risk θ, relating the probability of
disease outcome Y to dietary exposure level. An un-
avoidable drawback of needing such bias correction
procedure, however, is that the confidence intervals of

adjusted θ-estimates obtained by regression of out-
come Y on calibrated exposure measurements must 
be adjusted as well, to account for imprecision in 
the estimation of the calibration factor. Only in the
theoretical case where the calibration factor λ is
estimated with zero standard error is there no increase
in the confidence interval of θ. In practice, however, the
calibration factor λ is estimated with some degree of
imprecision, and the confidence interval of a calibrated
θ-estimate must be augmented to account for this
imprecision (a closed-form equation for the adjusted
variance of the calibrated θ-estimate has been derived
by Rosner et al.).7 A critical issue, therefore, is to
decide how many subjects must be included in the
calibration study for the factor λ to be estimated with 
a sufficiently small standard error. Ideally, calculations
of sample size requirements would be based entirely 
on the criterion of a high relative efficiency, defined by
the increase in width of the confidence interval for θ,
compared to the confidence interval that would be
obtained if the calibration was perfect (i.e. with ab-
solute precision).20 The use of this criterion alone may
lead to excessive sample size estimations, however, if
the confidence interval for the log-relative risk estimate
θ before the calibration adjustment is expected to be
very narrow (because there are strong relative risks for
high versus low measured exposure levels, or because
the expected numbers of cases are high).23 An altern-
ative is to use two complementary criteria of either 
a high relative efficiency, or a minimum value for a
standardized test score computed as the calibrated 
θ-estimate divided by its (adjusted) standard error.
Using these combined criteria, theoretical sample size
requirements for calibration substudies depend only on
the correlation between questionnaire and reference
measurements.23

In the EPIC study, the minimum correlation between
questionnaire measurements and a single 24-hour recall
is expected to be around 0.20 for major nutrients (Table 1
gives results from the preliminary validity studies of 
the EPIC pilot phase). Given this minimum level of cor-
relation, sample size requirements for calibration
studies have been estimated to be around 4000 indi-
viduals per country, to obtain either a relative efficiency
above 0.90, or a minimum value of 4.0 for a stand-
ardized score (and with roughly normal distribution) to
test whether the calibrated log-relative risk estimate
differs from zero. To optimize further the efficiency of
the calibration studies, it was decided to recruit substudy
participants by stratified sampling, weighting the num-
bers of participants proportionally to the expected
cumulative total cancer incidence during a 10–15 years’
follow-up in strata of age and sex.
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CALIBRATION FOR BETWEEN-COHORT
COMPARISONS
Besides developing a questionnaire method that yields
dietary intake measurements with smallest possible ran-
dom errors, a complementary way of increasing the
variance of predicted dietary intake levels, thereby im-
proving the power of statistical tests for association
between dietary intake levels and disease risk, is to
augment the between-person heterogeneity, σ2

T , of true
dietary exposure levels.

White et al.24 recently discussed the fact that choos-
ing a study population with a larger heterogeneity of
dietary consumption patterns may actually have a double
advantage. The first is that a wider range of true intake
levels and an associated wider range of disease risks
can be detected, which will increase the statistical
power even when exposure levels are measured with
absolute precision. The additional advantage is that the
proportion of the variation in true intake level that is
measured accurately (i.e. the correlation ρQT between
measured and true intake levels) will also be increased.
The latter can be seen directly from equation (4), which
shows that the correlation ρQT depends on the ratio of
the between-subject variances of random errors (σε

2
Q),

and of true intake levels (σ2
T). It must be noted, how-

ever, that White et al. assume that the variation in the
magnitude of measurement errors does not also increase
when a more heterogeneous study population is chosen.
This assumption may not always be realistic. The het-
erogeneity of true dietary exposure levels may be
increased, for example, by including individuals of
different ethnic origin. A single type of questionnaire
may not then provide equally accurate measurements of
intake in different subgroups of individuals consuming
very different types of food.

The very rationale of the EPIC project as a multi-
centre European study was to increase the total varia-
tion in true dietary exposures by including subjects
from different regions in Europe, with diverse dietary
intake patterns. Plummer et al.20 and Kaaks et al.22

have described how, under mild simplifying assump-
tions, the information obtained from such multicentre
cohort studies can be decomposed into:

a. estimated relations between dietary exposures and
disease risk at the individual level, within each of the
study centres (cohorts) separately; and
b. an estimated ‘ecological’ relation between mean
exposure measurements and average disease incidence
at a cohort (group) level.

The evidence for diet-disease association in the form of
intra-cohort relative risk estimates is strengthened by
the overall increase in sample size, whereas the in-
creased heterogeneity in exposure level by inclusion of
diverse populations is captured by the between-cohort,
ecological relation. Ideally, the within- and between-
cohort estimates of relative risk corroborate one another,
and may then be combined into a more powerful sum-
mary value. For optimal validity of this combined
analysis it is obviously important to standardize meas-
urements of dietary exposures and potential confound-
ing factors carefully, and to take proper account of
potential confounding or statistical interaction effects
in the analysis. It must be noted that, in contrast to
traditional ecological studies where estimates of expos-
ure level, potential confounders and disease incidence
rates are available only at an aggregate, population
level, in a multicohort design these measurements can
all be obtained at the level of individuals. Effects of
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TABLE 1 Coefficients of correlation; between nutrient intake measurements obtained by dietary questionnaire and by a single 24-hour
recall

Spain France Greece Germany Italy Netherlands UK

Men Women Women Men Women Men Women Men Women Men Women Women

Calories 0.53 0.46 0.24 0.45 0.27 0.34 0.20 0.15 0.15 0.42 0.37 0.30

% Energy from:
Protein 0.33 0.41 0.31 0.28 0.20 0.27 0.28 0.27 0.23 0.43 0.32 0.38
Carbohydrates 0.46 0.46 0.37 0.23 0.10 0.38 0.34 0.25 0.34 0.51 0.47 0.53
Fat 0.26 0.36 0.24 0.12 0.07 0.30 0.18 0.14 0.17 0.41 0.31 0.35

Alcohol 0.73 0.49 0.38 0.34 0.34 0.50 0.55 0.56 0.55 0.57 0.61 0.75
Fibre 0.49 0.35 0.24 0.20 0.17 0.44 0.20 0.13 0.23 0.32 0.33 0.38
Vitamin C 0.40 0.40 0.24 0.16 0.11 0.08 0.14 0.07 0.23 0.23 0.25 0.35
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confounding of the ecological relations in a multicentre
cohort study can therefore in principle be adjusted for
properly in the analysis.

A possible complication in multicentre studies on
diet is that dietary questionnaire measurements may not
predict true intake differences with equal accuracy in
all centres. Although a similar type of dietary question-
naire is used in the various EPIC study centres, the
number and detail of questions about consumption of
specific foods must be adapted to local habits, as diet-
ary patterns and language vary substantially between
countries. Moreover, the correlation ρQT between ques-
tionnaire assessments and true intake levels depends on
the between-person variance of true intake level σ2

T
(equation (4)), which may also differ between popu-
lations. There may thus be variation between study
centres in the degree of bias in relative risk estimates
induced by dietary assessment errors. Such distortions
can, however, be corrected for by conducting dietary
calibration studies, based on well-standardized refer-
ence measurements collected in a representative
subsample of each main study population. Within in-
dividual cohorts, (log-)relative risk estimates can be
adjusted for bias, after estimation of the appro-
priate calibration factors λ. If the calibration factors λ
are estimated with sufficient accuracy, these adjust-
ments may reduce between-cohort heterogeneity in
relative risk estimates caused by dietary assessment
errors.

The between-cohort, ecological relation may also be
seriously distorted by measurement errors leading to
differences in systematic over- or underestimation of
mean dietary intake levels. Again, however, the eco-
logical relation can be restored by substituting mean,
standardized reference measurements for the mean
dietary intake measurements obtained by the baseline
questionnaires, thereby correcting for (or reducing)
between-cohort differences in over- or underestimation
of intake level. 

DISCUSSION
This paper reviews methodological aspects of the use
and design of substudies to evaluate the accuracy of
dietary intake measurements in prospective cohort
studies. The two central issues discussed are: 

a. How to maximize the variation in the true intake
levels of specific nutrients or food groups predicted by
questionnaire measurements collected at baseline; this
issue relates to obtaining an optimal power for statis-
tical tests whether or not there are specific diet-disease
associations.

b. How to estimate efficiently, and with sufficient ac-
curacy, the magnitude of the variation in predicted
intake level; this is equivalent to the question of how to
estimate efficiently the calibration factor λ with a given
level of precision, and relates to the correction for bias
in relative risk estimates.

In the EPIC project, two types of substudy have been,
or are being, conducted to address these issues in
practice, namely 1) preliminary validity studies, con-
ducted before the actual recruitment of the main study
cohorts was started; and 2) calibration studies, con-
ducted on a random subsample of cohort members, after
their actual recruitment.

The principal objective of the preliminary validity
studies conducted during the EPIC pilot phase (the
results of which are presented in this Supplement) was
to evaluate whether candidate questionnaire methods
would measure a reasonable proportion of the between-
person variation in true dietary intake level in a given
study population. After this early stage evaluation,
questionnaires could still be modified before actually
being used in the main cohort studies. A secondary
objective of the pilot-phase validity studies was to al-
low the various EPIC research centres to gain exper-
ience with the 24-hour recall, and to work on its
standardization as a reference method for subsequent
calibration studies. The data collected by the 24-hour
recall method during the preliminary validity studies
proved extremely useful for the development of a special
computer software (‘EPIC-SOFT’), designed to stand-
ardize the structure of the interview, and the number
and detail of questions about foods consumed. 

An essential difference in design requirements between
validity studies (for estimation of the correlation ρQT)
and calibration studies (for estimation of true intake
levels predicted by questionnaire measurements), is that
the former must be based on at least two additional intake
measurements (e.g. two 24-hour recalls) per person,
whereas only a single additional measurement (e.g. a
24-hour recall) is needed for the latter. In the validity
studies of the EPIC pilot phase, the number of replicate
24-hour recalls per person was increased to 12. This
was done to improve the precision of the validity
studies, and because increasing the number of recalls to
12 per person was a logistically and financially more
efficient way to improve the precision of estimated
validity coefficients than increasing the numbers of
study participants, with only two recalls each. By con-
trast, as the calibration studies are conducted on sub-
groups of cohort members with previously completed
dietary questionnaires, the optimal (most cost-efficient)
design of this type of substudy includes a larger number



of individuals with only a single reference measurement
each.

An important advantage of calibration studies based
on only a single 24-hour recall per person is that these
may be conducted more easily on a truly representative
subsample of cohort members. For calibration, such
representativeness is indeed crucial, as the objective is
to estimate in the substudy a mathematical function by
which baseline questionnaire measurements can be
translated (rescaled) into predicted true intake levels,
and to use this function to correct for bias in crude
relative risks estimated in the full cohort. In the pre-
liminary validity studies of the EPIC pilot phase, where
subjects were asked to comply with a much more
intense schedule of dietary intake assessment, using 
12 24-hour recalls and multiple samples of blood and
urine, some self-selection of participants may have oc-
curred. Thus, if those who volunteered to take part in
the validity studies had a more than average motivation
to respond accurately to dietary questionnaires, the ac-
curacy of questionnaire measurements as estimated
from the preliminary validity studies may have been
overstated compared to the accuracy of questionnaire
measurements in the main study cohort. Nevertheless,
to the extent that the validity study is used only to
develop an optimal questionnaire method, or to select an
optimal version amongst several candidates, represent-
ativeness may be a less stringent requirement for pre-
liminary studies, assuming that relative differences in
the accuracy of methods are similar in the substudy and
in the main study population.

The 24-hour recall method is considered ideal for
intercultural comparisons of mean dietary intake levels,
as it is an essentially open-ended method which allows
a detailed reporting of amounts of very heterogeneous
types of food or dishes.25 Compared to weighed food
consumption records, advantages of the 24-hour recall
method are that participation rates are generally very
high, and that the interviewer can monitor the com-
pleteness and quality of the subjects’ responses, and
elicit more detailed answers if needed. Nevertheless, 
it may be over-optimistic to assume, as was done in 
this paper, that 24-hour recalls provide truly unbiased
measurements of mean dietary intakes at group level:
underestimations may occur if subjects omit to report
foods they have actually consumed. If this type of
systematic over- or underestimation occurs, and par-
ticularly if these errors translate into a proportional
scaling bias (i.e. βR ≠ 1.0), calibration will not trans-
form errors in questionnaire measurements into truly
berksonian error, and regression of disease outcome 
on the calibrated questionnaire measurements will not
result in truly unbiased estimates of relative risk. In

multicentre studies such as the EPIC project, however,
the first objective of calibration is to estimate disease
risk as a function of dietary intake differences expressed
on a similar scale of measurement in all cohorts; that is,
the aim is to improve the between-cohort comparability
of relative risk estimates, and to improve the precision
of and estimated ecological relation between mean
intake levels and mean disease incidence rates. For this
more limited objective, it is sufficient to assume that, to
the extent that constant or proportional scaling biases
occur in the 24-hour recalls, these biases will be of a
relatively constant magnitude in all study cohorts.

Another possible complication, which can be con-
sidered only very briefly here, is that the assumption of
independence of random errors of questionnaire and
reference measurements (εQ and εR) may be violated.
As mentioned, the independence of errors in practice
can only be assumed, not proven. To increase the like-
lihood that the assumption is valid, a reference method
should be chosen that has different suspected sources of
error than the questionnaire used in the full cohort.
Questionnaire measurements and 24-hour recalls both
rely on an individual’s capacity to remember and de-
scribe food consumption carefully. Nevertheless, the
mental processes related to the long-term recall of aver-
age food consumption patterns, or to the very short-
term recall of actual food consumption on the previous
day are believed to be quite different.26

Ideally, reference measurements in calibration studies
should be based on less subjective measures of dietary
intake such as a biochemical marker. Although many
biochemical markers measured in blood or other tissues
are known to have some level of correlation with in-
take levels of specific nutrients or foods,16,17 however,
their quantitative relations with absolute daily intake
levels are often unknown; that is, assuming that, for
example, this relation is described well by the linear
model 

M = αM + βMT + εM (7)

the values of the scaling factors αM and βM are
unknown and may vary between populations. Most
biochemical markers cannot therefore be used as
reference measurements for the calibration of dietary
intake measurements. An exception is the 24-hour urin-
ary nitrogen excretion, which can be translated into an
estimate of absolute level of protein intake.27 In the
EPIC study, 24-hour urines are being collected in sub-
groups of calibration study participants. Intake levels of
protein estimated from the amounts of nitrogen excreted
in these urine samples will be used to monitor the ac-
curacy of between-country standardization of 24-hour
recalls as a common measurement for calibration.
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APPENDIX
Assume questionnaire measurements are related to true
intake level as 

Q = T + eQ

with Var(T) = σ2
T, Var(eQ) = σ2

eQ, Cov(T, eQ) = φ. Fol-
lowing this model notation, the correlation between
measured and true intake level can be written as

ρQT = Cov(Q,T)/√[Var(Q) Var(T)]

= (σ2
T + φ) / √[σ2

T(σ2
T + 2φ + σ2

eQ)]

As explained in the main text, the model can be
rewritten as

Q = αQ + βQT + εQ

with

βQ = 1 + Cov(eQ, T)

= (σ2
T + φ) / σ2

T

Now suppose we transform the measurements Q into

Q′ = v + λQ

= v + λ(T + eQ)

= v + T + (λ – 1)T + λ eQ

= v + T + e*Q

(with e*Q = (λ – 1)T + λ eQ)

We wish to determine λ so that Cov(Q′ , e*Q) = 0, that is,

Cov(Q′ ,e*Q) = Cov(ν + T + e*Q, e*Q)

= Cov(ν + T, (λ – 1) T + λ eQ)
+ Var ((λ – 1)T + λeQ)

= (λ – 1)σ2
T + λφ + (λ – 1)2σ2

T + λ2σ2
eQ

+ 2(λ – 1)λφ

= λ [(λ – 1)(σ2
T + 2φ) + φ + λσ2

eQ]

= λ [λ(σ2
T + 2φ + σ2

eQ) – σ2
T – φ]

= 0

Solutions to the last equation are λ = 0—a meaningless
outcome if one wishes to correct for error by rescaling
of measurements, as it implies a total absence of asso-
ciation between measured and true intake levels—or 

λ = (σ2
T + φ) / (σ2

T + 2φ + σ2
eQ)

= (σ2
T + φ)2 / [σ2

T(σ2
T + 2φ + σ2

eQ)]) (σ2
T / (σ2

T + φ))

= ρQ
2

T / βQ

The latter solution is the bias factor mentioned in
equation (3) of the main text.

The variance of predicted intake levels is equal to the
variance of perfectly calibrated questionnaire measure-
ments; that is

Var(E[T|Q] = Var(E[T|Q′]) = Var(Q′ )

= Var(v + λQ)

= λ2 Var(Q)

= ((σ2
T + φ) / (σ2

T + 2φ + σ2
eQ))2 (σ2

T + 2φ + σ2
eQ)

= (σ2
T + φ)2 / (σ2

T + 2φ + σ2
eQ)

= ((σ2
T + φ)2 / [σ2

T(σ2
T + 2φ + σ2

eQ)]) σ2
T

= ρQ
2

T σ2
T


