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Abstract
Introduction Cancers assume a variety of distinct histologies, and may originate from a myriad of sites including solid 
organs, hematopoietic cells, and connective tissue. Clinical decision-making based on consensus guidelines such as the 
National Comprehensive Cancer Network (NCCN) is often predicated on a specific histologic and anatomic diagnosis, sup-
ported by clinical features and pathologist interpretation of morphology and immunohistochemical (IHC) staining patterns. 
However, in patients with nonspecific morphologic and IHC findings—in addition to ambiguous clinical presentations such 
as recurrence versus new primary—a definitive diagnosis may not be possible, resulting in the patient being categorized 
as having a cancer of unknown primary (CUP). Therapeutic options and clinical outcomes are poor for patients with CUP, 
with a median survival of 8–11 months.
Methods Here, we describe and validate the Tempus Tumor Origin (Tempus TO) assay, an RNA-sequencing-based machine 
learning classifier capable of discriminating between 68 clinically relevant cancer subtypes. Model accuracy was assessed 
using primary and/or metastatic samples with known subtype.
Results We show that the Tempus TO model is 91% accurate when assessed on both a retrospectively held out cohort and a set 
of samples sequenced after model freeze that collectively contained 9210 total samples with known diagnoses. When evalu-
ated on a cohort of CUPs, the model recapitulated established associations between genomic alterations and cancer subtype.
Discussion Combining diagnostic prediction tests (e.g., Tempus TO) with sequencing-based variant reporting (e.g., Tempus 
xT) may expand therapeutic options for patients with cancers of unknown primary or uncertain histology.
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Key Points 

Using RNA expression data from > 50,000 tumor biop-
sies, we developed and validated a predictive model, for 
use in the setting of cancers of unknown primary, that is 
capable of discriminating between 68 possible histologi-
cal subtypes.

Our model is highly accurate on both retrospective (data 
that were withheld from training, 91.2% accuracy) and a 
labeled dataset that was sequenced after model train-
ing was completed (91.0% accuracy), and this accuracy 
is robust against imputed metastatic status and tumor 
purity.

Our model is also extensible, showing high accuracy 
(84.3%) on a fully independent dataset (TCGA).

1 Introduction

Accurate characterization of primary tissue origin, histology, 
and clinical/pathologic stage is required for assigning 
effective therapeutic interventions for patients with cancer 
[1]. However, some patients present with ambiguous clinical 
and histologic findings and no definitive primary site of 
disease [2]. These tumors are a heterogeneous group known 
as cancers of unknown primary (CUP) and account for 2–5% 
of cancers [3, 4]. The American Cancer Society estimates 
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that over 30,000 patients will be diagnosed with CUP in 
2021 [5, 6]. For patients with CUP, the average survival 
time is typically 8–12  months after diagnosis, though 
some subgroups may survive for up to 12–36 months [4]. 
Establishing why certain patients with CUP have more 
favorable prognoses and improving survival for all patients 
with CUP is a key goal for clinicians [7, 8].

Although direct examination of tissue—via morphology 
and immunohistochemistry—has long guided cancer type 
diagnosis, advances in sequencing technologies have 
facilitated new ways of characterizing cancer [9, 10]. 
These approaches have further enabled the development 
of several molecular diagnostics aimed at determining 
tumor origin specifically [11]. Methods for tumor 
classification may rely on microRNA signatures [12, 
13], transcript expression [14–16], mutation profiling via 
DNA sequencing [17, 18], methylation profiling [19], or 
whole-slide histology imaging [20]. For example, one 
commercially available assay leverages RT–PCR of 92 
genes and a machine learning algorithm to differentiate 
between 50 tumor subtypes [21–24]. Another assay 
developed a 2000 gene microarray-based RNA classifier 

and demonstrated 89% accuracy in predicting 15 tissue 
types [14]. More recently, one machine learning classifier 
using whole-transcriptome RNA sequencing demonstrated 
an accuracy of 86% in predicting 66 cancer/tissue types 
[15], while another demonstrated high test set (97%) and 
external accuracy (72–87%) [16]. Common to all these 
approaches is the ability to accurately predict cancer 
subtypes; however, direct comparisons of these studies are 
challenged by differing numbers of predicted subtypes and 
variation in generalization performance.

While prior studies and assays have made important 
advances, there are key limitations [11]. For instance, 
DNA-based panels [17] perform well when a tumor has a 
canonical alteration associated with a specific cancer type 
or subtype, but fail in their absence. RT–PCR assays that 
profile a subset of the transcriptome have limited accuracy 
when a tumor does not express a lineage-specific gene [23, 
24]. Other assays can predict tissue of origin, but lack finer 
granularity such as site-specific subtype or histology; this 
lack of specificity may be inadequate for some treatment 
or diagnostic decisions. Multi-omic machine learning 
architectures that integrate data from multiple assays may 

Fig. 1.  CONSORT diagram 
describing the cohorts used for 
classifier training, accuracy 
evaluation on labeled samples 
(validation data, including both 
retrospective and post-freeze 
samples), and assessment on 
unlabeled CUP samples
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provide an opportunity for accuracy improvement and can 
help alleviate concerns with using single data types [25], 
but these models require complex algorithms for data 
integration. Finally, even IHC—the current standard of care 
in making CUP diagnoses—is limited by the frequent loss of 
cell markers during de-differentiation and oncogenesis [26].

By contrast, full-transcriptome RNA sequencing (RNA-
seq) overcomes several of these limitations. As shown in 
prior work using methylation [19] and gene expression 
[23, 24] models, cancer cells retain an epigenetic and 
transcriptional signature of their cell type of origin. Next-
generation sequencing (NGS) has facilitated the adoption 
of transcriptome-wide expression profiling in a clinical 
setting owing to relatively low costs and minimal sample 
preparation. Hybrid capture assays, with probes covering 
the whole exome, can accurately extract expression profiles 
from small formalin-fixed paraffin-embedded (FFPE) tissue 
biopsies. Expression data generated by transcriptome-wide 
RNA-seq are well suited for machine learning and statistical 
modeling due to their quantitative, high dimensional, and 
untargeted nature [27].

Here, we describe and validate an RNA expression-
based tumor diagnosis classifier trained on whole-exome 
capture RNA-seq data from 43,726 tumor samples. This 
machine learning model distinguishes 68 tumor subtypes—a 
more comprehensive and finer level of subtype resolution 
than previous studies [17, 23, 25]. These tumor subtypes 
include neuroendocrine subtypes, sarcoma subtypes, and 
site-specific histologies to allow for precise application 
of medical guidelines. The classifier is highly accurate 
(91%) on an independent validation dataset, and is robust to 
primary versus metastatic lesions and tumor purity.

2  Materials and Methods

2.1  Cohort

Cohort selection for training and validation is summarized 
in Fig. 1. The principal inclusion criterion was the availabil-
ity of quality-controlled RNA-sequencing of a tumor speci-
men—no normal tissue samples were included in the devel-
opment, validation, or use-case of the model. A summary of 
assay quality controls is described in the “RNA-seq assay” 
section. No restrictions on the cancer stage or site of biopsy 
were applied. Biospecimen material was restricted to FFPE, 
bone marrow, and blood. Allowed cancer types and subtypes 
are described in the section “Diagnostic subtype assignment.” 
Samples were either labeled with known subtype (cancers 
of known primary) (N = 52,936, comprising 68 subtypes) 
or marked as unlabeled (e.g., CUP) (N = 1,708). Labeled 
samples were split into 75%/25% training and validation 
cohorts via stratified random sampling (matching subtype 

distributions), which were used for model training and evalu-
ation, respectively. The validation cohort was an independent 
test set of tumors derived from different patients and samples 
than the training data. A comparison of the tissue and subtype 
distributions in the training and validation sets is provided in 
Supplementary Tables S1 and S2. In the event that a patient 
had multiple biopsies, they were all grouped into either the 
training or validation cohorts to prevent information leak-
age. The validation cohort consisted of both retrospective 
samples that were sequenced prior to the model training date, 
as well as a set of samples sequenced after model develop-
ment and training. The unlabeled (CUP) cohort consisting 
of diagnostically ambiguous tumors was not used in the pri-
mary performance analysis, but was analyzed as part of the 
mutation-subtype enrichment study.

2.2  RNA‑Seq Assay

As part of the Tempus xT next-generation sequencing 
assay, CAP/CLIA validated hybrid capture RNA-seq 
was used to generate transcriptome-wide expression data 
from paraffinized tissue [28, 29]. A hybrid capture-based 
protocol was utilized instead of traditional poly-A capture 
to overcome the RNA fragmentation associated with 
tissue formalin fixation and paraffinization [30]. Briefly, 
FFPE samples (typically blocks) were cut into slides 4 μm 
thick and reviewed by a pathologist. Samples of adequate 
quality—with a minimum tumor fraction of 20% after 
microdissection when required—underwent RNA extraction. 
Extraction quality was assessed using a fragment analyzer 
and quantity was assessed using a fluorescent nucleic acid 
stain and a fluorescence microplate reader. At least 50 ng of 
RNA was extracted before proceeding to library preparation. 
Library preparation included steps for complementary 
strand synthesis with reverse transcriptase, ligation of dual 
indexed unique molecular identifier (UMI) adapters, and 
PCR amplification. At least 150 ng of amplified cDNA was 
required to proceed to hybridization. cDNA fragments were 
captured using a full exome panel [31] and sequenced on a 
NovaSeq 6000 (Illumina Inc, San Diego, CA) to a minimum 
depth of 30 million reads.

Following sequencing, raw BCL files were used to gener-
ate FASTQ files using BCL2FASTQ (v2.17). Adapters were 
trimmed using Skewer (v0.2.2). Reads were then aligned 
with STAR (v.2.5.4a) to generate BAM files and undergo 
UMI deduplication with umitools (v1.0.1). Following dedu-
plication, samples were converted to FASTQ files using 
bedtools (v2.27.1) before undergoing quantification using 
Kallisto (v0.44.0) with the Ensembl GRCH37 reference tran-
scriptome [28, 29].
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2.3  Feature Engineering

Raw RNA expression data were normalized to minimize the 
effect of technical artifacts such as GC content, transcript 
length, and library size [28, 29]. This normalization strategy 
is similar to the one employed in DESeq [32], with the 
important distinction being that our approach allows us to 
train the normalization on our training dataset and apply it 
to a fully held validation dataset, as required for machine 
learning research. In addition, a batch correction method 
was used to account for small technical differences between 
two versions of the RNA-seq assay, including a modified 
exome capture probe set and the addition of UMIs. The 
batch correction method leverages more than 500 paired 
samples that were run on both assays to match the means 
and variances of normalized expression (for details, see 
Supplementary Methods). In this work, all validation 
statistics refer to the most recent assay version.

The 20,061-dimensional gene-level expression features 
underwent several threshold-based filters and data scalings. 
Low variance genes were removed using a threshold of 
0.176; 6014 features remained after filtering. Genes with 
low interassay correlation were removed using a threshold 
of 0.725; 17,513 features remained after applying this filter. 
Finally, expression data were scaled to have a uniform 
mean and variance per gene. The optimal thresholds for 
establishing low variance and interassay reproducibility 
filtering were tuned via a hyperparameter grid search, as 
described in detail below. In all, the application of both 
filters led to 5498 genes in the final feature set. To prevent 
information leakage, all transformation parameters were 
learned using the training set and independently applied to 
the validation set.

2.4  Expression Validation

Gene expression features were analytically validated [33] 
to ensure that the model relied on accurate and reproducible 
inputs. Universal Human Reference (UHR) RNA [34] was 
sequenced on the Tempus RNA-seq assay to establish 
linearity against an orthogonal method. Normalized gene 
expression values were compared against a reference set 
of 17,321 qPCR ΔCT values established by the MAQC 
consortium. Normalized expression data were generated for 
21 UHR replicates. All replicates had a Pearson’s correlation 
coefficient (R value) greater than 0.76 between the ΔCT 
values and gene expression data. Further methodological 
validation included a per-gene linearity study using 
88 clinical samples and testing 18 genes to measure 
concordance between qPCR ΔCT values and normalized 
gene expression levels (Supplementary Fig. S1). The 
18 genes were selected due to their high variance across 
different tumor types, relevance to cancer, and associations 

with clinically relevant amplifications. Of these, 15/18 genes 
had an R value > 0.75. All genes had an R value greater 
than 0.5, and the lowest performing genes were those with 
a small ΔCT dynamic range. In genes with large dynamic 
range, gene expression profiling with RNA-seq is highly 
concordant with qPCR.

2.5  Diagnostic Subtype Assignment

Samples were annotated with one of 68 subtypes (in this 
work, a subtype is defined as a site-specific histology) 
inclusive of cancer types and histologic subtypes. Samples 
were annotated with clinical and diagnostic information in 
two ways. Each sample underwent pathology review by a 
board-certified pathologist. The pathologist’s workflow 
included reviewing a patient’s clinical documents (such 
as progress notes and external pathology reports, which 
includes diagnostic IHC), viewing H&E-stained images, and 
inputting free-text diagnostic data describing the primary 
site, histological subtype, and biopsy site into the laboratory 
information management system for a sample. Patient 
records underwent a second round of clinical data review by 
trained abstractors to generate standardized diagnostic data 
for a patient. Abstractors reviewed a patient’s clinical notes 
within a document review platform and assigned Unified 
Medical Language System codes to describe a patient’s 
clinical history of diagnosis.

From an analysis of this corpus of real-world diagnostic 
data, a curated set of diagnoses was developed to achieve 
broad coverage over, and clinical differentiation of, 
clinically meaningful cancer subtypes and histologies. In 
total, 68 diagnostic labels (Supplementary Table S3) were 
developed. To assign diagnostic labels to each sample, a 
natural language model consisting of regular expressions 
was used to parse the free text diagnostic field assigned 
by the pathologist into a label. A rules-based system was 
designed to identify diagnostically ambiguous cases where 
a definitive subtype could not be confidently assigned. 
Diagnostically ambiguous samples (e.g., samples matching 
zero or several subtypes) were excluded from the labeled 
model training and validation sets, but were considered in 
the analysis of the CUP cohort.

A de-identified case review by pathologists was used 
to assess the accuracy of automated subtype assignments. 
Three different pathologists were presented with 
de-identified clinical data from 118 cases (1 case from 
each of the subtypes and 50 additional cases selected at 
random). Each pathologist reviewed the clinical data and 
was instructed to assign a single subtype to each case from 
the set of 68 labels.
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2.6  Machine Learning Model

The machine learning model is a multinomial logistic 
regression classifier with L2 regularization. To overcome 
class imbalance in the training set, rare classes were 
upweighted. The weights for the ith class are given as 
wi =

ni
�

Σjnj
�

 , where ni is the observed count of class i and α is 
a smoothing parameter that was determined via 
hyperparameter search. Including the previously mentioned 
feature engineering, the hyperparameter grid search was 
performed via three-fold cross-validation (evaluated using 
the log loss metric) on the training set that simultaneously 
assessed (1) L2 regularization strength, (2) variance 
threshold, (3) interassay concordance threshold, and (4) 
class weight smoothing parameter.

2.7  Validation Metrics

Models were evaluated using three metrics computed on the 
independent validation set: accuracy, top-three accuracy, 
and mean sensitivity. Accuracy and top-three accuracy were 
computed as the average (over samples) of the number of 
times the true subtype assignment was found in the top 
one or any of the top three highest probability subtype 
predictions, respectively. Mean sensitivity was computed 
by first calculating the sensitivity [TP/(TP+FN)] within 
each subtype, and then taking the unweighted mean across 
all 68 subtypes. Binomial confidence intervals for metrics 
were estimated using Markov chain Monte Carlo. Per-label 
specificity [TN/(TN + FP)] was also computed within each 
subtype.

2.8  TCGA Assessment

To assess the generalizability of our model beyond samples 
sequenced in our laboratory, we evaluated the performance 
of the TO classifier using data generated by The Cancer 
Genome Atlas (TCGA) [35].

First, tabular clinical data for all TCGA studies were 
downloaded from the GDC data portal (https:// portal. gdc. 
cancer. gov/). Next, a crosswalk was constructed to map 
each unique TCGA subtype (i.e., each of the 617 unique 
combinations of TCGA study, ICD10 code, primary 
diagnosis, site of resection, and tissue of origin) to the 
appropriate Tempus TO subtype (Supplementary Table S4). 
Subtypes with conflicting diagnostic information or no 
Tempus equivalent were labeled “Other” and excluded 
from analysis. Overall, 33 TCGA studies were mapped to 
38 Tempus TO subtypes (Supplementary Table S5). One 
notable example of the histology-by-histology mapping 
was TCGA type “sarc,” which was mapped onto five 

distinct Tempus TO sarcoma subtypes. Another example 
is the TCGA typing for colon (“coad”) and rectal (“read”) 
carcinomas, which were mapped to Tempus TO subtype 
“colorectal adenocarcinoma”; this lumping is consistent 
with analysis of these TCGA types presented in the TCGA 
publication [36], which combined the types during analysis.

After obtaining the crosswalk, the diagnostic subtypes 
specified by TCGA were mapped to obtain a comparable set 
of internally defined subtype labels for each TCGA sample. 
The RNA-sequencing results from TCGA fastqs (9976 
samples) were processed using Kallisto and normalized at 
the gene level with the same reference for consistency with 
other data used in this work. Finally, the subtype classifier 
was applied to each sample in TCGA to obtain a predicted 
subtype and performance was assessed using the same 
metrics described above.

2.9  DNA Sequencing Assay

Each sample also underwent co-isolation of nucleic acids to 
generate both DNA and RNA material for sequencing. DNA 
was sequenced using a targeted sequencing panel (Tempus 
xT) [29]. The assay has an average coverage of 500× and 
detects single nucleotide variants (SNVs), indels, and copy 
number variants in 595–648 genes spanning 3.6 Mb of 
genomic space. DNA data was not used as input into the 
gene expression-based model, so it provides an orthogonal 
method to aid in diagnostic interpretation and for evaluation 
of self-consistency on CUP samples.

2.10  Mutation Subtype Associations

Mutation subtype enrichments were used to characterize 
classifier behavior on CUP samples without a definitive clin-
ical diagnosis. First, somatic mutations were aggregated for 
two cohorts: samples with a subtype diagnosis and samples 
without (CUP samples). For samples with a known subtype, 
Fisher’s exact test was used to find all subtype gene pairs 
with significant enrichments. A significant enrichment was 
defined as an association (i.e., an odds ratio calculated from 
the contingency table between subtype and mutation status) 
with a one-sided p-value less than 1.6 ×  10−6 (i.e., an alpha 

Table 1.  Model performance metrics on a held-out set of labeled 
samples

Validation

Sample size 9210
Accuracy 91.1%
Top three accuracy 97.5%
Mean sensitivity 80.0%

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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Fig. 2.  Sensitivity for each of the 68 possible subtypes sorted from highest to lowest. See Supplementary Table S3 for full results
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of 0.05 using the Bonferroni correction with 30,804 com-
parisons, obtained by considering 453 genes with observed 
mutations for one of the 68 labels). Significant enrichments 
were further filtered on the basis of their frequency; sub-
type–gene pairs with insufficient statistical power in the 
CUP cohort were removed by excluding pairs for which the 
probability of observing zero mutant counts (assuming iden-
tical mutant frequencies across labeled and CUP cohorts) 
was below 0.05. Finally, the list of significant associations 
(from known subtypes) was then evaluated on the classifier-
predicted subtypes in the CUP cohort. Somatic mutation 
frequencies were estimated as the fraction of samples with 
a mutation in each gene.

3  Results

3.1  Label Accuracy

We compiled an initial dataset containing 54,644 tumor-
derived RNA-seq samples from a validated gene expression 
pipeline (see “Materials and Methods” for details, 
Supplementary Fig. S1) from the Tempus database (Fig. 1). 
Approximately 3% of these samples (N = 1708) were from 
cancers with an unknown primary site of origin (CUPs), 
which were withheld from model development and used 
only for downstream validation and model interrogation. 
For the remaining samples (N  = 52,936), we assigned one 

of 68 subtype labels based on clinical documentation and a 
standardized abstraction protocol (see Diagnostic subtype 
assignment in Materials and Methods).

To evaluate the appropriateness of the cancer subtype 
labels for tumor origin classification, three pathologists 
assessed 118 randomly selected, blinded, deidentified 
cases, and were asked to assign a label to each case. For 
109/118 cases (92%), the three pathologists agreed in 
their assignment. Treating those “consensus pathologist” 
annotations as the gold standard, the diagnostic subtype 
assignment method was 98% accurate (107/109). On the 
full 118 sample dataset, the concordance of each pathologist 
with the automated assignment was 92% (109/118), 94% 
(111/118), and 97% (114/118).

3.2  Model Performance on Labeled Samples

We applied the trained Tempus Tumor Origin (TO) model to 
the independent validation dataset to assess overall perfor-
mance. As the Tempus TO model outputs a probability that a 
sample belongs to a given label, we calculated performance 
on the basis of the highest probability label assigned to a 
sample (Table 1). The model accuracy was 91.1% (95% CI 
90.5–91.6%); this number approximates the probability that 
a random sample (with known subtype) from our labora-
tory is correctly predicted by the RNA-based classifier. As 
accuracy overemphasizes the most common cancers in our 
dataset, such as colorectal adenocarcinoma, we also assessed 
performance using mean sensitivity, which balances the 
impact of rare and common subtypes (see “Material and 
Methods”). In the validation cohort, we achieved a mean 
sensitivity of 80.0% (95% CI 77.9–81.7%). Sensitivity per 
subtype ranged from 25.9% (small bowel adenocarcinoma) 
to 100% in ependymoma, Ewing sarcoma, meningioma, 
renal chromophobe carcinoma, and schwannoma (Fig. 2). 
Full results of all metrics for each subtype are listed in Sup-
plementary Table S3.

Since our classifier outputs a probability that a sample 
belongs to one of 68 different subtypes, we hypothesized that 
mislabeled samples might be correctly identified within the 
top N predicted subtypes. When considering the top N pre-
dicted subtypes—i.e., a prediction is deemed correct as long 
as the correct label is among the top N predictions[37]—we 
observed considerable increases in overall accuracy. Cru-
cially, for subtypes that were most difficult to predict, the 
correct prediction was frequently the second highest pre-
dicted subtype, and many subtypes are predicted perfectly 
when considering the top three highest predictions (Fig. 3). 
Overall, this shows that when the model makes an incorrect 
prediction, the correct prediction is very often either the next 
highest prediction or among the top three. The top-k  recall 
(k  = 1,2,3) for all subtypes is provided in Supplementary 
Table S6.

Fig. 3  The top-k  sensitivity (k  = 1,2,3) for the most difficult-to-pre-
dict subtypes highlights that the correct prediction is frequently in the 
top two or top three predictions
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To assess the possibility of performance drift over time, 
and to ensure model generalizability, we examined accuracy 
separately across a retrospective cohort (data available at 
the time of training but computationally withheld) and a set 
of samples sequenced after model freeze (Supplementary 
Table S7). We found no significant difference in accuracy 
(91.2% and 90.8%, respectively; Fisher’s exact test, p  = 0.6), 
further indicating that the model is generalizable. Model 
performance was found to be robust to tumor purities down 
to 10%, showing an accuracy of at least 89% for all purity 
bins above 10% (Supplementary Table S8). Further, there 
was only a small reduction in performance when applied to 
cases with imputed metastatic, nonmetastatic, and unknown 
primary status—as defined via curated sample metadata and 
pathological review (Supplementary Table S9).

While overall metrics of model accuracy are critical 
for assessing performance, these single numbers obscure 
the actual patterns of correct and incorrect predictions. 
We therefore examined confusion matrices (predicted 
versus observed subtype counts) for several clinically rel-
evant groupings of subtypes (Supplementary Fig. S2). As 
expected, there are molecular similarities between less com-
mon gastrointestinal subtypes such as goblet cell adenocar-
cinoma and small bowel adenocarcinoma and more common 
subtypes such as colorectal adenocarcinoma. Furthermore, 
the confusion matrices demonstrate robust per-label sensi-
tivity across liver and lymph node tissue sites. Full model 
predictions for validation set samples are included in Sup-
plementary Table S10.

Lastly, we note that a small percent of predictions yielded 
ambiguous results. These samples were flagged (and no-
called) whenever the largest predicted probability [the 
max(p) value] from among the 68 possible labels is below 
35%. Among validation set samples, this occurred 1% of the 

time. Samples passing the max(p threshold had a marginally 
higher accuracy (91.7%). However, throughout this paper, 
we reported all metrics according to the more pessimistic 
scenario where the largest predicted probability is reported 
regardless of whether it is below 35%. In clinical applica-
tions of the model, however, samples with max(p) below 
35% will be reported as indeterminate.

Table 2  Observed somatic mutation frequency (in the labeled and CUP cohorts) of the ten most significant enrichments in the CUP cohort. See 
Supplementary Table S14 for the full list

Subtype Gene Somatic mutation frequency

Within subtype Outside subtype

Labeled cohort CUP cohort Labeled cohort CUP cohort

Pancreatic adenocarcinoma KRAS 0.530 0.681 0.101 0.132
Lung adenocarcinoma STK11 0.092 0.241 0.007 0.019
Cholangiocarcinoma IDH1 0.079 0.109 0.011 0.002
Lung adenocarcinoma KEAP1 0.050 0.159 0.003 0.014
Colorectal adenocarcinoma APC 0.496 0.309 0.025 0.036
Lung adenocarcinoma SMARCA4 0.032 0.144 0.007 0.026
Small cell lung carcinoma RB1 0.436 0.365 0.035 0.053
Cholangiocarcinoma BAP1 0.075 0.117 0.007 0.017
Skin squamous and basal cell carcinoma NOTCH1 0.229 0.333 0.011 0.014
Skin squamous and basal cell carcinoma NOTCH2 0.111 0.273 0.006 0.005

Fig. 4.  Somatic mutation frequencies are compared for tumors of 
known origin (labels obtained from clinical data) and tumors of 
unknown origin (labels predicted by the Tempus TO classifier). Each 
point represents the somatic mutation frequency for a particular gene 
and subtype; all gene–subtype pairs passing the labeled-cohort signif-
icance threshold are included
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3.3  Generalization to TCGA Samples

To assess the generalizability of the classifier beyond 
samples sequenced at Tempus, we performed an analysis 
of TCGA samples. Despite the classifier never having seen 
TCGA data, the possibility of technical batch effects based 
on differences in sample collection and RNA-sequencing 
protocols, and the challenges involved in mapping ground 
truth subtype labels across the two datasets (see “Materials 
and Methods”), the overall accuracy of the TO classifier was 
84.3% on TCGA samples that encompass 38 histological 
subtypes and the mean sensitivity was 85.2%—both values 
are on par with the reported accuracy from our retrospective 
and post-freeze validation sets. Full TCGA performance 
metrics are presented in Supplementary Tables S11 and 
S12, with full confusion matrices for Tempus and TCGA 
shown in Supplementary Figs. S3 and S4. To further help 
understand the sample-level predictions of the model, 
Supplementary Table S13 contains TO model predictions for 
all TCGA samples that passed RNA quality control. Finally, 
Supplementary Fig. S5 assesses the similarity in per-class 
sensitivity across the Tempus and TCGA datasets for all 
subtypes having at least three samples.

3.4  Mutation–Subtype Associations in CUP Sample 
Predictions

Previous analyses were performed on samples of known 
primary for the purpose of model training and validation, 
but true CUP samples may present particularly unique 
challenges. Assessing performance of the TO classifier 
on CUP samples—which, by definition, have no known 
subtype—is difficult but many DNA alterations are 
associated with specific cancer subtypes [38]. While we note 
that DNA variant information is not diagnostically sufficient 
for establishing tumor subtype, we hypothesized that 
mutation–subtype associations in the DNA data of labeled 
samples should be similar to associations found among the 
predicted subtypes of CUP samples (see Methods). Because 
the Tempus TO model is fully blind to DNA sequence 
variant data during training and inference, this analysis 
provides an independent self-consistency characterization 
of the classifier in the CUP setting.

For each subtype and gene alteration (SNV, indels), we 
selected significant mutation-subtype associations, identify-
ing 158 enrichments in the labeled cohort (see Methods); 
these significant associations involved 29 subtypes and 71 
genes. We next asked whether these same associations were 
observed in CUP samples, and were able to recover positive 
subtype–gene associations (i.e., subtype–gene odds ratios 
> 1) in 150 of the 158 cases (94.9% of associations recov-
ered; 95% CI 91.5–98.3%) despite our model having no 

explicit knowledge of sequence variants. Finally, the somatic 
mutation frequencies from the known subtype are recapitu-
lated in CUP samples with the corresponding predicted sub-
type (Table 2, Fig. 4). Overall, this assessment found that TO 
predictions on CUP samples are able to recapitulate known 
mutation–subtype associations and is a further indicator of 
the consistency of the TO classifier. 

4  Discussion

Improving outcomes for patients with CUP remains an 
unmet clinical need. Given the increasingly low cost and 
widespread availability of genomic testing, machine learning 
approaches—such as the one developed and validated 
here—promise to improve clinical management for patients 
with CUP by providing a specific anatomic and histologic 
diagnosis. We show that the Tempus TO assay achieves 
a 91% classification accuracy across 68 well-defined 
and clinically relevant tumor subtypes using only RNA 
expression data, which is quantified as part of the Tempus 
xT sequencing assay. These predictions are made available 
on a timeline comparable to the delivery of the xT test result, 
which is typically between 10 and 14 days after sample 
receipt, which is a common and clinically meaningful 
turnaround time for NGS test results. To further validate 
the Tempus TO assay and ensure its robustness, we assessed 
a number of orthogonal metrics for measuring classification 
accuracy, ensured accuracy on independent cohorts that 
were either held out during model development or sequenced 
after freezing the model, and finally showed that subtype 
predictions are capable of recapitulating subtype-specific 
mutational patterns. We additionally evaluated the TO model 
in TCGA data to demonstrate generalizability and found 
comparable performance to the internal validation sets.

An extension of the value that comes with the diagnostic 
resolution of CUPs provided by Tempus TO is the potential 
impact on therapeutic decision-making as it relates to 
supporting National Comprehensive Cancer Network 
(NCCN) recommended guidelines and Food and Drug 
Administration (FDA) label indications in both non-
biomarker and biomarker-dependent contexts. The non-
biomarker context highlights an application of Tempus TO 
beyond the traditional CUP setting to aid in the evaluation of 
tumors with a clear primary site of origin but conflicting or 
ambiguous histology. In lung cancer for instance, the choice 
to give bevacizumab in combination with carboplatin and 
paclitaxel is dependent on a differential diagnosis between 
lung adenocarcinoma and lung squamous carcinoma [39]. 
However, lung tumors can present with poorly differentiated 
histology, limiting further classification beyond “non-small 
cell lung cancer” [40] and complicating the ability to follow 
histology-specific guideline recommendations. Therefore, 
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a critical component of any subtype classifier is the ability 
to discriminate between histologies. The Tempus TO assay 
has sensitivity to differentiate between lung squamous cell 
carcinoma (sensitivity 0.88), lung adenocarcinoma (0.95), 
small cell lung carcinoma (0.87), and neuroendocrine lung 
tumors (0.43) with less tissue than is typically required 
for IHC (Supplementary Fig. S2). Judicious use of IHC in 
small tissue samples to determine a histological diagnosis is 
recommended to conserve tumor tissue, especially in patients 
with advanced disease or limited biopsy material [41, 42].

Biomarker-dependent contexts highlight the value 
of Tempus TO paired with targeted molecular profiling 
assays, such as Tempus xT, where diagnostic predictions 
can support biomarker and cancer type-specific therapy 
indications. An example of this would be differentiating 
diagnostically challenging upper gastrointestinal 
neoplasms such as gastroesophageal carcinoma, 
cholangiocarcinoma, hepatocellular carcinoma, pancreatic 
adenocarcinoma, pancreatic neuroendocrine tumors, small 
bowel adenocarcinoma, gastrointestinal neuroendocrine 
carcinomas, and well-differentiated gastrointestinal 
neuroendocrine tumors (Supplementary Fig. S2). With the 
clinical approval of FGFR2 [43] and IDH1 [44] targeting 
therapies in cholangiocarcinoma, accurate diagnosis and 
mutational analysis of this rare tumor subtype has the 
potential to support on-label therapeutic options.

Despite the high accuracy of the Tempus TO model, there 
are nevertheless several caveats that we wish to emphasize as 
possible limitations and areas for ongoing research.

First, any diagnostic algorithm for patients with CUP 
presents innate evaluation challenges since CUPs do 
not—by definition—have ground-truth labels to use in 
evaluation. Analytical performance can be evaluated 
only on cancers with an adjudicated diagnosis—calling 
into question the generalizability of model performance 
to the intended population of the assay. However, 
we partially addressed this challenge using DNA 
associations in the CUP population as an orthogonal 
assessment. A supporting example from the DNA 
analysis is the enrichment of SMARCA4 alterations in 
lung adenocarcinomas (Table 2). SMARCA4 is one of 
the catalytic subunits of the SWI/SNF chromosomal 
remodeling complex, a critical transcriptional regulator. 
SMARCA4 lung cancers have been shown to be associated 
with poor histologic differentiation and a lack of TTF1 
staining, which is a commonly used IHC biomarker 
for diagnosing lung cancer[45]. Although SMARCA4 
mutations are not entirely specific for lung, our analysis 
finds that SMARCA4 mutations are significantly associated 
with lung adenocarcinoma in both CUP and non-CUP 
settings—but with an almost five-fold higher somatic 
mutation rate in the CUP cohort. Therefore, our finding 
of enrichment of SMARCA4 variants in patients with CUP 

predicted as lung adenocarcinoma is an expected finding 
given the diagnostic challenge posed by TTF1 negative, 
poorly differentiated carcinomas [46].

Second, performance metrics such as overall accuracy 
are dependent on the case distribution observed in our 
laboratory, which may differ from other institutions as well 
as the general population. To mitigate the effect of differing 
case distributions, we additionally report per-label sensitivity 
and specificity for use in evaluating each label in isolation 
(Supplementary Table S3). It should be noted that one of 
the expected drivers of misclassification in the TO test is the 
overlapping nature of gene expression profiles for cancers 
with similar histologies such as squamous cell carcinomas 
from several primary sites, or cancers of differing histology 
but from the same site. Evaluation of confusion matrices 
that illustrate per-label performance identify similar trends 
of misclassification attributable to this expected limitation in 
both the Tempus and TCGA data (Supplementary Figs. S3 
and S4). Additionally regarding possible TCGA to Tempus 
per-label discordance, there were expected limitations in 
the mapping of TCGA and Tempus labels and different 
diagnostic practice variability such as with the evolving 
World Health Organization (WHO) classification of gliomas 
[47].

Third, while our label set is comprehensive, it does 
not represent all possible cancer subtypes. In clinical 
practice, a CUP case may be presented to the classifier 
where the true diagnosis is not well represented in the 68 
diagnostic cancer subtypes or is unlike any case observed 
in the training set. Examples of such cases may include 
rare de novo histologic variants of common cancers such 
as sarcomatoid variants. The resulting predictions in these 
settings can still inform the possible site of origin and 
the histologic subtype; however, oversight by the ordering 
physician is required to integrate molecular predictions 
with all available clinical evidence to aid in subtype 
diagnosis.

Fourth, this study focused specifically on RNA 
expression-based prediction, but additional data modalities 
(e.g., digital pathology, fusions, DNA) might allow for 
expansion of the diagnostic label and reportable range of 
the assay. This is particularly relevant in the context of 
cancer subtypes with pathognomonic alterations such as 
BRD4–NUT fusions in NUT midline carcinoma.

Fifth, some cancer subtypes can transition from one 
histological diagnosis to another. For example, prostate 
and lung adenocarcinomas can acquire neuroendocrine 
histology in response to treatment with ADT [48] and 
EGFR inhibitors [49], respectively. It can be challenging to 
assign a precise diagnosis in situations where a tumor has 
a mixed or transitioning histology. Tempus TO identifies 
the prominent histological subtype in a tumor specimen, 
enabling better clinical management.
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Finally, this study focused on assessing diagnostic 
accuracy using samples with known labels. We 
demonstrated high accuracy on a set of samples that were 
collected and analyzed after freezing the development of 
our model and therefore illustrate the ability of our model 
to generalize. Future studies that may be valuable include 
truly prospective tests of diagnostic accuracy such as 
those that rely on clinical follow-up or even postmortem 
primary identification following the determination of a 
predicted subtype. Future studies of clinical utility will 
also be valuable, such as studies investigating changes in 
medication utilization or survival endpoints.

5  Conclusion

The present study has demonstrated the high accuracy and 
granularity of a cancer subtype predictor (Tempus TO) 
for use in classifying cancers of unknown or uncertain 
primary origin. The subtype predictor was built using one 
of the largest known collections of paired RNA-seq and 
subtype labels and distinguishes between 68 subtypes with 
an overall accuracy of 91%. We anticipate that Tempus TO 
will be a useful tool for providing physicians with a pre-
cise histological and site-specific diagnosis, an essential 
component for clinical decision-making in the increasingly 
detailed landscape of precision medicine.
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