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Abstract

Background: In Saccharomyces cerevisiæ, structural bistability generates a bimodal expression of the galactose

uptake genes (GAL) when exposed to low and high glucose concentrations. This indicates that yeast cells can decide

between using either the limited amount of glucose or growing on galactose under changing environmental

conditions. A crucial requirement for any plausible mechanistic model of this system is that it reproduces the

robustness of the bistable response observed in vivo against inter-individual parametric variability and fluctuating

environmental conditions.

Results: We show how a control-theoretic analysis of the robustness of a model of the GAL regulatory network may

be used to establish the model’s plausibility in characterizing the persistent memory of different carbon sources,

without the need for extensive simulations. Chemical Reaction Network Theory is used to establish that the proposed

network model is compatible with structural bistability. The robustness of each of the two operative conditions

against fluctuations of the species concentrations is demonstrated by studying the Domains of Attraction of the

corresponding equilibrium points. Finally, we use a global robustness analysis method based on Semi-Definite

Programming to evaluate the modification of the bistable steady states induced by multiple parametric variations

throughout bounded regions of the parameter space.

Conclusions: Our analysis provides convincing evidence for the robustness, and hence plausibility, of the GAL

regulatory network model. The proposed workflow also demonstrates the power of analytical methods from control

theory to provide a direct quantitative characterization of the dynamics of multistable biomolecular regulatory

systems without recourse to extensive computer simulations.

Keywords: Galactose network, Bistability, Robustness, Domain of attraction, Bifurcation, Local sensitivity, Global

sensitivity

Background
Although yeasts, in common with most cellular organ-

isms, can derive energy from a variety of different

molecules, glucose is well-known to be their preferred

source, because it provides more energy than any other

saccharide. Therefore, yeasts have evolved a complex

genetic network to make sure they can consume as

much glucose as possible when it is available [1]. In [2],
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the authors experimentally investigated the regulation of

galactose metabolism in S. Cerevisiæ, which is mediated

by several positive and negative feedback loops acting at

the transcriptional level. To probe the system for mul-

tistability, two identical cell populations were grown on

different media, with and without galactose, respectively.

In engineering terms, this amounts to initializing the sys-

tem at two different operating conditions. Starting from

these conditions, the two populations were then exposed

to identical galactose concentrations for a period long

enough to guarantee the attainment of steady-state con-

ditions. For intermediate levels of the input (galactose

concentrations), the two populations settled on different

steady states, thus confirming the multistable nature of
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the system. These and other experimental results have

revealed that the GAL system exhibits bistable dynamics

and that such bistability generates a persistent memory

of the type of carbon source consumed by the cell in the

past.

In previous work, classical mathematical tools, such

as bifurcation analysis, have been used to examine the

dynamics of the GAL regulatory network, see e.g. [3,4].

Recently, we showed, using a control-theoretic analy-

sis, that the GAL network simplified mass-action mod-

els proposed in [5,6], do not reproduce the bistable

behavior exhibited by the experimental studies of Acar

and coworkers; this finding motivated us to propose

a new model of the GAL system, [7]. In this paper

we extend this model and provide a thorough charac-

terization of its dynamical properties, with the aim of

validating it as a plausible mechanistic explanation of

the persistent memory property. Our approach starts

with the analysis of the model’s bistable dynamics as

a structural property, arising from the topology of the

reaction network. Afterwards, we focus on the study

of the robustness of bistability both against fluctua-

tions of the concentrations of the molecular species,

caused by endogenous stochastic noise or by exogenous

perturbations, and in the face of parametric uncertain-

ties. The principle underpinning these analyses is that

the quality of a model cannot be solely evaluated by

its capability to reproduce a particular set of experi-

mental measurements. Indeed, a common problem in

modeling biological networks is that alternative, struc-

turally different models can fit experimental data equally

well [8]. In order to represent a plausible mechanis-

tic description of a biological phenomenon, the model

must also replicate an essential feature of biological sys-

tems, that is robustness against inter-individual para-

metric variability and in vivo fluctuating environmental

conditions [9-12].

Our characterization of the robustness properties of

the model starts with an analysis of the Domains of

Attractions (DA’s) of the bistable system. Roughly speak-

ing, the DA of an equilibrium point xe is a region D

in the state space, such that xe ∈ D and every state

trajectory crossing D converges asymptotically to xe.

DA analysis is crucial for establishing whether the pro-

posed model provides a plausible explanation of the phe-

nomenon under investigation, since the system is actually

able to operate around a given equilibrium point with

some degree of robustness in the face of both intrin-

sic stochastic noise and exogenous perturbations only if

that equilibrium point possesses a nontrivial DA. Note

that the estimation of the DA is, in general, a diffi-

cult problem for systems of nontrivial dimension. In our

approach we show how, for any mass-action model, it is

possible to apply a convex optimization-based method,

devised in a purely theoretical context by our group in

[13,14], to test whether an assigned polytopic subset of

the state space belongs to the DA of an equilibrium

point.

We next consider the robustness of the model’s bistable

dynamics in the face of uncertain parameter values. Many

examples can be found in the literature of studies apply-

ing local sensitivity and bifurcations analysis as tools for

characterizing the parametric robustness of biological sys-

tems, e.g. [15-17]; however, these tools suffer from a

significant limitation due to their inability to take into

account more than one or two simultaneous parameters

variation at the same time. Multi-parametric sensitivity

analysis of biomodels is typically performed by resorting

to extensive sampling of the admissible parameter space,

[18,19], which requires a large large computational effort

and can only provide probabilistic conclusions. To over-

come these limitations, besides applying local sensitivity

and bifurcations analysis, we employ a global sensitiv-

ity analysis method proposed in [20,21]. This method

is aimed at computing an outer approximation of the

region of the state space that contains all the equilib-

rium points of a given biosystem for all admissible values

of the parameters. In our analysis, we devise a straight-

forward way to adapt this method to provide robust-

ness certificates for bistability in the face of parametric

uncertainty.

Thus, beyond our primary goal of validating a

new model of the bistable GAL regulatory network,

we also present what should be a widely applicable

and effective procedure for investigating the plausi-

bility of dynamical models of multistable biomolecu-

lar circuits, without recourse to large-scale numerical

simulations.

Results
A newmodel of the GAL regulatory network in S. Cerevisiæ

The regulatory network of galactosemetabolism, depicted

in Figure 1, is governed by the following factors: a tran-

scriptional activator protein Gal4p, a signal transducer

protein Gal3p and an inhibitor protein Gal80p. In the

presence of galactose, Gal4p activates transcription of

GAL2, GAL3, GAL80, which are regulatory genes, and

of GAL1 and several other genes (not shown in the

figure), which encode the enzymes of the Leloir pathway

(the GAL genes) of galactose metabolism. The protein

encoded by gene GAL2 acts as a mediator of galactose

transport into the yeast cell. In the absence of exter-

nal galactose, Gal80p binds to the activation domain

of Gal4p, thus inhibiting the expression of the GAL

genes. In the presence of galactose, however, the inducer

Gal3p is activated to form the complex Gal80p:Gal3p*,

which promotes the shuttling of Gal80p from the nucleus
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to the cytoplasm. This decreases the fraction of Gal80p-

bound Gal4p in the nucleus. Thus, galactose relieves the

inactivation of Gal4p and promotes transcription of the

GAL genes [1].

The mathematical model of this regulatory network

considered here is based on mass-action kinetics and rep-

resents an extended version of the model proposed in

[7]. In the new version of the model, the reaction of

reversible dissociation of the complex Gal80p:Gal3p* is

explicitly included, since this was found to be essential

to ensure robustness of the bistable dynamics, according

to the analysis procedure that will be illustrated in the

next sections. Moreover, in the new model also the Gal1p

protein dynamics are taken into account, since the con-

centration of this protein is taken as a measure of Gal4p

activity in the experiments reported in [2]. model con-

sists of the following set of nonlinear ordinary differential

equations (ODE’s),

Ġ3 = k8G4 − k2G3Gint + kr2G3a − μ13G3 (1a)

Ġint = k1GexG2 − k2G3Gint + kr2G3a − μ16Gint (1b)

Ġ3a = k2G3Gint − kr2G3a − k4G4,80G3a − μ3G3a

+ kr4G80,3aG4 − kr19G80G3a + k19G80,3a (1c)

Ġ4 = k5−k11G4G80 + kr11G4,80 + k4G4,80G3a

− kr4G80,3aG4 − μ6G4 (1d)

Ġ80=−k11G4G80+kr11G4,80+k7G4−kr19G80G3a

+ k19G80,3a−μ14G80 (1e)

Ġ4,80 = k11G4G80 − kr11G4,80 − k4G4,80G3a

+ kr4G80,3aG4 − μ12G4,80 (1f)

Ġ80,3a = k4G4,80G3a − kr4G80,3aG4−μ15G80,3a

− k19G80,3a + kr19G80G3a (1g)

Ġ2 = k9G4 − μ17G2 (1h)

Ġ1 = k10G4 − μ18G1 , (1i)
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Figure 1 Schematic diagram of the GAL regulatory network in S. Cerevisiæ. Galactose import is guaranteed by Gal2p; internalized galactose

activates Gal3p, which sequesters Gal80p in the cytoplasm, shuttling it from the nucleus. The transcriptional activator Gal4p, which is constitutively

bound to promoters of the GAL genes, is then released from the inhibitory action of Gal80p and activates expression of the GAL1, GAL2, GAL3 and

GAL80 genes. The regulatory network features two positive and one negative feedback loops.
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where the description of each state variable is reported

in Table 1. The total concentration of external galactose

Gex = constant.

The ODEmodel (1) can be rewritten in compact form as

ẋ = N v(x, p) , (2)

where the species concentrations, namely the state

variables listed in Table 1, are denoted by x :=

(G3GintG3aG4G80G4,80G80,3aG2G1)
T , the parameters

by p := (k1k2 · · · kr19)
T ∈ R

23 (the full list of param-

eters is reported in Table 2), N ∈ R
9×23 is the sto-

ichiometric matrix and v(x, p) ∈ R
23 is the vector

of reaction rates. Since the parameters are inher-

ently positive, positive values of x will result in

positive values of v(x, p), i.e. x ∈ R
9
+ ⇒ v(x, p) ∈ R

23
+ .

In the next section, we present the results of our

analysis of the bistable dynamical properties of this

model.

Structural analysis of the proposedmodel’s network

topology confirms bistable dynamics

The first step of our procedure consists in the analysis

of the topology of the regulatory network, to determine

whether its structure can admit a bistable behavior. Sub-

sequently, we will determine a possible realization (i.e.

a set of parameter values) of model (1) that exhibits

bistability.

The persistence of cellular memory exhibited by the

galactose regulatory network is a system-level property

which results from the interactions of several species

in multiple nested feedback loops. Two coupled pos-

itive feedback loops involve the galactose permease

Gal2p and the signaling protein Gal3p, while a nega-

tive feedback loop involves the inhibitor Gal80p. Recall

that, according to [22], the existence of a positive-

feedback loop, or a mutually inhibitory, double-negative-

feedback loop, is a necessary condition for the occurrence

of multistability.

Model (2) is said to exhibit bistability if there exist a

parameter vector p̄ ∈ R
23
+ , and two finite distinct equilib-

rium points xe1, xe2 ∈ R
9 such that

Nv(xe1, p̄) = 0 (3a)

Nv(xe2, p̄) = 0 (3b)

The existence of a solution to Eqs. (3) can be determined

by using Chemical Reaction Network Theory (CRNT)

[23,24], which provides a straightforward way to establish

whether an assigned network structure can admitmultiple

steady states. Furthermore, CRNT provides an algorithm

to compute a feasible value of the parameter vector p̃ and

the associated equilibrium points xe1, and xe2. This anal-

ysis confirms that system (1) admits two asymptotically

stable equilibrium points, (reported in Table 1), when the

kinetic parameters take the values in Table 2. Actually, the

values reported in Table 2 have been obtained by scaling

to appropriate dimensions the numerical values returned

by the CRNT algorithm. The scaling is required to obtain

a good agreement with previously published experimen-

tal data and numerical simulations, [2,25,26]. First of all,

CRNT returns pure numbers, without associated units; in

the light of previously published results, we have scaled

all the quantities by a factor 10−6, such that the concen-

trations are in the order of μM. Subsequently, since in the

published experiments the external galactose concentra-

tion, Gex, lies in the order of mM, while the CRNT algo-

rithm returned a unit value at equilibrium, we have scale

by a factor 10−3 the kinetic constant k1, which appears in

the galactose import term k1GexG2 in equation (1b). Such

scaling yields an equilibrium concentration of 1mM for

Table 1 Steady states of themass-actionmodel (1), with the parameters values given in Table 2

xe1 Species Description xe2

172.8212 G3 Gal3p protein 2711.1839

172.8208 Gint internalized galactose 2711.2003

1.0 G3a active Gal3p protein 318.5443

1.0 G4 Gal4p protein 19.9479

1.0 G80 Gal80p protein 0.3061

21.0604 G4,80 Gal4p:Gal80p complex 2.1126

7.5945 G80,3a Gal80p:Gal3p active complex 589.1342

1.0 G2 Gal2p protein 19.9479

1.0 G1 Gal1p protein 19.9479

1000.0 Gex external galactose 1000.0

Concentration values are all given as [μM] units.



Salerno et al. BMC Systems Biology 2013, 7:39 Page 5 of 14

http://www.biomedcentral.com/1752-0509/7/39

Table 2 A set of parameters values that renders system (1) bistable

Parameter Value Parameter Value

k1 0.1814 [μM·h] k11 85.8185 [1/h]

k2 8.4586E-4 [1/μM·h] kr11 4.7482E-2 [1/μM·h]

kr2 16.6691 [1/h] μ12 1.0 [1/h]

μ3 1.0 [1/h] μ13 1.0 [1/h]

k4 3.0749 [1/μM·h] μ14 1.0 [1/h]

kr4 0.1317 [1/h] μ15 1.0 [1/h]

k5 22.0604 [μM/h] μ16 1.0 [1/h]

μ6 1.0 [1/h] μ17 1.0 [1/h]

k7 29.6549 [1/h] μ18 1.0 [1/h]

k8 181.4157 [1/h] k19 36.6342 [1/μM·h]

k9 1.0 [1/h] kr19 222.0536 [1/h]

k10 1.0 [1/h]

The values have been computed through the CRNT algorithm and then scaled to suitable dimensions (see the results Section ‘Structural analysis of the proposed

model’s network topology confirms bistable dynamics’).

Gex; note also that it does not affect other equations, since

the kinetic constant k1 does not appear elsewhere in the

model.

Characterization of the domains of attraction confirms

robustness of the bistable equilibria

Subsequently to the determination of the asymptotically

stable equilibrium points, a primary goal in the char-

acterization of the behavior of a system is that of

estimating the DA’s of such points. Accurate esti-

mates of the DA’s provide valuable information about

the ability of a system to reject perturbations driv-

ing the system away from its steady state condi-

tion. At the same time, the boundaries of the DA’s

constitute the concentration thresholds for the activation

of the switching mechanism between different operative

conditions.

The methodology proposed in [13], which allows to

check whether an assigned box in the state space belongs

to the DA of an equilibrium, has been employed in our

study. It is worth noticing that the main result of [13] leads

to a Linear Matrix Inequality (LMI) feasibility problem,

which can be solved efficiently via off-the-shelf numerical

algorithms.

In order to find the largest possible estimates of

the DA’s of xe1 and xe2, namely D̃1 and D̃2, our

procedure takes two small initial polytopic regions,

surrounding the equilibrium points, and then iteratively

stretches them along the different dimensions of the

state space until the feasibility conditions are no longer

verified, thus obtaining two inner approximations of

the DA’s.

The estimates obtained by means of this procedure are

D̃1 = [ 100.82, 312.82]×[ 100.82, 332.82]×[ 0.0, 4.0]

×[ 0.0, 4.0]×[ 0.7, 3.0]×[ 18.06, 24.06]

×[ 2.59, 27.59]×[ 0.0, 3.0]×[ 0.0, 3.0]

D̃2 = [ 211.18, 5213.2]×[ 209.20, 5622.0]

×[ 18.54, 675.5]×[ 8.95, 30.9]

×[ 0.0, 0.7]×[ 1.11, 3.2]

×[ 89.13, 1528.1]×[ 6.9479, 58.9]

×[ 7.95, 320.9]

for xe1 and xe2, respectively (the two boxes are plotted in

normalized parallel coordinates in Figure 2a). The validity

of these estimates is confirmed by numerical simulations,

performed with initial conditions varying within the boxes

computed by the proposed approach (see Figure 3). Note

that the admissible excursion intervals, as determined by

the estimated DA’s (reported in Figure 2a), are fairly large

for most of the state variables: looking at Figure 2a one

can readily recognize that the key species that drives the

switching between the two metabolic conditions is the

complex Gal4p:Gal80p, which is associated to a smaller

admissible fluctuation interval with respect to the other

species (especially in the low galactose concentration con-

dition). Thus, the DA’s analysis highlights that a tight regu-

lation of the concentration of Gal4p:Gal80p is paramount

to the proper functioning of the genetic switch.
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Figure 2 Estimated regions in the state space. a) Estimated DA’s of the two equilibrium points; b) Initial guess for the computation of the robust

steady state subsets; c)-h) Robust steady state boxes corresponding to several admissible range of simultaneous variation of the parameters

k1 , k2 , k5 , k7 , k8 , k9 ,μ13 ,μ16 ,μ17 . In all panels both the low (dark gray) and high (light gray) galactose concentration conditions are considered.
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Figure 3 Free evolutions, for different initial conditions, of the concentrations of Gal4p and Gal1p proteins with the set of parameters

given by application of CRNT toolbox. The curves funnel into low (in dark gray) or high (in light gray), depending on initial conditions, confirming

the bistable nature of the system.

Local and global analysis confirm robustness of the

bistable equilibria to parametric uncertainty

In this section we provide further support for the plau-

sibility of the proposed model of the GAL regulatory

system by characterizing its robustness with respect to

parametric uncertainties.

The underlying principle is that, in view of the large

inter-individual variability of biochemical parameters, for

a model to be considered plausible it is not sufficient

to reproduce the qualitative behavior of the biological

system for just one set of parameter values; instead, this

behavior must be exhibited over a nontrivial subset of the

parameters space.

First, a classical sensitivity analysis is performed by

employing the method discussed in [27]: the state vari-

ables ODE’s are coupled to the equations of sensitivity.

This allows us to compute a numerical solution to

the whole set of equations, thus simultaneously obtain-

ing both the state variables and the associated sensitivity

coefficients.

The normalized sensitivity coefficients for the proposed

model are shown in Figure 4: greater sensitivity is exhib-

ited by the parameters involved in the feedback terms

(k7, k8, k9), the basal expression of Gal4p (k5), those

involved in the internalization of external galactose and in

the activation of Gal3p (k1, k2), and the parameters that

describe the degradation of Gal3p, internalized galactose

and Gal2p (μ13, μ16 and μ17), respectively. It is worth

recalling that the indications of robustness provided by

the sensitivity coefficients must be taken with caution,

keeping in mind that this type of analysis is only valid

locally, i.e., in the neighborhood of the nominal values

reported in Table 2.

We next determine the critical points of the system,

i.e., the points at which system’s dynamics undergo abrupt

changes. We have conducted a bifurcation analysis with

respect to those parameters that exhibit large sensitivity

values. Taking Gal1p concentration as the output of our

model, the interval of bistability with respect to a certain

parameter is delimited by the pair of limit points forming

the classical S-shaped bifurcation curve. As an example,

the bifurcation diagram generated by variation of k5 is

shown in Figure 5: the admissible range of variation for the

parameter k5 is ([12.57, 26.62]); outside this interval the

system loses its bistable behavior. The bifurcation analysis

can also be performed by allowing simultaneous varia-

tions of two parameters: in this case, the bistability thresh-

olds, corresponding to the limit point bifurcations, are

curves in the parameters plane. For example, in Figure 6,

where k7, k5 have been chosen as bifurcation parameters,

we have detected two cusp bifurcation points at (k7, k5) =

(4.363, 3.835) and (k7, k5) = (166.2, 3797.0). Thus, the

shaded region in Figure 6 identifies a set of parameter

values within which any value of the pair (k7, k5) guaran-

tees bistable behavior (assuming that the other parameters

take their nominal values).

Unfortunately, the above methods can efficiently

evaluate changes in steady state concentrations only for

low-dimensional parameter variations. In [20], a global

sensitivity method, named bioSDP, is proposed to evaluate

the effect of multiple (simultaneous) parameter variations

on the system’s dynamics. More specifically, this method

can be used to compute some bounds on the maximum

variation of the equilibrium points induced by changes

of the parameter values. The computation is based on

the solution of a dual problem (see Methods for more

details): given a subset of the state space, say�, the bioSDP

algorithm is able to certificate that, for any admissible real-

ization of the parameter vector p, � does not contain any

equilibrium point.
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Figure 4 Local sensitivity analysis at the steady states of the species involved with respect to all model parameters. The sensitivity matrix

denotes the normalized sensitivity coefficients of all species in the model across 20 hours. The sensitivity of the parameters k1 , k2 (associated in the

internalization of external galactose and in activation of Gal3p protein), k5 (basal expression of transcription factor Gal4p), k7 , k8 , k9 (associated in the

feedback control), μ13 , μ16 and μ17 (degradation of Gal3p, internalized galactose and Gal2p proteins, respectively), can more influence the

dynamical behavior of this mechanism more than the other parameters.

The bioSDP algorithm takes as inputs the admissible

range of variation of the parameters, defined as a box

Bp in the parameter space, and an initial outer approxi-

mation, in the form of a box S̃0, of the subset Xe of all

the admissible equilibrium points of system (1) subject to

p ∈ Bp.

Then, these outer boundaries are iteratively narrowed

by applying a bisection algorithm. As a result, the state

space is partitioned in one or more subsets contain-

ing all the equilibrium points that fall inside the initial

search subspace S̃0. In fact, due to the computational

burden, the bisection algorithm can only be applied to

systems of dimension less or equal than three (see for

example Figure 5 in [21], where a two-dimensional sys-

tem is analyzed). For higher-order systems like ours,

the algorithm resorts to a box shrinkage procedure, i.e.,

10 12 14 16 18 20 22 24 26 28 30
0

5
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15

20

25

k5

G
1

LP

LPLP

Figure 5 One-parameter bifurcation diagram. The diagram has the classical S-shape in the interval [12.57, 26.62], thus the system is bistable for

values of k5 belonging to this interval. (LP, Limit Point).



Salerno et al. BMC Systems Biology 2013, 7:39 Page 9 of 14

http://www.biomedcentral.com/1752-0509/7/39

0 20 40 60 80 100 120 140 160 180
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

k7

k
5

CP 

CP 

x 103

Figure 6 Two-parameters bifurcation diagram. Bifurcation curves in the (k7 , k5)-plane with codimension 2 points are shown. At

(k7 , k5) = (4.363, 3.835) and (k7 , k5) = (166.2, 3797.0) two cusp bifurcation points (CP) are detected. The system is bistable for value of (k7 , k5)

included in the shaded area.

it just tries to reduce the size of the initial box as

far as possible.

Due to the above limitations, in our case the method

proposed in [20] would not be able to distinguish the

two distinct steady state subsets. To overcome this issue,

we devise a strategy that leverages the bioSDP algorithm

but, instead of computing one set containing all the equi-

librium points, aims to separately compute two distinct

robust steady state subsets S̃1 and S̃2, which define the

boundaries for the variation of xe1 and xe2, respectively.

Thus, we need two initial outer approximation subsets, let

us denote them by S̃0
1 and S̃0

2 , respectively.

Guessing two good initial outer approximations would

in general turn out to be a daunting task for systems of

nontrivial dimension. In our case, exploiting the previous

analysis and by virtue of continuity arguments, we sur-

mise that, for small-enough variations of the parameter

values, the DA’s represent good initial guesses. Thus, we

let S̃0
i = ρiD̃i, i = 1, 2, where ρi > 0 is a scaling factor

and apply the bioSDP algorithm separately to these two

initial boxes, with ρi = 1; if the algorithm does not find a

solution, it is re-applied iteratively with different values of

ρi in a predefined interval [ ρmin, ρmax], until a solution is

found.

Note that, setting S̃0
i as the initial search space for the

bioSDP algorithm we are focusing the analysis on those

equilibrium points that belong to a neighborhood of xei,

instead of searching for all the equilibrium points. Per-

forming this analysis separately, first on xe1 and then on

xe2, enables us to ascertain whether the bistability is pre-

served against parametric perturbations: the answer is

affirmative if we are able to compute two disjoint robust

steady state subsets, i.e., S̃1 ∩ S̃2 = ∅. If this problem

is feasible for an assigned parameter box Bp, then we are

guaranteed that bistability is preserved for all p belonging

to Bp.

The initial outer approximations used for our anal-

ysis are reported in normalized parallel coordinates in

Figure 2b. Their numerical values are

S̃
0
1 = [ 25.214, 1251.211]×[ 25.214, 1331.199]

×[ 0.0, 15.991]×[ 0.0, 16.0]×[ 0.175, 12.001]

×[ 4.515, 96.242]×[ 0.648, 110.404]

×[ 0.0, 12.001]×[ 0.0, 12.001] ,

S̃
0
2 = [ 52.898, 20852.800]×[ 52.326, 22664.821]

×[ 4.619, 2701.988]×[ 2.236, 123.599]

×[ 0.0, 2.80]×[ 0.278, 12.400]×[ 22.269, 6112.385]

×[ 1.737, 235.601]×[ 1.987, 1283.6] .

To alleviate the computational burden of the

procedure, the multi-parametric sensitivity anal-

ysis has been limited to the parameters subset

� := {k1, k2, k5, k7, k8, k9,μ13,μ16,μ17}, which, according

to the local sensitivity analysis, have a major influence

on the system dynamics (see Figure 4). The robustness

has been evaluated against increasingly larger ranges

of parameter variations, corresponding to ±2%, ±5%,

±10%, ±20%, ±30% and ±50%, with respect to the

nominal values given in Table 2. Figure 2 displays the

computed robust steady state boxes for the various cases.

The bistable behavior of the GAL regulatory network is

guaranteed for parametric variations up to ±20% with

respect to the nominal parameters value. For such uncer-

tainty values, indeed, the computed subsets S̃1 and S̃2 are

still disjoint, since the intervals of G3a and G80,3a are not
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overlapping. For parametric variations of ±30% or more,

the intersection of the two subsets is no longer empty (see

Figures 2, panels g and h); in the latter case, it is no longer

possible to guarantee that the system preserves bistability

for all admissible parameter values.

Discussion and conclusions
Robustness, intended as the capability to cope with fluc-

tuations of the molecular species concentrations, caused

by endogenous and exogenous perturbations, and to pre-

serve biological functions despite inter-individual vari-

ability of kinetic parameters, is a key feature of biological

systems. This fundamental feature poses an important

challenge when trying to describe biological phenomena

by means of mechanistic mathematical models: a set of

differential/algebraic equations which, for some value of

the parameters, interpolates experimental data, cannot

be considered a plausible model if it does not possess

the aforementioned robustness properties. Recognizing

the power of these arguments as tools for testing novel

biomodels, and with the aim of supporting the valid-

ity of our proposed model of the GAL regulatory net-

work, we have devised an analytical procedure which can

be exploited to investigate the robustness properties of

biomodels of bistable biological systems. The procedure

exploits several complementary methods for the analysis

of nonlinear quadratic systems (i.e., mass-action mod-

els), devised both by our group and by other authors,

and its effectiveness has been demonstrated by applying

it to thoroughly characterize the robustness of bistability

for a new model of the galactose metabolism regulatory

system.

The procedure consists of three phases: in the first

phase, the properties of the nominal system (i.e., param-

eters values are assumed to be certain) are investigated,

since the first requirement is that the reaction network

is structurally compatible with the existence of multiple

equilibrium points. This can be ascertained through the

use of CRNT, which also allows the computation of a can-

didate set of parameter values. Subsequently, the second

stage of the procedure focuses on the analysis of the DA’s

of the equilibrium points, using the method devised in

[13], since the DA can be regarded as a robustness mea-

sure against perturbations that push the system away from

its steady state operative condition. The third phase of

the procedure consists in the analysis of the robustness of

the system’s bistability with respect to parametric uncer-

tainty. Traditionally, this analysis is based on sensitivity

and bifurcations analysis; however, these tools are rather

limited, due to their inability to take into account multi-

ple simultaneous parameter variations. To overcome these

limitations, we have proposed a multi-parametric robust-

ness analysis strategy: by opportunely leveraging a global

sensitivity analysis method, and combining it with the

information provided by our DA’s analysis technique, we

were able to certify the persistence of bistability in the face

of multiple variations of the uncertain parameters.

Beyond its specific application for validation of the pro-

posed model of the GAL regulatory network, the overall

procedure provides a powerful approach for the analysis

and validation of any biochemical network model which is

required to robustly reproduce bistable dynamics, under-

lying persistent memory, molecular switches and cell dif-

ferentiation phenomena, without recourse to large-scale

numerical simulations.

Methods
Chemical reaction network theory

Given a reaction network, the capability of the asso-

ciated model to exhibit two or more equilibrium

points depends on the mathematical form of the reac-

tion rates and on the specific values of the kinetic

parameters.

While the characterization of multistability for a generic

nonlinear system requires an ad hoc mathematical treat-

ment, in the case of mass-action systems it can be

performed through a powerful analytical tool, namely

Chemical Reaction Network Theory (CRNT) [23,24].

CRNT links the structure of a biochemical network,

endowed with mass-action kinetics, to the capability of

the network to admit multiple positive steady-states. The

advantage of CRNT is that it provides an immediate

way to analyze the type of dynamical behavior that one

can expect from an arbitrarily complex reaction net-

work, just by inspection of the topology of the associated

graph. More specifically, CRNT enables us to establish

the conditions for the existence, multiplicity and stabil-

ity of fixed points for the associated ODE system, without

even the need to write down the kinetic equations nor to

assign values to the kinetic parameters. This point makes

CRNT especially suitable for dealing with biomolec-

ular systems, whose parameters are often unknown

or subject to significant variability among different

individuals.

For a complete description of the CRNT, the inter-

ested reader is referred to the original articles [23,24],

or to [28] for an introductory overview of the main

results. Despite the complexity of its theoretical foun-

dations, the application of the main CRNT results is

straightforward through the use of the CRNT algorithm,

which is implemented in the CRNT Toolbox1. Given

the reaction network that we want to study, the algo-

rithm establishes whether the associated mass-action

dynamical system can admit multiple positive steady

states for some values of the kinetic parameters. In the

affirmative case, the algorithm also computes a set of

values of the kinetic parameters for which the system

is multistable.
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Analysis of the domains of attraction

The exact computation of the DA’s for a nonlinear system

is generally a very hard problem to solve, especially for

systems of medium/high order. The problem of comput-

ing estimates of the DA’s has been studied for a long time

and several methods, based on Lyapunov functions, were

originally proposed, e.g. in [29,30]. More recently, Chesi

has devised novel results concerning DA analysis based

on Sum of Squares (SOS) representation of polynomials

and Semi-Definite Programming (SDP), [31,32]. More-

over, effective examples of the usefulness of SOS/SDP-

based approaches to elucidate the properties of biological

systems are provided in [33,34].

Topcu et al. in [35,36] have dealt with the topic of esti-

mating a robust DA in the case of uncertain parameters.

Compared to the method used in this work, their results

can deal with a larger class of systems, namely polynomial

dynamical systems; however, they cast the problem in the

form of Bilinear Matrix Inequalities (BMI’s), whose solu-

tion is much more demanding than LMI’s (used by our

approach) and, thus, its practical applicability is limited to

systems of low order with few optimization variables..

When dealing with nonlinear quadratic systems, an

alternative approach to DA analysis, proposed by Amato

and coworkers in [13,14], can be adopted: this method

allows one to check whether an assigned box (or, more

in general, a polytope) in the state space belongs to the

domain of attraction of a given equilibrium point. Such

problem can be cast as a LMI feasibility problem [37],

which can be effectively tackled through effective off-the-

shelf numerical tools. In what follows we provide a brief

overview of the main result used in the present work.

First, recall that a box (or, more generally, a polytope)

S ⊂ R
N can be described as follows

S =conv{x(1), x(2), . . . , x(r)}

={x ∈ R
N : ak

Tx ≤ 1, k = 1, 2, . . . , q}
(4)

where r and q are suitable integers, x(i) denotes the i-th

vertex of S , and conv[ ·] indicates the convex hull of the

argument. System (2) can be rewritten as

ẋ(t) = Ax(t) + F(x), (5)

with

F(x) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

xTF1

xTF2

...

xTFn

⎞

⎟

⎟

⎟

⎟

⎟

⎠

x, (6)

where A, Fi ∈ R
9×9. We can now precisely state the prob-

lem to be solved. Note that, for the sake of brevity, the

statement of the problem refers to the zero equilibrium

point, i.e. the origin of the state space. Nevertheless, it

is easy to generalize the definition and the entire proce-

dure to non-zero equilibrium points, via a change of state

variables, as shown in [13].

Problem1. Assume that each eigenvalue of matrix A in (5)

has strictly negative real part (i.e., the origin is an asymp-

totically stable equilibrium point); then, given a box S ,

with the origin of the state space lying in the interior

of S , establish whether S belongs to the DA of the zero

equilibrium point.

The following Theorem provides sufficient conditions

to solve Problem 1.

Theorem 1. The box S defined in (4) belongs to the DA

of the zero equilibrium of system (5) if there exist scalars

γ ∈ (0, 1), c > 0 and a symmetric positive-definite matrix

P such that

(

1 γ ak
T

γ ak P/c

)

≥ 0, k = 1, 2, . . . , 2n (7a)

x(i)
T (P/c)x(i) ≤ 1, i = 1, 2, . . . , 2n, (7b)

γ (ATP + PA) +

⎛

⎜

⎜

⎜

⎝

x(i)
TF1

x(i)
TF2
...

x(i)
TFn

⎞

⎟

⎟

⎟

⎠

P (7c)

+
(

F1
Tx(i) F2

Tx(i) . . . Fn
Tx(i)

)

P<0, i = 1, 2, . . . , 2n

For a fixed γ , conditions (7) constitute a set of LMI’s,

which can be easily solved through off-the-shelf efficient

numerical tools (e.g., the LMILAB provided in the MAT-

LAB Robust Control Toolbox [38]).

In order to find the largest possible estimate of the DA,

Theorem 1 can be applied iteratively, starting from a small

initial box P0, surrounding the equilibrium point, and

then stretching the box at each iteration along the dif-

ferent dimensions of the state space, until conditions (7)

become unfeasible.

Local sensitivity analysis

Sensitivity analysis unveils to what extent each parameter

influences the behavior of a given model and, thus, rep-

resents a first evaluation of the model’s robustness. Our

sensitivity analysis is conducted according to the method

illustrated in [27], which is based on the computation of

the sensitivity coefficients: the sensitivity coefficient sij is

defined as the normalized partial derivative of the state

variable xi with respect to the parameter pj, that is

sij(xi, pj, t) =
∂xi

∂pj

pj

xi
. (8)
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The set of differential equations that constitutes the

dynamical system is coupled to the equations of the sen-

sitivity coefficients. This allows computing a numerical

solution to the whole set of equations, thus simultane-

ously obtaining both the state variables and the associated

sensitivity coefficients.

It is worth recalling that traditional sensitivity analysis

methods are only valid locally with respect to a particular

point in the model’s parameter space, i.e., in the neigh-

borhood of a certain parameter set. Another significant

limitation consists in their capability to consider the sen-

sitivity of the model with respect to the variations of just

one parameter at a time; indeed, a model might display

low sensitivity to single parameter variations, while being

extremely sensitive to simultaneous multiple parameter

changes.

Bifurcations analysis

Bifurcation analysis is concerned with the study of how

parameter variations affect the number, type and location

of attractors, e.g., equilibrium points of a dynamical sys-

tem. Let us consider a generic nonlinear system, with state

variables denoted by x, and depending on a parameters

vector p,

ẋ(t) = f (x(t), p). (9)

A bifurcation occurs at values of p such that small changes

of the parameters can dramatically alter the number or

types of attractors of system (9) [39].

The changes in the map of equilibrium points can be

effectively visualized by using a ’bifurcation diagram’, in

which the steady state value of one state variable is plotted

as a function of a bifurcation parameter. The calculation of

bifurcations can be performed through continuation soft-

wares, like the MatCont package [40], which we have used

to perform the analysis illustrated in Figures 5 and 6.

Bifurcation diagrams are powerful tools in order to

investigate the robustness of nonlinear biomodels in the

face of parametric uncertainty. However, it is necessary to

take into account that a) analytical solutions for bifurca-

tions are only available for low-dimensional models, and

b) that bifurcation diagrams are practically applicable only

to study the effect of one or two parameters variation at a

time.

Global sensitivity analysis via infeasibility certificates

In view of the limitations of the approaches presented in

the previous two sections, while it is possible to employ

them to obtain preliminary information on the parametric

robustness of a given model, particular care must be taken

in drawing any conclusions about global properties of the

system under investigation.

To overcome these limitations, we have exploited a

global sensitivity analysis technique for biochemical net-

works proposed in [20]. Given the admissible parameters

variation box, the approach proposed by Waldherr et al.

allows one to compute an outer approximation, S̃ , of the

region of the state space that contains all the equilibrium

points, denoted by Xe. The problem can be formalized as

follows.

Problem 2. Given system (2) and a box Bp in the param-

eter space, compute a box S̃ such that S̃ ⊇ Xe, where

Xe = {x ∈ R
n | ∃p ∈ Bp : N v(x, p) = 0}. (10)

Note that, apart from trivial cases, the calculation of

an analytical form of Xe is practically impossible. More-

over, computational brute-force approaches are applicable

only to very low-order systems. Monte-Carlo techniques

can be applied in the other cases, although they may

require a large computational effort and guarantee only

probabilistic results.

Problem 2 can be effectively solved via the method pro-

posed by Waldherr et al., which can be formulated in the

form of the following feasibility problem

find x ∈ R
n, p ∈ R

m

s.t. Nv(x, p) = 0

pj,min ≤ pj ≤ pj,max, j = 1, . . .m

xi,min ≤ xi ≤ xi,max, i = 1, . . . n,

(11)

where pj,min, pj,max, j = 1, . . . ,m, define the admissible

parameter box Bp, and xi,min, xi,max, i = 1, . . . , n, are the

extremal values of the box S̃ of the state space to be tested

as a candidate solution to Problem 2.

The optimization problem (11) is not easy to deal with

from the computational point of view. However, it can be

tackled by solving its dual version, that is the problem of

computing regions of the state space that are guaranteed

not to contain any steady state for any parameter value

in Bp. The latter can be relaxed to become a SDP prob-

lem [41], and solved by means of computationally efficient

convex optimization tools. For a detailed description of

this procedure, the reader is referred to [20,21]. In this

works, the computation of a solution to problem 2 con-

stitutes the core of an iterative procedure, implemented

by the bioSDP algorithm: starting from an initial large

region of the state space, the algorithm tries to compute

one or more partitions containing Xe. The procedure is

very effective for low-order systems (n ≤ 3), since in this

case a bisection algorithm can be used for the partitioning.

For systems of higher order, a box shrinkage procedure

is employed, which can only return one partition S̃ and,

therefore, is not useful for analyzing the persistence of

bistability.
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In order to solve this problem, we have devised an alter-

native strategy, which combines the results of the DA’s

analysis with the bioSDP algorithm and has proven to be

effective in the analysis of our case study. The details of

this approach have been already reported in the results

Section ‘Local and global analysis confirm robustness of

the bistable equilibria to parametric uncertainty’.

Endnotes
1The CRNT algorithm is implemented in the CRNT

toolbox, which is freely available at http://www.che.eng.

ohio-state.edu/~feinberg/crnt/
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