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Abstract

Social network analysis is a prominent approach to investigate interpersonal relationships.

Most studies use self-report data to quantify the connections between participants and con-

struct social networks. In recent years smartphones have been used as an alternative to

map networks by assessing the proximity between participants based on Bluetooth and

GPS data. While most studies have handed out specially programmed smartphones to

study participants, we developed an application for iOS and Android to collect Bluetooth

data from participants’ own smartphones. In this study, we compared the networks esti-

mated with the smartphone app to those obtained from sociometric badges and self-report

data. Participants (n = 21) installed the app on their phone and wore a sociometric badge

during office hours. Proximity data was collected for 4 weeks. A contingency table revealed

a significant association between proximity data (ϕ = 0.17, p<0.0001), but the marginal odds

were higher for the app (8.6%) than for the badges (1.3%), indicating that dyads were more

often detected by the app. We then compared the networks that were estimated using the

proximity and self-report data. All three networks were significantly correlated, although the

correlation with self-reported data was lower for the app (ρ = 0.25) than for badges (ρ =

0.67). The scanning rates of the app varied considerably between devices and was lower on

iOS than on Android. The association between the app and the badges increased when the

network was estimated between participants whose app recorded more regularly. These

findings suggest that the accuracy of proximity networks can be further improved by reduc-

ing missing data and restricting the interpersonal distance at which interactions are

detected.

Introduction

Social network analysis is widely used to quantify relationships between people. Traditionally,

social networks are mapped using survey data by simply asking respondents to identify their

friends (e.g. [1]). These data are then used to define the edges between nodes in the network.

This approach is time consuming, relies on subjective data collection, and is sensitive to the

precise framing of the questions. New technologies have the potential to collect vast amounts

of objective data at low cost and enable ecological momentary assessment, i.e. monitoring and
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assessment in real-time and real-world conditions [2]. Badges with embedded sensors have

been used to record objective data on face-to-face interaction and proximity networks [3, 4].

Similarly, sensor-enabled smartphones can be used to map social networks by assessing physi-

cal proximity using either Bluetooth [5], location data [6] or by combining different data

modalities [7–11]. While most studies have handed out specially programmed smartphones to

study participants, we developed a smartphone application that participants can install on

their own phone [12]. Using people’s own smartphones may help scale up this technology for

large-scale and population applications in research studies or self-monitoring.

The use of sensor technology to efficiently map dynamic social interactions has been well

established. However, the large variety of different methods available also raises the need to

cross-validate findings across technologies, types of devices and social settings (see also [13]).

It has been shown that proximity data can be used to accurately infer friendships between par-

ticipants [5]. However, several factors may affect both the networks that are derived from sen-

sor data as well as the friendship reports obtained using surveys. For example, it has been

shown that the size and characteristics of social networks vary considerably depending on the

formulation of the questions use as name generators [14–16]. Similarly, when defining net-

works based on the frequency of email exchange, different choices of the threshold correspond

to dramatically different network structures [17]. Similarly, missing data in survey collection

[18] or passive smartphone data collection [12] can significantly impact on the resulting net-

works. Missing data is expected when sensor data is collected from smartphones in real life,

where changes in data connectivity are frequent and participants turn off their device to pre-

serve battery [7].

We developed an application for iOS and Android to passively collect Bluetooth data and

map social networks of proximity. Here we assess the validity of social networks that are esti-

mated based on Bluetooth data acquired using people’s own smartphones. We cross-validated

these against networks obtained using sociometric badges and self-reported survey data. The

study aims to identify potential strengths and limitations of the technology that can inform

larger studies on the role of social networks in mental health. The ability to accurately map

social networks of proximity on a range of different smartphone types–across both Android

and iOS operating systems–would enable using these technologies at scale.

Materials andmethods

2.1. Participants

Staff and research students within the Black Dog Institute in Sydney, Australia, were invited to

join the study via an email sent to the general distribution list. The email contained a link to a

participant information sheet. If they were interested in participating, they received a link to

install the app on their smartphone. When the app was opened for the first time, participants

were asked to complete a consent form included in the app. This study was approved by the

University of New South Wales Human Research Ethics Committee (HC15202).

2.2. Procedure

The installed app included a short survey at the beginning of the study and then passively col-

lected Bluetooth data for a four-week period (17 August to 11 September 2015)–see below for

more details. Participants were also asked to wear a sociometric badge during office hours

when present at the institute. Sociometric badges are wearable electronic badges that automati-

cally measure the amount of face-to-face interaction, conversational time, physical proximity

to other people, and physical activity levels to capture individual and collective patterns of

behaviour [19]. To test the smartphone app, we investigated the scanning statistics and
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compared the social network estimated from proximity data (Bluetooth) against the social net-

work estimated using the sociometric badges. In addition, we compared both proximity-based

networks with the social network obtained using a name generator included in the survey.

2.3. Data acquisition

Native applications were developed for the Android and iOS operating systems, based on the

results of our initial feasibility study [12]. For the iOS application we used the BluetoothMana-

ger private API, as the public CoreBluetooth API only contains functions for interacting with

low-energy devices and it is currently not feasible to use Bluetooth Low Energy (BLE) to map

social networks in iOS [20]. Both Android and iOS versions of the application asked the user

to give consent prior to the commencement of Bluetooth data collection.

The application was configured to perform a Bluetooth discovery scan every five minutes

during the study period. Bluetooth is a short-range communication protocol designed to allow

a wireless connection between nearby devices. A key feature of a Bluetooth device is the ability

to scan for other nearby devices. When a Bluetooth device conducts a discovery scan, other

Bluetooth devices within a range of 5–10 m respond with their user-defined name, the device

type, and a unique 12-hexadecimal-digit hardware media access control (MAC) address. A

device’s MAC address is fixed and can be used to differentiate one device from another. When

a participant’s MAC address is discovered by a periodic Bluetooth scan performed by another

participant, it indicates that the two smartphones are within 5–10 m of each other (see also

[12]).

As the Bluetooth MAC address of a device is potentially personally identifiable information,

these data were cryptographically hashed on the handset to ensure the privacy of participants.

Hashing generates a consistent ‘signature’ for each data item that cannot be reversed to reveal

the original data value. In order to recreate the network and to distinguish participants from

non-participants, devices would need to report their own MAC address. Since iOS devices

were not able to retrieve their own MAC address, a helper system was designed using BLE. On

iOS devices, the BLE service broadcast the device name and a writable characteristic for the

MAC address. If the iOS device was in range of an Android device, the Android device would

find the associated MAC address from the periodic Bluetooth scan and send it back to the iOS

device. At the end of the study, all devices were able to report their own MAC address, ensur-

ing a complete network of participants could be constructed.

The app was configured to collect data only during standard office hours (Monday-Friday,

9am-5pm). For each participant, the period over which the app was ‘active’ was retrospectively

calculated based on the period over which Bluetooth discovery scans were initiated, the device

was discovered by other participants, or the app’s internal telemetry was recorded (e.g. to mon-

itor battery usage).

Participants were also asked to fill out a short survey on the smartphone app at the start of

the study. The survey included basic demographic questions (age and gender) as well as the

opportunity to generate the names of up to five colleagues with whom they spend the most

time to perform their job requirements. These data were used to construct their self-reported

social network.

In addition to the smartphone app, sociometric badges (Sociometric Solutions, Boston

MA) were used to record proximity networks, also using Bluetooth [19]. The badges contain a

2.4-GHz wireless transceiver (Chipcon, CC2500) and a class 2.0 Bluetooth module (BlueRa-

dios, BR-46AR) for the detection of other badges in close proximity. The badges can also be

configured to record additional sensor data, e.g. line of sight proximity using infrared emitters

and detectors, audio recordings of speech, or accelerometer data. The badge was considered
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‘active’ on the period over which Bluetooth, audio or acceleromoter data were available,

although only the Bluetooth data were stored for analysis.

2.4. Connectivity analysis

Although the app also detects other Bluetooth devices, we only analysed the connectivity

between participants. We estimate the connectivity between participants based on the Blue-

tooth scanning statistics of their smartphones. From these statistics, we define the connection

strengths between participants and thus the weights of the network. The average connection

strength between device i and j can then be represented as

Rij ¼
NijðTÞ þ NjiðTÞ

NiðTÞ þ NjðTÞ
; Eq 1

where Nij is the number of scans where device i detected device j and Ni the number of times

device i scanned on time interval T (see also [12]). By normalising the number of times one of

the devices detected the other by the number of times each device scanned, the connection

strength Rij is bound on the interval [0,1], where 1 indicates that both devices always detected

each other when they scanned and 0 indicates that the devices never detected each other. If

both devices did not scan during the interval of interest, Rij is set to zero.

2.5. Statistical analysis

We first compared the proximity data obtained using the smartphone app and the sociometric

badges. A contingency table was created by comparing the time points at which the app or the

badges detected a dyad (connection between two participants). To this end we pooled the data

across all dyads. The contingency table quantifies the likelihood that when a dyad is detected

by the app it is also detected by the badges and vice versa. We then estimated the association

between these two binary variables using the odds ratio and the phi coefficient. Statistical sig-

nificance was assessed using the Chi-squared test.

After directly comparing the proximity data obtained using the app and badges, we then

compared the social networks that we constructed from these data. The undirected weights of

the network were estimated by quantifying the percentages of time of the study period a dyad

was detected, i.e. the devices of both participants were in close proximity. We used the Mantel

test to quantify the association between the weighted adjacency matrices obtained using the

app and badges. The Mantel test quantifies the correlation between matrices and uses permu-

tation test to quantify statistical significance [21]. We used Spearman correlation and open-

source code to quantify statistical significance [22] and used bootstrapping to quantify the 95%

confidence interval of the correlation coefficient [23].

We then used the Mantel test to quantify the correlation between the adjacency matrices

from the app and badges with the adjacency matrix obtained from the survey data. The survey

data generated directed binary networks, which we first converted to an undirected network

by collapsing directed edges between two nodes into a single undirected edge. We then

extracted a binary backbone network from the weighted networks obtained using the app and

badges [24]. This filtering method provides a statistical method to extract the relevant connec-

tion backbone in complex multiscale networks by preserving edges that are statistically signifi-

cant. We used the R package ‘disparityfilter’ to extract the backbone network [25]. Alpha was

set such that the binary network has the same density as the network obtained from the survey

data. The binary undirected networks were then compared again using the Mantel test.
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Results

21 participants agreed to join the study; 9 participants used Android handsets and 12 partici-

pants used iPhones. We first examined the amount of time the app and the badges were active

during office hours. On average the app was active for 79.1 ± 22.2% (Android: 68.0 ± 24.5%,

iOS: 87.5 ± 17.0%) of office hours. Twelve of the 21 smartphone apps were active for more the

90% of the time (Fig 1). The badges were active for an average of 37.0 ± 18.4% of office hours.

The percentage of active time of the badges were active are generally lower than for the app,

possibly because participants were only asked to wear the badges when they were at the office,

while the app would be active regardless of the location of the participants.

The scanning behaviour differed considerably between smartphones (Fig 2A). Smartphones

running Android scanned more often (on average 5.6 ± 3.8 scans per hour) than smartphones

Fig 1. Percentages of study time the app and badges were active. Left panel shows the activity of the smartphone app. Right
panel shows the activity of the sociometric badges. Only office hours (Mon-Fri 9am-5pm) during the 4-week period were
considered.

https://doi.org/10.1371/journal.pone.0189877.g001

Fig 2. App scanning statistics. A) Percentage of scheduled Bluetooth scans that were made by each smartphone in the
4-week period.B) Scanning rates for each edge of the network. The scanning rate between node A and B is determined
by the number of scans made by smartphone A and B combined, as the edges are undirected (symmetric). The horizontal
solid line reflects a scanning rate of 1 scan every 15 min; the dashed line 1 scan every hour.

https://doi.org/10.1371/journal.pone.0189877.g002

Validation of app to map social networks

PLOSONE | https://doi.org/10.1371/journal.pone.0189877 December 20, 2017 5 / 13

https://doi.org/10.1371/journal.pone.0189877.g001
https://doi.org/10.1371/journal.pone.0189877.g002
https://doi.org/10.1371/journal.pone.0189877


running iOS (1.1 ± 0.8 scans per hour). As proximity is an undirected measure, we can com-

bine the data from smartphones A and B to estimate the edge between A and B. Of all 210

edges, 91.9% of the edges were on average scanned at least once each hour and 54.3% of the

edges at least once every 15 minutes (Fig 2B). Scanning rates of less than once every 15 minutes

were mainly observed for connections between two iOS devices. The sociometric badges do

not provide basic scanning statistics and we hence cannot determine how often the badges per-

formed Bluetooth scans.

To compare the smartphone app with the sociometric badges we first compared the time

points at which the app or the badges detected a dyad. By pooling across all dyads, we con-

structed a contingency table of all time points at which a dyad was sampled by the app and

then determine whether the badges detected the dyad at the same time point. Table 1 gives the

contingency table across all office hours of the 4-week study period. The marginal odds show

that physical proximity is sparse and that the app more often detected a dyad than the badges

(2.92% for the app and 0.19% for the badges). Although the marginal odds differed consider-

able, there was a significant association between the time points at which the app and badges

detected a dyad (ϕ = 0.10, χ2 = 2.5�103, p<0.0001). The contingency table shows that the app

more often detected a dyad when the badge did not (6448 times) than the other way around

(264 times).

We then restricted the analysis to time intervals when both devices of a dyad were active.

On average, the app on two smartphones was simultaneously active for 63.7 ± 26.0% of the

study time and pairs of sociometric badges were simultaneously active for 17.1 ± 11.7%. If

we restrict the time interval to periods at which the app or badges of both participants were

active (Table 2), the marginal odds increased considerably (8.55% for the app and 1.28% for

the badges). The association between both measures also increased (ϕ = 0.17, χ2 = 8.7�102,

p<0.0001). The app still more often detected a dyad when the badge did not (2327 times) than

the other way around (214 times). We also compared the association separately for connec-

tions between Android users (ϕ = 0.11, sensitivity = 0.69, specificity = 0.91), between iOS users

(ϕ = 0.20, sensitivity = 0.42, specificity = 0.94) and between Android and iOS users (ϕ = 0.18,

sensitivity = 0.49, specificity = 0.92).

We then quantified the connection strength between participants by calculating the per-

centage of time participants were in close proximity. By estimating the connection strength

between all pairs of participants the weighted adjacency matrix was obtained (Fig 3A). We first

Table 1. Contingency table across all office hours. Table shows the number of times a particular edge of
the network was detected (hit) or not (miss) by the smartphone app and the sociometric badges. Only office
hours (Mon-Fri 9am-5pm) during the 4-week period were considered.

Badge

Hit Miss

App Hit 191 6448

Miss 264 227270

https://doi.org/10.1371/journal.pone.0189877.t001

Table 2. Contingency table when the app and badge are both active. Table shows the number of times a
particular edge of the network was detected (hit) or not (miss) by the smartphone app and the sociometric
badges. Only time intervals when both the app and badge were active were considered.

Badge

Hit Miss

App Hit 191 2327

Miss 214 29252

https://doi.org/10.1371/journal.pone.0189877.t002
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estimated the adjacency matrix for the whole study duration (office hours during the 4-week

period). The adjacency matrices again show that the app more often detected other devices

than the sociometric badges (weighted network density: app = 0.024, badge = 0.002). The

smartphone app detected some dyads for 45% of office hours, where the maximum connectiv-

ity for the badges was only 8% of the study time. Although they visually look quite different,

the adjacency matrices of the app and badges were significantly correlated (ρ = 0.25, 95% CI

[0.24, 0.32], p = 0.0014). We then estimated the adjacency matrix only during time intervals

when both devices of a dyad were active. As expected, only considering the time interval when

both are active increased the percentage of time two devices detected each other (Fig 3B). The

correlation between the connectivity matrix of the app and badges remained largely the same

(ρ = 0.22, 95% CI [0.18, 0.29], p = 0.0038).

We then compared the social networks of proximity with the networks derived from the

survey data. The proximity networks are weighted undirected networks, whereas the survey

data provide binary directed networks. To facilitate comparison, we converted the survey data

into an undirected network and extracted a binary backbone network from the proximity data

with the same network density. The three networks were all significantly correlated, although

the correlation coefficient differed between pairs of networks (app-survey, ρ = 0.28, 95% CI

[0.22, 0.35], p = 0.0005; badge-survey, ρ = 0.67, 95% CI [0.62, 0.72], p< 0.0001, app-badge, ρ =

0.28, 95% CI [0.23, 0.33], p = 0.0006). Counting the number of edges that matched between

the networks, the network obtained using the app had fewer matching edges with networks

from survey data (7/20) than the network obtained using the sociometric badges (14/20). Fig 4

shows the adjacency matrix and the topological representation of the three networks.

Finally, we used resampling to test for potential biases resulting from unequal scanning

rates of the app. Weighted adjacency matrices were constructed by using a fixed number of

random samples for each participant and correlated to the adjacency matrices constructed

using the badge and survey data. Fig 5A shows the correlations coefficients for networks esti-

mated with 10 to 500 random samples. As only the app data is resampled, the correlation

between networks estimated using the badge and survey data remained fairly constant around

0.6. In contrast, the correlation between the networks estimated using the app and badge

Fig 3. Weighted adjacencymatrix of the social networkmapped using the smartphone app and the
sociometric badges. Both axes reflect the 21 participants and each element reflects the percentage of time
the two participants were in close proximity.A)Office hours,B)When both devices were active.

https://doi.org/10.1371/journal.pone.0189877.g003
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Fig 5. Correlation between resampled networks. A) The weighted adjacency matrix of the app network
was constructed using a fixed number of random samples for each participant to investigate potential biases
resulting from unequal scanning rates. The number of required samples was varied from 10 to 500 samples.
TheMantel test was again used to estimate the correlation with the networks constructed using badge and
survey data. Colour patches show the 99% confidence interval estimated by resampling the network 1000
times.B) The size of the network that was compared decreased with increasing number of required samples,
as participants with insufficient number of scans were excluded.

https://doi.org/10.1371/journal.pone.0189877.g005

Fig 4. Social networksmapped using survey data, smartphone app and sociometric badges. To
facilitate comparison the incoming and outgoing edges of from the survey data were combined to obtain an
undirected network. In addition, the binary backbone was extracted from the weighted adjacency matrix of the
smartphone app and the sociometric badges.A) Adjacency matrices for the survey data, smartphone app and
sociometric badges,B) Topological representation of the corresponding networks. Node size represents its
degree. Layout was rendered using the Kamada-Kawai algorithm.

https://doi.org/10.1371/journal.pone.0189877.g004
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increased from 0.15 when only 10 samples were used to 0.51 when 500 samples were used. The

correlation between the app and the survey fluctuated between 0.2 and 0.4. As only partici-

pants were included for which the app recorded the minimum number of required samples,

the size of the networks decreased with increasing number of required samples (from 20 nodes

at 10 samples to 10 nodes at 500 samples; Fig 5B). As a result, the networks also become

increasingly sparse: at 500 samples the survey network only contained 3 edges.

Discussion

We aimed to validate sensor technology to map social networks by comparing the proximity

networks that were measured using a smartphone app and sociometric badges. The app and the

badges both collected Bluetooth data and a name generator was used to map participants’ self-

reported social network. The app performed more frequent Bluetooth scans on Android devices

(on average 5.6 scans per hour) than on iOS devices (1.1 scans per hour). The sociometric badges

did not report basic scanning statistics but based on missing data points we determined that the

badges were active for 37% of the study duration compared to 79% for the app. A contingency

table revealed that the app was more like to detect a dyad than the badges: marginal odds 2.92%

for the app and 0.19% for the badges. The weighted adjacency matrices obtained using the

smartphone app and sociometric badges were significantly correlated (ρ = 0.22–0.25). We then

extracted the binary backbone networks from the weighted adjacency matrices to compare them

with the self-reported networks. The binary network obtained using the badges was more

strongly associated with the self-reported network (ρ = 0.67) than the binary network obtained

using the app (ρ = 0.28). Although the association between social networks was statistically very

robust, the proximity networks obtained using the smartphone app and the sociometric badges

differed considerably. The association increased when the network was only estimated between

participants whose app recorded at least 500 Bluetooth samples (ρ = 0.51, n = 10).

In this study, we only analysed Bluetooth connectivity between devices from participants to

enable the comparison between the smartphone app and the sociometric badges. It is interest-

ing to note the different scanning statistics obtained using the badges and the app, although

both are based on Bluetooth technology. Badges were only worn while in the workplace,

whereas the app collected data during office hours regardless of location. Nevertheless, even

when examining the data for the periods where both the badge and app were actively collecting

data, the smartphone app provided a denser network than the badges. As the sociometric

badges detected a dyad less often but revealed a stronger association with the self-reported net-

works, these findings may indicate that the Bluetooth range of the sociometric badges is

smaller. That is, close proximity between participants may be a better proxy for actual social

interactions and formal and informal interactions can be distinguished based on interpersonal

distance [26]. As the Bluetooth range may be greater than the separation between rooms, it is

also possible that dyads were detected between participants in neighbouring rooms and may

therefore not just reflect face-to-face interactions between participants [19, 27]. As such,

detected interactions at larger distances could be considered false positives, as they do not

reflect true social interactions. Although the sociometric badges and most smartphones have

class 2 Bluetooth with a range of about 10 m, differences in the Bluetooth radio hardware and

software stacks used on different devices may result in different sensitivities and detection pat-

terns [28]. The Received Signal Strength Indication (RSSI) of Bluetooth can be used to estimate

distance between smart devices [29, 30]. However, RSSI is only available in the iOS CoreBlue-

tooth API used for Bluetooth Low Energy (BLE) and not in BluetoothManager API used in the

current study. It is currently not feasible to use BLE to map social networks, due to the inability

of iOS devices to detect another iOS device when both are in a locked state [20].
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Differences in network structure may also be partly due to participant behaviour, for exam-

ple when someone carries their phone with them but leaves the badge behind in their office, or

vice versa. The battery of the sociometric badges need to be regularly charged and badges need

to be turned on when entering the office. Participants may forget to do this as they are less

used to wearing and using the sociometric badges, which would result in missing data. The

sociometric badges do not explicitly report missing Bluetooth data, but we considered the

badges to be active on the period over which Bluetooth, audio or accelerometer data were

available. This showed that the badges were only active for 37% of office hours, suggesting that

participants regularly forgot to turn on or charge the sociometric badges. Although the app

was active most of the time (79% of office hours), the scanning rates different considerable

across devices and was much lower on iPhones (1.1 scans per hour on average) than smart-

phones running Android (5.6 scans per hour). The lower scanning rates on iPhones result

from restrictions imposed by iOS on the background execution of apps, restricting the scope

for passive data collection applications compared with Android devices.

Reduced scanning rates may affect the reliability of the estimated social network, in particu-

lar between devices that both have a reduced scanning rates (for example between two iOS

devices). In a previous study, we showed that variations in scanning behaviour may introduce

a bias in the estimation of social networks [12]. Although the scanning rates on iOS have

improved compared to the previous study (1.1 vs. 0.35 scans per hour), this needs to increase

further to improve the accuracy of the social network that can be mapped. Indeed, when we

only used devices that recorded at least 500 Bluetooth samples the correlation with the net-

works estimated using the badges increased to 0.51. The current study has a small sample size

(n = 21), which reduces the precision of the correlation coefficients that are estimated. Due to

the limited sample size, we cannot systematically test how the app performs on different types

of smartphones and when running different versions of the operating system. Future studies

involving larger samples can address individual variability and estimate the effect of user

behaviour using subgroup analyses, for example to investigate potential gender differences in

the estimation of proximity networks.

In the current study, we quantified the connection strength between participants as the

percentage of time one of the devices is detected by another device. This simple metric may

not be the best predictor of social connectivity and further feature engineering may assist in

extracting the most important network features, for example by quantifying the duration or

the frequency of contacts. The smartphone app and the sociometric badges collect dynamic

connectivity data and the temporal patterns of social interactions provides valuable informa-

tion about human social activity [11, 31]. Indeed, by using the temporal and spatial patterns of

physical proximity data it is possible to accurately infer 95% of the self-reported friendships

[5]. Several computational approaches have already been identified to improve the accuracy

of information about social activities that can be derived from passively collected proximity

data. For example, computational models have been used to identify both missing and spuri-

ous interactions and reconstruct a network that yields more accurate estimates of the true net-

work properties than those provided by the observations themselves [32, 33]. In addition,

probabilistic models can be used to discover interaction types from large-scale network data

and infer the latent meaning of each interaction based on the set of observed interactions over

slices of time [34]. These analytic tools may allow inference of the self-reported social connec-

tions more accurately from the proximity data than we collected in this study. However, self-

reported social connections cannot be considered the gold standard, as this approach is subjec-

tive and depends on the type of name generators that are used [14–16]. Future research is

hence needed to determine the relationship between different methods of mapping social

networks.
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Conclusion

The current findings show significant correlations between the social networks estimated

using a smartphone app, sociometric badges and self-reported data, cross-validating these

technologies to estimate proximity networks. Despite statistical robust correlations, large dif-

ferences in networks were observed. These differences are most likely due to missing data, dif-

ferences in range and participants not always carrying the devices with them. Sociometric

badges were active for less than 40% of office hours, suggesting that participants often forgot to

turn on or recharge their badges. In contrast, the smartphone app was active most of the time,

but revealed a high rate of missing data in particular on iOS. Although background execution

of apps is challenging on iOS, this is a technical problem that can likely be resolved through

software engineering. Estimating proximity or restricting the range at which devices detect

each other may enable more accurate information about social interactions, but the sociomet-

ric badges and the smartphone app do not have this functionality. BLE would allow to estimate

the distance between devices, but this is currently not feasible on iOS. User behaviour is more

difficult to control and some missing or spurious data is unavoidable, as participants will not

always carry the device with them or forget to charge them. Recording over longer intervals

and the use of computational models may enable the detection of these behaviours. A smart-

phone app is more convenient and less intrusive than devices build for research purposes.

There are currently 2.3 billion smartphone users worldwide and is continuing to increase [35].

This study demonstrates that it is feasible to collect Bluetooth data on participants’ own smart-

phones, rather than distributing devices to participants for the duration of the study. This has

important implications on the ability to use this technology at scale, which is, for example,

needed to reliably identify social markers of mental health [36, 37].
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24. SerranoMÁ, Boguná M, Vespignani A. Extracting the multiscale backbone of complex weighted net-
works. Proceedings of the national academy of sciences. 2009; 106(16):6483–8.

25. Bessi A, Briatte F. disparityfilter: Disparity Filter Algorithm for Weighted Networks. R package version
223. 2016;https://CRAN.R-project.org/package=disparityfilter.

Validation of app to map social networks

PLOSONE | https://doi.org/10.1371/journal.pone.0189877 December 20, 2017 12 / 13

https://doi.org/10.1371/journal.pone.0011596
https://doi.org/10.1371/journal.pone.0011596
http://www.ncbi.nlm.nih.gov/pubmed/20657651
https://doi.org/10.1073/pnas.0900282106
http://www.ncbi.nlm.nih.gov/pubmed/19706491
https://doi.org/10.1371/journal.pone.0095978
https://doi.org/10.1371/journal.pone.0095978
http://www.ncbi.nlm.nih.gov/pubmed/24770359
https://doi.org/10.1016/j.heliyon.2015.e00037
http://www.ncbi.nlm.nih.gov/pubmed/27441223
https://doi.org/10.1016/j.socscimed.2014.04.015
http://www.ncbi.nlm.nih.gov/pubmed/24797692
https://doi.org/10.1016/0378-8733(91)90006-F
https://doi.org/10.1016/J.Socnet.2014.07.005
https://doi.org/10.1016/J.Socnet.2004.06.001
http://www.ncbi.nlm.nih.gov/pubmed/6018555
https://dx.doi.org/10.6084/m9.figshare.1008724.v3
https://dx.doi.org/10.6084/m9.figshare.1008724.v3
https://CRAN.R-project.org/package=disparityfilter
https://doi.org/10.1371/journal.pone.0189877


26. Matic A, Osmani V, Mayora-Ibarra O. Analysis of social interactions throughmobile phones. Mobile Net-
works and Applications. 2012; 17(6):808–19.

27. Do TMT, Gatica-Perez D. Human interaction discovery in smartphone proximity networks. Personal
and Ubiquitous Computing. 2013; 17(3):413–31.

28. Semiconductor N. BLE on Android v1.0.1. Retrieved from https://devzonenordicsemicom/attachment/
bdd561ff56924e10ea78057b91c5c642. 2016.

29. Jung J, Kang D, Bae C. Distance estimation of smart device using bluetooth. Personal Computing Plat-
form Research Team. 2013:13–8.

30. Rose A, Del Arroyo JG, Bindewald J, Ramsey B, editors. BlueFinder: A Range-Finding Tool for Blue-
tooth Classic and Low Energy. 12th International Conference on CyberWarfare and Security 2017 Pro-
ceedings; 2017.

31. Holme P. Modern temporal network theory: a colloquium. The European Physical Journal B. 2015; 88
(9):1–30.

32. GuimeràR, Sales-Pardo M. Missing and spurious interactions and the reconstruction of complex net-
works. Proceedings of the National Academy of Sciences. 2009; 106(52):22073–8.
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