
Validation of Abstract Side-Channel
Models for Computer Architectures

Hamed Nemati1, Pablo Buiras2, Andreas Lindner2(B), Roberto Guanciale2,
and Swen Jacobs1

1 Helmholtz Center for Information Security (CISPA),
Saarbrücken, Germany

{hnnemati,jacobs}@cispa.saarland
2 KTH Royal Institute of Technology,

Stockholm, Sweden
{buiras,andili,robertog}@kth.se

Abstract. Observational models make tractable the analysis of infor-
mation flow properties by providing an abstraction of side channels. We
introduce a methodology and a tool, Scam-V, to validate observational
models for modern computer architectures. We combine symbolic execu-
tion, relational analysis, and different program generation techniques to
generate experiments and validate the models. An experiment consists of
a randomly generated program together with two inputs that are obser-
vationally equivalent according to the model under the test. Validation is
done by checking indistinguishability of the two inputs on real hardware
by executing the program and analyzing the side channel. We have eval-
uated our framework by validating models that abstract the data-cache
side channel of a Raspberry Pi 3 board with a processor implementing
the ARMv8-A architecture. Our results show that Scam-V can identify
bugs in the implementation of the models and generate test programs
which invalidate the models due to hidden microarchitectural behavior.

Keywords: Testing · Side channels · Information flow security ·
Model validation · Microarchitectures

1 Introduction

Information flow analysis that takes into account side channels is a topic
of increasing relevance, as attacks that compromise confidentiality via dif-
ferent microarchitectural features and sophisticated side channels continue to
emerge [2,27,28,31–33,40]. While there are information flow analyses that try
to counter these threats [3,15], these approaches use models that abstract from
many features of modern processors, like caches and pipelining, and their effects
on channels that can be accessed by an attacker, like execution time and power
consumption. Instead, these models [36] include explicit “observations” that
become available to an attacker when the program is executed and that should
overapproximate the information that can be observed on the real system.
c© The Author(s) 2020

S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12224, pp. 225–248, 2020.
https://doi.org/10.1007/978-3-030-53288-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53288-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-53288-8_12


226 H. Nemati et al.

Fig. 1. Validation framework workflow

While abstract models are indispensable for automatic verification because
of the complexity of modern microarchitectures, the amount of details hidden by
these models makes it hard to trust that no information flow is missed, i.e., their
soundness. Different implementations of the same architecture, as well as opti-
mizations such as parallel and speculative execution, can introduce side channels
that may be overlooked by the abstract models. This has been demonstrated by
the recent Spectre attacks [32]: disregarding these microarchitectural features
can lead to consider programs that leak information on modern CPUs as secure.
Thus, it is essential to validate whether an abstract model adequately reflects
all information flows introduced by the low-level features of a specific processor.

In this work, we introduce an approach that addresses this problem: we show
how to validate observational models by comparing their outputs against the
behavior of the real hardware in systematically generated experiments. In the
following, we give an overview of our approach and this paper.

Our Contribution. We introduce Scam-V (Side Channel Abstract Model Val-
idator), a framework for the automatic validation of abstract observational
models. At a high level, Scam-V generates well-formed1 random binaries and
attempts to construct pairs of initial states such that runs of the binaries from
these states are indistinguishable at the level of the model, but distinguishable
on the real hardware. In essence, finding such counterexamples implies that the
observational model is not sound, and leads to a potential vulnerability. Figure 1
illustrates the main workflow of Scam-V.

The first step of our workflow (described in Sect. 3) is the generation of a
binary program for the given architecture, guided towards programs that trigger
certain features of the architecture. The second step translates the program to
the intermediate language BIR (described in Sect. 2.4) and annotates the result
with observations according to the observational model under validation. This
transpilation is provably correct with respect to the formal model of the ISA,
i.e., the original binary program and the transpiled BIR program have the same
effects on registers and memory. In step three we use symbolic execution to syn-

1 Terminating programs which do not cause run-time exceptions and emit observations
required by the analysis.



Validation of Abstract Side-Channel Models for Computer Architectures 227

thesize the weakest relation on program states that guarantees indistinguishabil-
ity in the observational model (Sect. 4). Through this relation, the observational
model is used to drive the generation of test cases – pairs of states that satisfy
the relation and can be used as inputs to the program (Sect. 5). Finally, we run
the generated binary with different test cases on the real hardware, and compare
the measurements on the side channel of the real processor. A description of this
process together with general remarks on our framework implementation are in
Sect. 6. Since the generated test cases satisfy the synthesized relation, soundness
of the model would imply that the side-channel data on the real hardware cannot
be distinguished either. Thus, a test case where we can distinguish the two runs
on the hardware amounts to a counterexample that invalidates the observational
model. After examining a given test case, the driver of the framework decides
whether to generate more test cases for the same program, or to generate a new
program.

We have implemented Scam-V in the HOL4 theorem prover2 and have eval-
uated the framework on three observational models (introduced in Sect. 2.3) for
the L1 data-cache of the ARMv8 processor on the Raspberry Pi 3 (Sect. 2.2).
Our experiments (Sect. 7) led to the identification of model invalidating microar-
chitectural features as well as bugs in the ARMv8 ISA model and our observa-
tional extensions. This shows that many existing abstractions are substantially
unsound.

Since our goal is to validate that observational models overapproximate hard-
ware information flows, we do not attempt to identify practically exploitable
vulnerabilities. Instead, our experiments attempt to validate these models in the
worst case scenario for the victim. This consists of an attacker that can precisely
identify the cache lines that have been evicted by the victim and that can min-
imize the noise of these measurements in the presence of background processes
and interrupts.

2 Background

2.1 Observational Models

We briefly introduce the concepts of side channels, indistinguishability, observa-
tional models, and observational equivalence. For the rest of this section, consider
a fixed program that runs on a fixed processor. We can model the program run-
ning on the processor by a transition system M = 〈S, →〉, where S is a set of
states and →⊆ S × S a transition relation. In automated verification, the state
space of such a model usually reflects the possible values of program variables
(or: registers of the processor), abstracting from low-level behavior of the pro-
cessor, such as cache contents, electric currents, or real-time behavior. That is,
for every state of the real system there is a state in the model that represents
it, and a state of the model usually represents a set of states of the real system.

Then, a side channel is a trait of the real system that can be read from by
an attacker and that is not modeled in M .
2 https://hol-theorem-prover.org.

https://hol-theorem-prover.org


228 H. Nemati et al.

Definition 1 (Indistinguishability). States r1 and r2 of the real system are
indistinguishable if a real-world attacker is not able to distinguish executions
from r1 or r2 by means of the side channel on the real hardware.
Note that executions may be distinguishable even if they end in the same final
state, e.g., if the attacker is able to measure execution time.

In order to verify resilience against attacks that use side channels, one option
is to extend the model to include additional features of the real system and to for-
malize indistinguishability in terms of some variations of non-interference [25,26].
Unfortunately, it is infeasible to develop formal models that capture all side
channels of a modern computer architecture. For instance, precisely determining
execution time or power consumption of a program requires to deal with complex
processor features such as cache hierarchies, cache replacement policies, specula-
tive execution, branch prediction, or bus arbitration. Moreover, for some impor-
tant parts of microarchitectures, their exact behavior may not even be public
knowledge, e.g., the mechanism used to train the branch predictor. Additionally,
information flow analyses cannot use the same types of overapproximations that
are used for checking safety properties or analyzing worst-case execution time,
e.g., the introduction of nondeterminism to cover all possible outcomes.

In order to handle this complexity, information flow analyses [3,15] use mod-
els designed to overapproximate information flow to channels in terms of system
state observations. To this end, the model is extended with a set of possible
observations O and we consider a transition relation →⊆ S × O × S, i.e., each
transition produces an observation that captures the information that it poten-
tially leaks to the attacker. We assume that the set O contains an empty obser-
vation ⊥, and call a transition labeled with ⊥ a silent transition. We call the
resulting transition system an observational model. For instance, in case of a
rudimentary cacheless processor, the execution time of a program depends only
on the sequence of executed instructions. In this case, extending the model with
observations that reveal the instructions is more convenient than producing a
clock-accurate model of the system.

We use the operator ◦ for the sequential composition of observations. In
particular, for a trace π = s0 →o1 s1 . . . →on sn of the model, we write o1◦. . .◦on

for the sequence of observations along π. We write o1 ◦ . . . ◦ on ≈ o′
1 ◦ . . . ◦ o′

n′ if
the two sequences are equal after removing silent transitions. Comparing traces
with observations leads to a notion of observational equivalence, defined as a
relation on program states.
Definition 2 (Observational equivalence). Traces π = s0 →o1 s1 . . . →on

sn and π′ = s′
0 →o′

1 s′
1 . . . →o′

n′ s′
n′ of an observational model M are observa-

tionally equivalent (written as π ∼M π′) iff o1 ◦ . . . ◦ on ≈ o′
1 ◦ . . . ◦ o′

n′ .
States s1 ∈ S and s2 ∈ S are observationally equivalent, denoted s1 ∼M s2,

iff for every possible trace π1 of M that starts in s1 there is a trace π2 of M that
starts in s2 such that π1 ∼M π2, and vice versa.

Note that this notion is, in principle, different from the notion of indistin-
guishability. The overapproximation of information flows can lead to false posi-
tives: for example, execution of a program may require the same amount of time



Validation of Abstract Side-Channel Models for Computer Architectures 229

Fig. 2. L1 data-cache structure.

even if the sequences of executed instructions are different. A more severe con-
cern is that these abstractions may overlook some flows of information due to
the number of low-level details that are hidden. For instance, an observational
model may not take into account that for some microcontrollers the number of
clock cycles required for multiplication depends on the value of the operands.

The use of an abstract model to verify resilience against side-channel attacks
relies on the assumption that observational equivalence entails indistinguishabil-
ity for a real-world attacker on the real system:

Definition 3 (Soundness). An observational model M is sound if whenever
the model states s1 and s2 represent the real system states r1 and r2, respectively,
then s1 ∼M s2 entails indistinguishability of r1 and r2.

2.2 The Evaluation Platform: Raspberry Pi 3

In order to evaluate our framework, we selected Raspberry Pi 33, which is a
widely available ARMv8 embedded system. The platform’s CPU is a Cortex-
A53, which is an 8-stage pipelined processor with a 2-way superscalar and in-
order execution pipeline. The CPU implements branch prediction, but it does not
support speculative execution. This makes the CPU resilient against variations
of Spectre attacks [5].

In the following, we focus on side channels that exploit the Level 1 (L1) data-
cache of the system. The L1 data-cache is transparent for programmers. When
the CPU needs to read a location in memory in case of a cache miss, it copies
the data from memory into the cache for subsequent uses, tagging it with the
memory location from which the data was read.

Data is transferred between memory and cache in blocks of 64 bytes, called
cache lines. The L1 data-cache (Fig. 2) is physically indexed and physically
tagged and is 4-way set associative: each memory location can be cached in four
different entries in the cache—when a line is loaded, if all corresponding entries

3 https://www.raspberrypi.org.

https://www.raspberrypi.org


230 H. Nemati et al.

are occupied, the CPU uses a specific (and usually underspecified) replacement
policy to decide which colliding line should be evicted. The whole L1 cache is
32KB in size, hence it has 128 cache sets (i.e. 32 KB/64 B/4). Let a be a physical
address, in the following we use off(a) (i.e., least significant 6 bits), index(a)
(i.e., bits from 6 to 12), and tag(a) (i.e., the remaining bits) to extract the cache
offset, cache set index, and cache tag of the address.

The cache implements a prefetcher, for some configurable k ∈ N: when it
detects a sequence of k cache misses whose cache set indices are separated by a
fixed stride, the prefetcher starts to fetch data in the background. For example,
in Fig. 2, if k = 3 and the cache is initially empty then accessing addresses a, b,
and c, whose cache lines are separated by a stride of 2, can cause the cache to
prefetch the block [384 . . . 449].

2.3 Different Attacker and Observational Models

Attacks that exploit the L1 data-cache are usually classified in three categories:
In time-driven attacks (e.g. [47]), the attacker measures the execution time of
the victim and uses this knowledge to estimate the number of cache misses and
hits of the victim; In trace-driven attacks (e.g. [1,48]), the adversary can profile
the cache activities during the execution of the victim and observe the cache
effects of a particular operation performed by the victim; Finally, in access-driven
attacks (e.g. [39,46]), the attacker can only determine the cache sets modified
after the execution of the victim has completed. A widely used approach to
extract information via cache is Prime+Probe [40]: (1) the attacker reads its
own memory, filling the cache with its data; (2) the victim is executed; (3) the
attacker measures the time needed to access the data loaded at step (1): slow
access means that the corresponding cache line has been evicted in step (2).

In the following we disregard time-driven attacks and trace-driven attacks:
the former can be countered by normalizing the victim execution time; the latter
can be countered by preventing victim preemption. Focusing on access-driven
attacks leads to the following notion of indistinguishability:

Definition 4. Real system states r1 and r2 are indistinguishable for access-
driven attacks on the L1 data-cache iff executions starting in r1 or r2 modify
the same cache sets.

We remark that for multi-way caches, the need for models that overapprox-
imate the information flow is critical since the replacement policies are seldom
formally specified and a precise model of the channel is not possible. The fol-
lowing observational model attempts to overapproximate information flows for
data-caches by relying on the fact that accessing two different addresses that
only differ in their cache offset produces the same cache effects:

Definition 5. The transition relation of the multi-way cache and pc observa-
tional model is s →o

mwc,pc s′, where →o
mwc,pc models the execution of one single

instruction, with o ∈ N × (({rd, wt} × N × N) ∪ ⊥). If o = (pc, acc) then pc is
the current program counter and acc = (op, t, i) is the memory access performed



Validation of Abstract Side-Channel Models for Computer Architectures 231

by the instruction, where op is the memory operation, t is the cache tag and i
is the cache set index corresponding to the address. If the instruction does not
access the memory, then acc =⊥.

Notice that by making the program counter observable, this model assumes that
the attacker can infer the sequence of instructions executed by the program.

We introduce several relaxed models, representing different assumptions on
the hardware behavior and attacker capability. Each relaxed model is obtained
by projecting observations of Definition 5. Let α be a relaxed model and fα the
corresponding projection function, then s →o′

α s′ iff exists o such that fα(o) = o′

and s →o
mwc,pc s′.

The following model assumes that the effects of instructions that do not
interact with the data memory are not measurable, hence the attacker does not
observe the program counter:

Definition 6. The projection of the multi-way cache observational model is
fmwc((pc, acc)) = acc.

On many processors, the replacement policy for a cache set does not depend
on previous accesses performed to other cache sets. The resulting isolation among
cache sets leads to the development of an efficient countermeasure against access-
driven attacks: cache coloring [23,45]. This consists in partitioning the cache
sets into multiple regions and ensuring that memory pages accessible by the
adversary are mapped to a specific region of the cache. In this case, accesses to
other regions do not affect the state of cache sets that an attacker can examine.
Therefore these accesses are not observable. This assumption is captured by the
following model:

Definition 7. The projection of the partitioned multi-way cache observational
model is fpmwc((pc, acc)) = acc if acc = (op, t, i) and i belongs to the set of
cache sets that are addressable by the attacker, and is ⊥ otherwise.

Notice that cache prefetching can violate soundness of this model, since accesses
to the non-observable region of the cache may lead to prefetching addresses that
lie in the observable part of the cache (see Sect. 7.2).

Finally, for direct-mapped caches, where each memory address is mapped to
only one cache entry, the cache tag should not be observable if the attacker does
not share memory with the victim:

Definition 8. The projection of the direct-mapped cache observational model
is fdc((pc, (op, t, i))) = (op, i) and fdc((pc, ⊥)) =⊥.

Since the cache in Cortex-A53 is multi-way set associative, this model is not
sound. For example, in a two-way set associative cache, accessing a, a and a, b,
where both a and b have the same cache set index but different cache tags, may
result in different cache states.



232 H. Nemati et al.

Fig. 3. BIR transpilation example

2.4 Binary Intermediate Representation

To achieve a degree of hardware independence, we use the architecture-agnostic
intermediate representation BIR [34]. It is an abstract assembly language with
statements that work on memory, arithmetic expressions, and jumps. Figure 3
shows an example of code in a generic assembly language and its transpiled BIR
code. This code performs a conditional jump to l2 if Z holds, and otherwise it
sets X1 to the multiplication X2 ∗ X3. Then, at l2 it loads a word from memory
at address X1 into X2, and finally adds 8 to the pointer X1. BIR programs are
organized into blocks, which consist of jump-free statements and end in either
conditional jump (CJMP), unconditional jump (JMP), or HALT.

BIR also has explicit support for observations, which are produced by state-
ments that evaluate a list of expressions in the current state. To account for
expressive observational models, BIR allows conditional observation. The con-
dition is represented by an expression attached to the observation statement.
The observation itself happens only if this condition evaluates as true in the
current state. The observations in Fig. 3 reflect a scenario where the data-
cache has been partitioned: some lines are exclusively accessible by the vic-
tim (i.e. the program), some lines can be shared with the attacker. The state-
ment OBS(sline(X1), [tag(X1), index(X1)]) for the load instruction con-
sists of an observation condition (sline(X1)) and a list of expressions to
observe ([tag(X1), index(X1)]). The function sline checks that the argu-
ment address is mapped in a shared line and therefore visible to the attacker.
The functions tag and index extract the cache tag and set index in which the
argument address is mapped. Binary programs can be translated to BIR via
a process called transpilation. This transformation reuses formal models of the
ISAs and generates a proof that certifies correctness of the translation by estab-
lishing a bisimulation between the two programs.

3 Program Generation

We base our validation of observational models on the execution of binary pro-
grams rather than higher-level code representations. This approach has the fol-
lowing benefits: (i) It obviates the necessity to trust compilers or reason about



Validation of Abstract Side-Channel Models for Computer Architectures 233

Fig. 4. Example programs generated by the Scam-V random program generator.

Fig. 5. Example programs generated by Scam-V monadic program generators.

how their compilation affects side-channels. (ii) Implementation effort is reduced
because most existing side-channel analysis approaches also operate on binary
representations, which requires ISA models. (iii) This approach allows to find
ISA model faults independently of the compilation. (iv) It enables a unified
infrastructure to handle many different types of channels.

In Scam-V, we implemented two techniques to generate well-formed bina-
ries: random program generation and monadic program generation. The random
generator leverages the instruction encoding machinery from the existing HOL4
model of the ISA and produces arbitrary well-formed ARMv8 binaries, with
the possibility to control the frequency of occurrences of each instruction class.
The monadic generator is following a grammar-driven approach in the style of
QuickCheck [13] that generates arbitrary programs that fit a specific pattern or
template. The program templates can be defined in a modular, declarative style
and are extensible. We use this approach to generate programs in a guided fash-
ion, focusing on processor features that we want to exercise in order to validate a
model, or those we suspect may lead to a counterexample. Figures 4 and 5 show
some example programs generated by Scam-V, including straight-line programs
that only do memory loads, programs that load from addresses in a stride pat-
tern to trigger automatic prefetching, and programs with branches. More details
on how the program generators work can be found in [38].



234 H. Nemati et al.

4 Synthesis of Weakest Relation

Synthesis of the weakest relation is based on standard symbolic execution tech-
niques. We only cover the basic ideas of symbolic execution in the following and
refer the reader to [30] for more details. We use X to range over symbols, and
c, e, and p to range over symbolic expressions. A symbolic state σ consists of
a concrete program counter iσ, a path condition pσ, and a mapping mσ from
variables to symbolic expressions. We write e(σ) = e for the symbolic evaluation
of the expression e in σ, and e(s) for the value obtained by substituting the
symbols of the symbolic expression e with the values of the variables in s, where
s is a concrete state.

Symbolic execution produces one terminating state4 for each possible exe-
cution path: a terminating state is produced when HALT is encountered; the
execution of CJMP c l1 l2 from state σ follows both branches using the path
conditions c(σ) and ¬c(σ). Symbolic execution of the example in Fig. 3 pro-
duces the terminating states σ1 and σ2. For the first branch we have pσ1 = Z
and mσ1 = {X1 → X1 + 8, X2 → LOAD(M, X1)} (we omit the variables that
are not updated), and for the second branch pσ2 = ¬Z and mσ2 = {X1 →
X2 ∗ X3 + 8, X2 → LOAD(M, X2 ∗ X3)}.

We extend standard symbolic execution to handle observations. That is, we
add to each symbolic state a list lσ, and the execution of OBS c #»e in σ appends the
pair (c, #»e ) to lσ, where c = c(σ) and #»e [i] = #»e [i](σ) are the symbolic evaluation
of the condition and expressions of the observation. For instance, in the example
of Fig. 3 the list for the terminating states are

lσ1 = [(sline(X1), [tag(X1), index(X1)])]
lσ2 = [(sline(X2 ∗ X3), [tag(X2 ∗ X3), index(X2 ∗ X3)])]

Let Σ be the set of terminating states produced by the symbolic execution, s
be a concrete state, and σ ∈ Σ be a symbolic state such that pσ(s) holds, then
executing the program from the initial state s produces the value mσ(X)(s)
for the variable X. Moreover, let lσ = [(c1, #»e 1) . . . (cn, #»e n)], then the generated
observations are (c1, #»e 1)(s)◦. . .◦(cn, #»e n)(s), where (c1, #»e 1)(s) = #»e 1(s) if c1(s),
and otherwise ⊥ (i.e. observations are list of concrete values).

After computing Σ, we synthesize the observational equivalence relation
(denoted by ∼) by ensuring that every possible pair of execution paths have
equivalent lists of observations. Formally, s1 ∼ s2 is equivalent to:

∧

(σ1,σ2)∈Σ×Σ

(pσ1(s1) ∧ pσ2(s2) ⇒ lσ1(s1) = lσ2(s2))

This synthesized relation implies the observational equivalence defined in
Sect. 2 (Definition 2). In the example, the synthesized relation (after simplifica-
tion) is as follows (notice that primed symbols represent variables of the second
state and we omitted the symmetric cases):
4 We consider only terminating programs.



Validation of Abstract Side-Channel Models for Computer Architectures 235

Fig. 6. Example test cases when the first 10 cache sets are shared.

(Z ∧ Z′) ⇒(
sline(X1) = sline(X′1) ∧
sline(X1) ⇒ (tag(X1) = tag(X′1) ∧ index(X1) = index(X′1))

)
∧

(Z ∧ ¬Z′) ⇒(
sline(X1) = sline(X′2 ∗ X′3) ∧
sline(X1) ⇒ (tag(X1) = tag(X′2 ∗ X′3) ∧ index(X1) = index(X′2 ∗ X′3))

)
∧

(¬Z ∧¬Z′) ⇒(
sline(X2∗X3) = sline(X′2∗X′3) ∧
sline(X2∗X3) ⇒ (tag(X2∗X3) = tag(X′2∗X′3) ∧ index(X2∗X3) = index(X′2∗X′3))

)

We recall that Raspberry Pi 3 has 128 cache sets and 64 bytes per line.
Figure 6 shows two pairs of states that satisfy the relation, assuming only the
first 10 cache sets are shared. States s1 and s2 lead the program to access the
third cache set, while s′

1 and s′
2 lead the program to access cache sets that are

not shared, therefore they generate no observations.

5 Test-Case Generation

A test case for a program P is a pair of initial states s1, s2 such that P produces
the same observations when executed from either state, i.e., s1 ∼ s2. The rela-
tion as described in Sect. 4 characterizes the space of observationally equivalent
states, so a simple but naive approach to test-case generation consists in query-
ing the SMT solver for a model of this relation. The model that results from the
query gives us two concrete observationally equivalent values for the registers
that affect the observations of the program, so at this point we could forward
these to our testing infrastructure to perform the experiment on the hardware.

However, the size of an observational equivalence class can be enormous,
because there are many variations to the initial states that cannot have effects
on the channels available to the attacker. Choosing a satisfying assignment for
the entire relation every time without any extra guidance risks producing many
test cases that are too similar to each other, and thus unlikely to find counterex-
amples. For instance, the SMT solver may generate many variations of the test
case (s1, s2) in Fig. 6 by iterating over all possible values for register X2 of state
s1, even if the value of this register is immaterial for the observation.

In practice, we explore the space of observationally equivalent states in a more
systematic manner. To this end, Scam-V supports two mechanisms to guide the



236 H. Nemati et al.

selection of test cases: path enumeration and term enumeration. Path enumer-
ation partitions the space according to the combination of symbolic execution
paths that are taken, whereas term enumeration partitions the space according
to the value of a user-supplied BIR expression. In both cases, the partitions are
explored in round-robin fashion, choosing one test case from each partition in
turn. To make the queries to the SMT solver more efficient, we only generate a
fragment of the relation that corresponds to the partition under test.

Path Enumeration. Every time we have to generate a test case, we first select
a pair (σ1, σ2) ∈ Σ × Σ of symbolic states as per Sect. 4, which identifies a pair
of paths (pσ1 , pσ2). The chosen paths vary in each iteration in order to achieve
full path coverage. The query given to the SMT solver then becomes5

pσ1(s1) ∧ pσ2(s2) ∧ lσ1(s1) = lσ2(s2)

Since the meat of the relation is a conjunction of implications, this is a
natural partitioning scheme that ensures all conjuncts are actually explored.
Note that without this mechanism, the SMT solver could always choose states
that only satisfy one and the same conjunct. To guide this process even further,
the user can supply a path guard, which is a predicate on the space of paths. Any
path not satisfying the guard is skipped, allowing the user to avoid exploring
unwanted paths. For example, for the program in Fig. 3 we can use a path guard
to force the test generation to select only paths that produce no observations:
e.g., (Z ⇒ ¬sline(X1)) ∧ (¬Z ⇒ ¬sline(X2 ∗ X3)).

Term Enumeration. In addition to path enumeration, we can choose a BIR
expression e that depends on the symbolic state, and a range R of values to
enumerate. Every query also includes the conjuncts eσ1 = v1 ∧ eσ2 = v2 where
v1, v2 ∈ R and such that the vi are chosen to achieve full coverage of R×R. Term
enumeration can be useful to introduce domain-specific partitions, provided that
R×R is small enough. For example, this mechanism can be used to ensure that we
explore addresses that cover all possible cache sets, if we set e to be a mask that
extracts the cache set index bits of the address. For example, for the program
in Fig. 3 we can use Z ∗ index(X1) + (1 − Z) ∗ index(X2 ∗ X3) to enumerate all
combinations of accessed cache sets while respecting the paths.

6 Implementation

The implementation6 of Scam-V is done in the HOL4 theorem prover using its
meta-language, i.e., SML. Scam-V relies on the binary analysis platform HolBA
for transpiling the binary code of test programs to the BIR representation. This

5 Note that this is equivalent to taking a fragment of the observational equivalence
relation, specifically the case when pσ1(s1) ∧ pσ2(s2) holds.

6 Our implementation of Scam-V is embedded in HolBA, which is available at https://
github.com/kth-step/HolBA. Our extendable experimentation platform consists of
several “EmbExp-*” repositories available at https://github.com/kth-step.

https://github.com/kth-step/HolBA
https://github.com/kth-step/HolBA
https://github.com/kth-step


Validation of Abstract Side-Channel Models for Computer Architectures 237

Experiment 
generator

Experiment 
runner

Board server

RPi3

(1) create

(4) run

(3) merge & compile

(2) fetch

(5) evaluate(6) store

RPi3
RPi3RPi3

Other ...

Experiment
pla orm code

Fig. 7. Experiment handling design with numbered steps. This showcases the workflow
for producing, preparing, executing and evaluating one experiment.

transpilation uses the existing HOL4 model of the ARMv8 architecture [16]
for giving semantics to ARM programs. In order to validate the observational
models of Sect. 2.3, we extended the transpilation process to inline observation
statements into the resulting BIR program. These observations represent the
observational power of the side channel. In order to compute possible execution
paths of test programs and their corresponding observations, which are needed
to synthesize the observational equivalence relation of Sect. 4, we implemented
a symbolic execution engine in HOL4. All program generators from Sect. 3 as
well as the weakest relation synthesis from Sect. 4 and the test-case generator
from Sect. 5 are implemented as SML libraries in Scam-V. The latter uses the
SMT solver Z3 [14] to generate test inputs. For conducting the experiments in
this paper, we used Raspberry Pi 3 boards equipped with ARM Cortex-A53
processors implementing the ARMv8-A architecture.

The Scam-V pipeline generates programs and pairs of observationally equiv-
alent initial states (test cases) for each program. Each combination of a program
with one of its test cases is called an experiment. After generating experiments,
we execute them on the processor implementation of interest to examine their
effects on the side channel. Figure 7 depicts the life of a single experiment as goes
through our experiment handling design. This consists of: (step 1) generating
an experiment and storing it in a database, (step 2) retrieving the experiment
from the database, (step 3) integrating it with experiment-platform code and
compiling it into platform-compatible machine code, and (step 4–6) executing
the generated binary on the real board, as well as finally receiving and storing
the experiment result.

The experiment-platform code configures page tables to setup cacheable and
uncacheable memory, clears the cache before every execution of the program, and
inserts memory barriers around the experiment code. The platform executes in
ARM TrustZone, which enables us to use privileged debug instructions to obtain
the cache state directly for comparison after experiment execution.

The way in which we compare final cache states for distinguishability depends
on the attacker and observational model in question. For multi-way cache, we
say two states are indistinguishable if and only if for each valid entry in one state,
there is a valid entry with the same cache tag in the corresponding cache set of



238 H. Nemati et al.

the other state and vice versa. For the partitioned multi-way cache, we check
the states in the same way, except we do it only for a subset of the cache sets
(see Sect. 7.2 for details on the exact partition). For the direct-mapped cache,
we compare how many valid cache lines there are in each set, disregarding the
cache tags. These comparison functions have been chosen to match the attacker
power of the relaxed models in Definitions 6, 7, and 8 respectively.

7 Results

Since the ARM-v8 experimentation platform runs as bare-metal code, there are
no background processes or interrupts. Despite this fact, our measurements may
contain noise due to other hardware components that share the same memory
subsystem, such as the GPU, and because our experiments are not synchronized
with the memory controller. In order to simplify repeatability of our experiments,
we execute each experiment 10 times and check for discrepancies in the final state
of the data cache. Unless all executions give the same result, this experiment is
classified as inconclusive and excluded from further analysis.

7.1 Direct-Mapped Cache Observational Model

First, we want to make sure that Scam-V can invalidate unsound observational
models in general. For this purpose, we generated experiments that use the
model of Definition 8, i.e., for every memory access in BIR we observe the cache
set index of the address of the access. We know that this is not a sound model for
Raspberry Pi 3, because the platform uses a 4-way cache. Table 1.1 shows that
both the random program generator and the monadic load generator uncovered
counterexamples that invalidated this observational model.

7.2 Partitioned Cache Observational Model

Next, we consider the partitioned cache observational model from Definition 7.
That is, we partition the L1 cache of the Raspberry Pi 3 into two contiguous
regions and assume that the attacker has only access to the second region. Due
to the prefetcher of Cortex-A53 we expect this model to be unsound and indeed
we could invalidate it.

To this end, we generated experiments for two variations of the model. Vari-
ation A splits the cache at cache set 61, meaning that only cache sets 61–127
were considered accessible to the attacker. Variation B splits the cache at cache
set 64 (the midpoint), such that cache sets 64–127 were considered visible. The
following program is one of the counterexamples for variation A that have been
discovered by Scam-V using the monadic program generator.

Program Input 1 Input 2

ldr x2 , [x10 , #0] x10: 0x80100080 0x80100cc0
ldr x20 , [x10 , #128]
ldr x17 , [x10 , #256]



Validation of Abstract Side-Channel Models for Computer Architectures 239

Table 1. Invalidation of cache and faulty observational models.

(1.1) Observations Cache set index only (Definition 8)
Programs Monadic load generator Random program generator
Experiments 39660 20872
- Inconclusive 0 1
- Counterexample 19 18

(1.2) Experiment set Variation A Variation B
Observations Page unaligned cache

partitioning (Definition 7)
Page aligned cache
partitioning (Definition 7)

Programs Monadic stride generator
Experiments 36160 37843
- Inconclusive 5426 6967
- Counterexample 3460 0

(1.3) Observations Cache tag and set index (Definition 6)
Programs Random program generator Monadic generator

Loads Previction
Experiments 20256 23120 23290
- Inconclusive 2 0 0
- Counterexample 0 5 16

(1.4) Observations Cache tag and set index (Definition 6)
Programs Random program generator
Experiments 22321
- Inconclusive 0
- Failure 308

The counterexample exploits the fact that prefetching fills more lines than
those loaded by the program, provided the memory accesses happen in a certain
stride pattern. Thus, it essentially needs to have two properties: (i) two different
starting addresses for the stride, a1 and a2, with a cache set index that is lower
than 61 to avoid any observations in the model, and thus satisfying observational
equivalence, and (ii) one of a1 and a2 is close enough to the partition boundary.
In this case, automatic prefetching will continue to fill lines in subsequent sets,
effectively crossing the boundary into the attacker-visible region.

In our experiments, we used a path guard to generate only states that produce
only memory accesses to the region of the cache that is not visible by the attacker.
Additionally, we used term enumeration to force successive test cases to start a
stride on a different cache set and therefore cover the different cache set indices.
Without this guidance, the tool could generate only experiments that affect the
lower sets of the cache and never explore scenarios that affect the sets with
indices closer to the split boundary.

For variation B, we have not found such a counterexample. The only differ-
ence is that the partition boundary is on line 64, which means that each partition



240 H. Nemati et al.

fits exactly in a small page (4K). We conjecture that the prefetcher does not per-
form line fills across small page (4K) boundaries. This could be for performance
reasons, as crossing a page boundary can involve a costly page walk if the next
page is not in the TLB. If this is the case, it would seem that it is safe to use
prefetching with a partitioned cache, provided the partitions are page-aligned.
Table 1.2 summarizes our experiments for this model.

7.3 Multi-way Cache Observational Model
In the remaining experiments, we consider the model of Definition 6 and we
assume that the attacker has access to the complete L1 cache. Even if we
expected this model to be sound, our experiments (Table 1.3) identified several
counterexamples. We comment on two classes of counterexamples below.
Previction. Some counterexamples are due to an undocumented behavior that
we called “previction” because it causes a cache line to be evicted before the
corresponding cache set is full. The following program compares x0 and x1 and
executes a sequence of three loads. In case of equality, fourteen nop are executed
between the first two loads.

Program Input 1 Input 2

cmp x0 , x1 x0: 0x00000000 0x00000000
b.eq #0x14 x1: 0x00000000 0x00000001
ldr x9 , [x2] x2: 0x80100000 0x80100000
ldr x9 , [x3] x3: 0x80110000 0x80110000
ldr x9 , [x4] x4: 0x80120000 0x80120000
b #0x48
ldr x9 , [x2]
nop {14 times}
ldr x9 , [x3]
ldr x9 , [x4]

Input 1 and Input 2 are two states that exercise the two execution paths and
have the same values for x2, x3 and x4, hence the two states are observationally
equivalent. Notice that all memory loads access cache set 0. Since the cache is
4-way associative and the cache is initially empty, we expect no eviction to occur.

Executions starting in Input 2 behave as expected and terminate with the
addresses of x2, x3, and x4 in the final cache state. However, the execution
from Input 1 leads to a previction, which causes the final cache state to only
contain the addresses of x3 and x4. The address of x2 has been evicted even
if the cache set is not full. Therefore the two states are distinguishable by the
attacker. Our hypothesis is that the processor detects a short sequence of loads
to the same cache set and anticipates more loads to the same cache set with
no reuse of previously loaded values. It evicts the valid cache line in order to
make space for more colliding lines. We note that these cache entries are not
dirty and thus eviction is most likely a cheap operation. The execution of a nop
sequence probably ensures that the first cache line fill is completed before the
other addresses are accessed.



Validation of Abstract Side-Channel Models for Computer Architectures 241

Offset-Dependent Behaviors. Our experiments identified further counterex-
amples that invalidate the observational model. In particular, the following coun-
terexample also invalidates the observational model of Definition 5, where cache
line offsets are not observable.

Program Input 1 Input 2

ldr x6 , [x0] x0 : 0x80108000 0x80108000
ldr x9 , [x3 , #4] x3 : 0x800FFFFC 0x800FFFFC
ldr x2 , [x16] x16: 0x80100020 0x80100000
ldr x16 ,[x22] x22: 0x8011FFF8 0x8011FFF8
ldr x9 , [x22 ,#8]

This program consists of five consecutive load instructions. This program
always produces five observations consisting of the cache tag and set index of
the five addresses. Input 1 and Input 2 are observationally equivalent: they only
differ for x16, which affects the address used for the third load, but the addresses
0x80100020 and 0x80100000 have the same cache tag and set index and only differ
for the offset within the same cache line. However, these experiments lead to
two distinguishable microarchitectural states. More specifically, execution from
Input 1 results in the filling of cache set 0, where the addresses of registers x0,
x3, x16 and x22 + 8 are present in the cache, while executions from Input 2 leads
a cache state where the address of x0 is not in the cache and has been probably
evicted. This effect can be the result of the interaction between cache previction
and cache bank collision [9,40], whose behavior depends on the cache offset.
Notice that cache bank collision is undocumented for ARM Cortex-A53. Tromer
et al. [46] have shown that such offset-dependent behaviors can make insecure
side-channel countermeasures for AES that rely on making accesses to memory
blocks (rather than addresses) key-independent.

7.4 Problems in Model Implementations

Additionally to microarchitectural features that invalidate the formal models,
our experiments identified bugs of the implementation of the models: (1) the
formalization of the ARMv8 instruction set used by the transpiler and (2) the
module that inserts BIR observation statements into the transpiled binary to
capture the observations that can be made according to a given observational
model. Table 1.4 reports problems identified by the random program genera-
tor. Some of these failing experiments result in distinguishable states while oth-
ers result in run-time exceptions. In fact, if the model predicts wrong memory
accesses for a program then our framework can generate test inputs that cause
accesses to unmapped memory regions. The example program in Fig. 4 exhibits
both problems when executed with appropriate inputs.

Missing Observations. The second step of our framework translates binary
programs to BIR and adds observations to reflect the observational model under
validation. In order to generate observations that correspond to memory loads,
we syntactically analyze the right-hand side of BIR assignments. For instance,



242 H. Nemati et al.

for line l2 in Fig. 3 we generate an observation that depends on variable X1
because the expression of assignment is LOAD(MEM, X1). This approach is prob-
lematic when a memory load is immaterial for the result of an instruction. For
example, ldr xzr and ldr wzr instructions load from memory to a register that
is constantly zero. The following program loads from x30 into xzr.

Program Input 1 Input 2

ldr xzr , [x30] x30: 0x80000040 0x800000038

The translation of this instruction is simply [JMP next_addr]: there is no
assignment that loads from x30 because the register xzr remains zero. Therefore,
our model generates no observations and any two input states are observation-
ally equivalent. The ARM specification does not clarify that the microarchitec-
ture can skip the immaterial memory load. Our experiments show that this is
not the case and therefore our implementation of the model is not correct. In
fact, the program accesses cache set index(0x80000040) = 1 for Input 1 and
cache set index(0x80000038) = 0 for Input 2, which results in distinguishable
states. Moreover, by not taking into account the memory access our framework
generates some tests that set x30 to unmapped addresses and cause run-time
exceptions.

Flaw in HOL4 ARMv8 ISA Model. Our tool has identified a bug of the
HOL4 ARMv8 ISA model. This model has been used in several projects [8,17]
as the basis for formal analysis and is used by our framework to transform
ARM programs to BIR programs. Despite its wide adoption, we identified a
problem in the semantics of instructions Compare and Branch on Zero (CBZ)
and Compare and Branch on Non-Zero (CBNZ). These instructions implement a
conditional jump based on the comparison of the input register with zero. While
CBZ jumps in case of equality, CBNZ jumps in case of inequality. However, our
tests identified that CBNZ wrongly behaves as CBZ in the HOL4 model.

8 Related Work

Hardware Models. Verification approaches that take into account the under-
lying hardware architecture have to rely on a formal model of that architecture.
Commercial instruction set architectures (ISAs) are usually specified mostly in
natural language, and their formalization is an active research direction. For
example, Goel et al. [24] formalize the ISA of x86 in ACL2, Morrisett et al. [37]
model the x86 architecture in the Coq theorem prover, and Sarkar et al. [42]
provide a formal semantics of the x86 multiprocessor ISA in HOL. Moreover,
domain-specific languages for ISAs have been developed, such as the L3 lan-
guage [19], which has been used to model the ARMv7 architecture. As another
example, Siewiorek et al. [44] proposed the Instruction-Set Processor language
for formalizing the semantics of the instructions of a processor.



Validation of Abstract Side-Channel Models for Computer Architectures 243

Processor Verification and Validation. To gain confidence in the correctness
of a processor model, it needs to be verified or validated against the actual hard-
ware. This problem has received considerable attention lately. There are white-
box approaches such as the formal verification that a processor model matches
a hardware design [10,18]. These approaches differ from ours in that they try
to give a formal guarantee that a processor model is a valid abstraction of the
actual hardware, and to achieve that they require the hardware to be accessible
as a white box. More similar to ours are black-box approaches that validate an
abstract model by randomly generated instructions or based on dynamic instru-
mentation [20,29]. Combinations of formal verification and testing approaches
for hardware verification and validation have also been considered [11].

In contrast to our work, all of the approaches above are limited to func-
tional correctness, and validation is limited to single-instruction test cases, which
we show to be insufficient for information flow properties. Going beyond these
restrictions is the work of Campbell and Stark [12], who generate sequences of
instructions as test cases, and go beyond functional correctness by including
timing properties. Still, neither their models nor their approach is suitable to
identify violations of information flow properties.

Validating Information Flow Properties. To the best of our knowledge, we
present the first automated approach to validate processor models with respect
to information flow properties. To this end, we build on the seminal works of
McLean [35] on non-interference, Roscoe [41] on observational determinism, and
Barthe et al. [7] on self-composition as a method for proving information flow
properties. Most closely related is the work by Balliu et al. [6] on relational
analysis based on observational determinism.

These approaches are based on the different observational models that have
been proposed in the literature. For example, the program counter security
model [36] has been used when the execution time depends on the control flow
of the victim. Extensions of this model also make observable data that can affect
execution time of an instruction, or memory addresses accessed by the program
to model timing differences due to caching [4].

Many analysis tools use these observational models. Ct-verif [3] implements a
sound information flow analysis by proving observational equivalence construct-
ing a product program. CacheAudit [15] quantifies information leakage by using
abstract interpretation.

The risks of using unsound models for such analyses have been demonstrated
by the recent Spectre attack family [32], which exploits speculation to leak data
through caches. Several other architectural details require special caution when
using abstract models, as some properties assumed by the models could be
unmet. For instance, cache clean operations do not always clean residual state
in implementations of replacement policies [21]. Furthermore, many processors
do not provide sufficient means to close all leakage, e.g., shared state cannot
be cleaned properly on a context switch [22]. Finally, it has been shown that
fixes relying on too specific assumptions can be circumvented by modifying the
attack [43], and that attacks are possible even against formally verified software



244 H. Nemati et al.

if the underlying processor model is unsound [28]. For these reasons, validation
of formal models by directly measuring the hardware is of great importance.

9 Concluding Remarks

We presented Scam-V, a framework for automatic validation of observational
models of side channels. Scam-V uses a novel combination of symbolic execution,
relational analysis, and observational models to generate experiments. We eval-
uated Scam-V on the ARM Cortex-A53 processor and we invalidated all models
of Sect. 2.3, i.e., those with observations that are cache-line-offset-independent.

Our results are summarized as follows: (i) in case of cache partitioning, the
attacker can discover victim accesses to the other cache partitions due to the
automatic data prefetcher; (ii) the Cortex-A53 prefetcher seems to respect 4K
page boundaries, like in some Intel processors; (iii) a mechanism of Cortex-A53,
which we called previction, can leak the time between accesses to the same cache
set; (iv) the cache state is affected by the cache line offset of the accesses, prob-
ably due to undocumented cache bank collisions like in some AMD processors;
(v) the formal ARMv8 model had a flaw in the implementation of CBNZ; (vi)
our implementation of the observational model had a flaw in case of loads into
the constant zero register. Moreover, since the microarchitectural features that
lead to these findings are also available on other ARMv8 cores, including some
that are affected by Spectre (e.g. Cortex A57), it is likely that similar behaviors
can be observed on these cores, and that more powerful observational models,
including those that take into account Spectre-like effects, may also be unsound.

These promising results show that Scam-V can support the identification of
undocumented and security-relevant features of processors (like results (ii), (iii),
and (iv)) and discover problems in the formal models (like results (v) and (vi)).
In addition, users can drive test-case generation to conveniently explore classes
of programs that they suspect would lead to side-channel leakage (like in result
(i)). This process is enabled by path and term enumeration techniques as well
as custom program generators. Moreover, Scam-V can aid vendors to validate
implementations with respect to desired side-channel specifications.

Given the lack of vendor communication regarding security-relevant proces-
sor features, validation of abstract side-channel models is of critical importance.
As a future direction of work, we are planning to extend Scam-V for other archi-
tectures (e.g. ARM Cortex-M0 based microcontrollers), noisy side channels (e.g.
time and power consumption), and other side channels (e.g. cache replacement
state). Moreover, we are investigating approaches to automatically repair an
unsound observational model starting from the counterexamples, e.g., by adding
state observations. Finally, the theory in Sect. 4 can be used to develop a certi-
fying tool for verifying observational determinism.

Acknowledgement. We thank Matthias Stockmayer for his contributions to the sym-
bolic execution engine in this work. This work has been supported by the TrustFull
project financed by the Swedish Foundation for Strategic Research, the KTH CERCES



Validation of Abstract Side-Channel Models for Computer Architectures 245

Center for Resilient Critical Infrastructures financed by the Swedish Civil Contingencies
Agency, as well as the German Federal Ministry of Education and Research (BMBF)
through funding for the CISPA-Stanford Center for Cybersecurity (FKZ: 13N1S0762).

References

1. Acıiçmez, O., Koç, Ç.K.: Trace-driven cache attacks on AES (short paper). In:
Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 112–121. Springer,
Heidelberg (2006). https://doi.org/10.1007/11935308 9

2. Acıiçmez, O., Koç, Ç.K., Seifert, J.-P.: Predicting secret keys via branch predic-
tion. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 225–242. Springer,
Heidelberg (2006). https://doi.org/10.1007/11967668 15

3. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F., Emmi, M.: Verifying
constant-time implementations. In: USENIX Security, pp. 53–70 (2016)

4. Almeida, J.B., Barbosa, M., Pinto, J.S., Vieira, B.: Formal verification of side-
channel countermeasures using self-composition. Sci. Comput. Program. 78(7),
796–812 (2013)

5. ARM Limited: Vulnerable ARM processors to Spectre attack. https://developer.
arm.com/support/arm-security-updates/speculative-processor-vulnerability.
Accessed 2019

6. Balliu, M., Dam, M., Guanciale, R.: Automating information flow analysis of low
level code. In: Proceedings of the Conference on Computer and Communications
Security, CCS, pp. 1080–1091 (2014)

7. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
Math. Struct. Comput. Sci. 21(6), 1207–1252 (2011)

8. Baumann, C., Schwarz, O., Dam, M.: On the verification of system-level informa-
tion flow properties for virtualized execution platforms. J. Cryptogr. Eng. 9(3),
243–261 (2019). https://doi.org/10.1007/s13389-019-00216-4

9. Bernstein, D.J.: Cache-timing attacks on AES. Technical report (2005). http://cr.
yp.to/antiforgery/cachetiming-20050414.pdf

10. Beyer, S., Jacobi, C., Kröning, D., Leinenbach, D., Paul, W.J.: Putting it all
together – formal verification of the VAMP. Int. J. Softw. Tools Technol. Transfer
8(4–5), 411–430 (2006). https://doi.org/10.1007/s10009-006-0204-6

11. Bhadra, J., Abadir, M.S., Wang, L.C., Ray, S.: A survey of hybrid techniques for
functional verification. Des. Test Comput. 24(2), 112–122 (2007)

12. Campbell, B., Stark, I.: Randomised testing of a microprocessor model using SMT-
solver state generation. Sci. Comput. Program. 118, 60–76 (2016)

13. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. SIGPLAN Not. 35(9), 268–279 (2000)

14. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

15. Doychev, G., Köpf, B., Mauborgne, L., Reineke, J.: CacheAudit: a tool for the
static analysis of cache side channels. ACM Trans. Inf. Syst. Secur. 18(1), 4:1–4:32
(2015)

16. Fox, A.: L3: A Specification Language for Instruction Set Architectures. https://
acjf3.github.io/l3. Accessed 2019

https://doi.org/10.1007/11935308_9
https://doi.org/10.1007/11967668_15
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://doi.org/10.1007/s13389-019-00216-4
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://doi.org/10.1007/s10009-006-0204-6
https://doi.org/10.1007/978-3-540-78800-3_24
https://acjf3.github.io/l3
https://acjf3.github.io/l3


246 H. Nemati et al.

17. Fox, A., Myreen, M.O., Tan, Y.K., Kumar, R.: Verified compilation of CakeML to
multiple machine-code targets. In: Proceedings of the 6th ACM SIGPLAN Confer-
ence on Certified Programs and Proofs, CPP, pp. 125–137. Association for Com-
puting Machinery, New York (2017)

18. Fox, A.: Formal specification and verification of ARM6. In: Basin, D., Wolff, B.
(eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 25–40. Springer, Heidelberg (2003).
https://doi.org/10.1007/10930755 2

19. Fox, A.: Directions in ISA specification. In: Beringer, L., Felty, A. (eds.) ITP 2012.
LNCS, vol. 7406, pp. 338–344. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32347-8 23

20. Fox, A., Myreen, M.O.: A trustworthy monadic formalization of the ARMv7
instruction set architecture. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010.
LNCS, vol. 6172, pp. 243–258. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14052-5 18

21. Ge, Q., Yarom, Y., Heiser, G.: Do hardware cache flushing operations actually
meet our expectations. arXiv e-prints (2016)

22. Ge, Q., Yarom, Y., Li, F., Heiser, G.: Your processor leaks information-and there’s
nothing you can do about it. CoRR abs/1612.04474 (2017)

23. Godfrey, M.M., Zulkernine, M.: Preventing cache-based side-channel attacks in a
cloud environment. IEEE Trans. Cloud Comput. 2(4), 395–408 (2014)

24. Goel, S., Hunt Jr., W.A., Kaufmann, M., Ghosh, S.: Simulation and formal veri-
fication of x86 machine-code programs that make system calls. In: FMCAD, pp.
91–98. IEEE (2014)

25. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy, pp. 11–20. IEEE Computer Society (1982)

26. Goguen, J.A., Meseguer, J.: Unwinding and inference control. In: IEEE Symposium
on Security and Privacy, pp. 75–87. IEEE Computer Society (1984)

27. Gruss, D., Maurice, C., Mangard, S.: Rowhammer.js: a remote software-induced
fault attack in JavaScript. In: Caballero, J., Zurutuza, U., Rodŕıguez, R.J. (eds.)
DIMVA 2016. LNCS, vol. 9721, pp. 300–321. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-40667-1 15

28. Guanciale, R., Nemati, H., Baumann, C., Dam, M.: Cache storage channels: alias-
driven attacks and verified countermeasures. In: IEEE Symposium on Security and
Privacy, pp. 38–55. IEEE Computer Society (2016)

29. Hou, Z., Sanan, D., Tiu, A., Liu, Y., Hoa, K.C.: An executable formalisation of
the SPARCv8 instruction set architecture: a case study for the LEON3 processor.
In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS,
vol. 9995, pp. 388–405. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48989-6 24

30. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

31. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

32. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. In: S&P (2019)
33. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)

CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

34. Lindner, A., Guanciale, R., Metere, R.: TrABin: trustworthy analyses of binaries.
Sci. Comput. Program. 174, 72–89 (2019)

https://doi.org/10.1007/10930755_2
https://doi.org/10.1007/978-3-642-32347-8_23
https://doi.org/10.1007/978-3-642-32347-8_23
https://doi.org/10.1007/978-3-642-14052-5_18
https://doi.org/10.1007/978-3-642-14052-5_18
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1007/978-3-319-48989-6_24
https://doi.org/10.1007/978-3-319-48989-6_24
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25


Validation of Abstract Side-Channel Models for Computer Architectures 247

35. McLean, J.: Proving noninterference and functional correctness using traces. J.
Comput. Secur. 1(1), 37–58 (1992)

36. Molnar, D., Piotrowski, M., Schultz, D., Wagner, D.: The program counter security
model: automatic detection and removal of control-flow side channel attacks. In:
Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 156–168. Springer,
Heidelberg (2006). https://doi.org/10.1007/11734727 14

37. Morrisett, G., Tan, G., Tassarotti, J., Tristan, J., Gan, E.: RockSalt: better, faster,
stronger SFI for the x86. In: PLDI, pp. 395–404. ACM (2012)

38. Nemati, H., Buiras, P., Lindner, A., Guanciale, R., Jacobs, S.: Validation of
abstract side-channel models for computer architectures (2020). https://arxiv.org/
abs/2005.05254

39. Neve, M., Seifert, J.-P.: Advances on access-driven cache attacks on AES. In:
Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 147–162. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74462-7 11

40. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006). https://doi.org/10.1007/11605805 1

41. Roscoe, A.W.: CSP and determinism in security modelling. In: IEEE Symposium
on Security and Privacy, pp. 114–127. IEEE Computer Society (1995)

42. Sarkar, S., et al.: The semantics of x86-CC multiprocessor machine code. In: POPL,
pp. 379–391. ACM (2009)

43. Schaik, S.V., Giuffrida, C., Bos, H., Razavi, K.: Malicious management unit: why
stopping cache attacks in software is harder than you think. In: USENIX Security
Symposium, pp. 937–954. USENIX Association (2018)

44. Siewiorek, D.P., Bell, G., Newell, A.C.: Computer Structures: Principles and Exam-
ples. McGraw-Hill Inc, New York (1982)

45. Taylor, G., Davies, P., Farmwald, M.: The TLB slice-a low-cost high-speed address
translation mechanism. SIGARCH Comput. Archit. News 18(2SI), 355–363 (1990)

46. Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on AES, and coun-
termeasures. J. Cryptol. 23(1), 37–71 (2009). https://doi.org/10.1007/s00145-009-
9049-y

47. Tsunoo, Y., Saito, T., Suzaki, T., Shigeri, M., Miyauchi, H.: Cryptanalysis of DES
implemented on computers with cache. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.)
CHES 2003. LNCS, vol. 2779, pp. 62–76. Springer, Heidelberg (2003). https://doi.
org/10.1007/978-3-540-45238-6 6

48. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-VM side channels and
their use to extract private keys. In: Proceedings of the Conference on Computer
and Communications Security, CCS, pp. 305–316. ACM (2012)

https://doi.org/10.1007/11734727_14
https://arxiv.org/abs/2005.05254
https://arxiv.org/abs/2005.05254
https://doi.org/10.1007/978-3-540-74462-7_11
https://doi.org/10.1007/11605805_1
https://doi.org/10.1007/s00145-009-9049-y
https://doi.org/10.1007/s00145-009-9049-y
https://doi.org/10.1007/978-3-540-45238-6_6
https://doi.org/10.1007/978-3-540-45238-6_6


248 H. Nemati et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Validation of Abstract Side-Channel Models for Computer Architectures
	1 Introduction
	2 Background
	2.1 Observational Models
	2.2 The Evaluation Platform: Raspberry Pi 3
	2.3 Different Attacker and Observational Models
	2.4 Binary Intermediate Representation

	3 Program Generation
	4 Synthesis of Weakest Relation
	5 Test-Case Generation
	6 Implementation
	7 Results
	7.1 Direct-Mapped Cache Observational Model
	7.2 Partitioned Cache Observational Model
	7.3 Multi-way Cache Observational Model
	7.4 Problems in Model Implementations

	8 Related Work
	9 Concluding Remarks
	References


