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Abstract. The Optical Spectrograph and Infra-Red Imager

System (OSIRIS) and the Atmospheric Chemistry Exper-

iment (ACE) have been taking measurements from space

since 2001 and 2003, respectively. This paper presents in-

tercomparisons between ozone and NO2 measured by the

ACE and OSIRIS satellite instruments and by ground-

based instruments at the Polar Environment Atmospheric

Research Laboratory (PEARL), which is located at Eureka,

Canada (80◦ N, 86◦ W) and is operated by the Canadian Net-

work for the Detection of Atmospheric Change (CANDAC).

The ground-based instruments included in this study are

four zenith-sky differential optical absorption spectroscopy

(DOAS) instruments, one Bruker Fourier transform infrared

spectrometer (FTIR) and four Brewer spectrophotometers.

Ozone total columns measured by the DOAS instruments

were retrieved using new Network for the Detection of At-

mospheric Composition Change (NDACC) guidelines and

agree to within 3.2 %. The DOAS ozone columns agree with

the Brewer spectrophotometers with mean relative differ-

ences that are smaller than 1.5 %. This suggests that for

these instruments the new NDACC data guidelines were

successful in producing a homogenous and accurate ozone

dataset at 80◦ N. Satellite 14–52 km ozone and 17–40 km

NO2 partial columns within 500 km of PEARL were calcu-

lated for ACE-FTS Version 2.2 (v2.2) plus updates, ACE-

FTS v3.0, ACE-MAESTRO (Measurements of Aerosol Ex-

tinction in the Stratosphere and Troposphere Retrieved by

Occultation) v1.2 and OSIRIS SaskMART v5.0x ozone

Published by Copernicus Publications on behalf of the European Geosciences Union.



928 C. Adams et al.: Validation of ACE and OSIRIS

and Optimal Estimation v3.0 NO2 data products. The new

ACE-FTS v3.0 and the validated ACE-FTS v2.2 partial

columns are nearly identical, with mean relative differences

of 0.0 ± 0.2 % and −0.2 ± 0.1 % for v2.2 minus v3.0 ozone

and NO2, respectively. Ozone columns were constructed

from 14–52 km satellite and 0–14 km ozonesonde partial

columns and compared with the ground-based total column

measurements. The satellite-plus-sonde measurements agree

with the ground-based ozone total columns with mean rel-

ative differences of 0.1–7.3 %. For NO2, partial columns

from 17 km upward were scaled to noon using a photo-

chemical model. Mean relative differences between OSIRIS,

ACE-FTS and ground-based NO2 measurements do not ex-

ceed 20 %. ACE-MAESTRO measures more NO2 than the

other instruments, with mean relative differences of 25–

52 %. Seasonal variation in the differences between NO2 par-

tial columns is observed, suggesting that there are systematic

errors in the measurements and/or the photochemical model

corrections. For ozone spring-time measurements, additional

coincidence criteria based on stratospheric temperature and

the location of the polar vortex were found to improve agree-

ment between some of the instruments. For ACE-FTS v2.2

minus Bruker FTIR, the 2007–2009 spring-time mean rela-

tive difference improved from −5.0 ± 0.4 % to −3.1 ± 0.8 %

with the dynamical selection criteria. This was the largest im-

provement, likely because both instruments measure direct

sunlight and therefore have well-characterized lines-of-sight

compared with scattered sunlight measurements. For NO2,

the addition of a ±1◦ latitude coincidence criterion improved

spring-time intercomparison results, likely due to the sharp

latitudinal gradient of NO2 during polar sunrise. The dif-

ferences between satellite and ground-based measurements

do not show any obvious trends over the missions, indicat-

ing that both the ACE and OSIRIS instruments continue to

perform well.

1 Introduction

Consistent long-term measurements of ozone and NO2 are

essential for the characterization of ozone depletion and re-

covery. Therefore, long-term evaluation of satellite measure-

ments is necessary. The Optical Spectrograph and Infra-

Red Imager System (OSIRIS) and the Atmospheric Chem-

istry Experiment (ACE) satellite instruments have been tak-

ing measurements since 2001 and 2003, respectively. While

ozone and NO2 data products from both satellites have been

validated (e.g. Brohede et al., 2008; Degenstein et al., 2009;

Dupuy et al., 2009; Kerzenmacher et al., 2008), continued as-

sessment assures long-term consistency within the datasets.

Furthermore, the new ACE Fourier Transform Spectrometer

(FTS) Version 3.0 (v3.0) ozone and NO2 data have not yet

been validated.

Measurements and validation in the High Arctic present a

unique set of challenges. There is reduced spatial coverage

by ground-based measurements due to the logistical chal-

lenges of operating in a cold, remote, and largely unpopu-

lated environment. Intercomparisons between measurements

in the Arctic are complicated by the polar vortex, which iso-

lates an air mass over the pole during the winter and spring.

When the polar vortex is present, two instruments can sam-

ple air masses which are near each other spatially, but are

isolated from one another. Therefore, coincident measure-

ment pairs can include one measurement inside the vortex,

with, e.g. low ozone and NO2, and one measurement outside

the vortex. This reduces the apparent agreement between two

datasets. In some validation studies, additional coincidence

criteria based on dynamical parameters have been adopted in

order to match similar air masses (e.g. Batchelor et al., 2010;

Fu et al., 2011; Manney et al., 2007).

The Polar Environment Atmospheric Research Labora-

tory (PEARL) in Eureka, Canada (80◦ N, 86◦ W) is an ex-

cellent location for Arctic satellite validation. Measurements

taken at PEARL have been included in numerous vali-

dation studies (e.g. Batchelor et al., 2010; Dupuy et al.,

2009; Fraser et al., 2008; Fu et al., 2007, 2011; Kerzen-

macher et al., 2005; Sica et al., 2008; Sung et al., 2007).

PEARL (known as the Arctic Stratospheric Ozone Obser-

vatory – AStrO prior to 2005) comprises three sites and

has been operated by the Canadian Network for the De-

tection of Atmospheric Change (CANDAC) since 2005.

Measurements included in this study were taken at the

PEARL Ridge Lab (80.05◦ N, 86.42◦ W) and the Eureka

Weather Station (79.98◦ N, 85.93◦ W), which is located

15 km from the Ridge Lab. Since August 2006, CAN-

DAC instruments have recorded measurements of ozone and

NO2, using ground-based zenith-sky differential optical ab-

sorption spectroscopy (DOAS) instruments and a Bruker

Fourier transform infrared spectrometer (FTIR), when sun-

light and weather permitted. Additional spring-time mea-

surements were taken on a campaign basis as a part of the

2003 Stratospheric Indicators of Climate Change Campaign

and the 2004–2011 Canadian Arctic ACE Validation Cam-

paigns (e.g. Kerzenmacher et al., 2005). Brewer spectropho-

tometer measurements were also taken year-round for 2004–

2011 by Environment Canada, with support from the Cana-

dian Arctic ACE Validation Campaigns and CANDAC. This

yields a multi-year dataset that can be used for long-term val-

idation of satellite measurements.

The DOAS and Bruker FTIR instruments at PEARL are

part of the Network for the Detection of Atmospheric Com-

position Change (NDACC). NDACC (formerly the Net-

work for the Detection of Stratospheric Change – NDSC)

was formed in 1991 and currently includes over 70 re-

search stations world-wide, which monitor the stratosphere

and the troposphere. Intercomparisons between the measure-

ments can be used to assess consistency between NDACC

datasets. Furthermore, the new NDACC guidelines and air

Atmos. Meas. Tech., 5, 927–953, 2012 www.atmos-meas-tech.net/5/927/2012/
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Table 1. Measurement dates for data included in this intercomparison. (Abbr. = abbreviation used in figure and table captions throughout this

paper; S = spring only, F = fall only, Y = year-round excluding polar night).

Data product Abbr. Ozone NO2

GBS-vis GV S: 2003–2006

Y: Aug 2006–Apr 2011

S: 2003–2006

Y: Aug 2006–Apr 2011

GBS-UV GU N/A S: 2007, 2009–2011

Y: 2008

SAOZ SA S: 2005–2011 S: 2005–2011

Bruker FTIR FT Y: Aug 2006–Apr 2011 Y: Aug 2006–Apr 2011

Brewer BW Y: Mar 2004–Oct 2010 N/A

OSIRIS∗ OS Y: Mar 2003–Apr 2011 Y: Mar 2003–Jun 2010

ACE-FTS v2.2+updates A2 S/F: Mar 2004–Mar 2010 S/F: Mar 2004–Mar 2010

ACE-FTS v3.0 A3 S/F: Mar 2004–Mar 2011 S/F: Mar 2004–Mar 2011

ACE-MAESTRO v2.1 MA S/F: Mar 2004–Oct 2010 S/F: Mar 2004–Oct 2010

∗ For ozone, used SaskMART v5.0x. For NO2, used Optimal Estimation v3.0.

mass factor (AMF) look-up tables (LUTs) for DOAS ozone

retrievals (Hendrick et al., 2011) can be validated for several

DOAS instruments at a High Arctic location.

This paper presents an intercomparison between satellite

and ground-based measurements of ozone and NO2. Sec-

tion 2 describes the ground-based and satellite instruments

and datasets included in this study. The analysis settings for

the DOAS instruments are described in Sect. 3. Section 4

provides an overview of the validation methodology, the co-

incidence criteria, and the challenges of intercomparisons for

diurnally varying NO2. The results of the intercomparisons

are given for ozone in Sect. 5, and for NO2 in Sect. 6. Sec-

tion 7 explores the impact of the polar vortex and the latitu-

dinal distribution of NO2 during polar sunrise. Conclusions

are given in Sect. 8.

2 Instrumentation

The names and measurement periods of the datasets included

in this intercomparison are summarized in Table 1. Abbrevi-

ations for datasets, used in the figures throughout this paper,

are also included in Table 1. Error estimates for the various

data products are summarized in Table 2. Details of the in-

strumentation and data analysis methods are described in the

sections below.

2.1 GBS DOAS instruments

The PEARL ground-based spectrometer (PEARL-GBS) and

the University of Toronto GBS (UT-GBS) are both Triax-180

spectrometers, built by Instruments S.A. (ISA)/Jobin Yvon

Horiba, with slight differences in their slits, gratings, charge

coupled device (CCD) detectors, and input optics. The UT-

GBS was assembled in 1998 and took measurements at the

PEARL Ridge Lab during polar sunrise from 1999–2001

(Bassford et al., 2000; Farahani, 2006; Melo et al., 2004)

and 2003–2011 (Fraser, 2008; Fraser et al., 2008, 2009).

Table 2. Mean percent error of various measurements. Square

brackets indicate errors in partial columns. Error sources are de-

scribed in Sect. 2. Instrument abbreviations are summarized in Ta-

ble 1. Note that for some instruments, error estimates include sys-

tematic and random errors, while for others, only random errors are

calculated.

Instrument Ozone (%) NO2(%)

GV 5.9 [23]

GU – [22]

SA 5.9 13.2

FT 4.3 [3.8] [15.0]

BW 1∗ –

OS [3.7]∗ [6.8]∗

A2 [1.4]∗ [3.7]∗

A3 [1.6]∗ [2.7]∗

MA [1.3]∗ [2.3]∗

∗ Random error only.

Furthermore, the UT-GBS took summer and fall measure-

ments at the PEARL Ridge Lab in 2008 and 2010. For 1999–

2001, the UT-GBS was installed outside in a temperature-

controlled aluminum case, while for 2003–2011, it was in-

stalled inside a viewing hatch at the PEARL Ridge Lab. The

PEARL-GBS is an NDACC-certified instrument. It was as-

sembled and permanently installed inside a viewing hatch in

the PEARL Ridge Lab in August 2006 and has been taking

measurements during the sunlit part of the year since then

(Adams et al., 2010; Fraser, 2008; Fraser et al., 2009).

The GBSs have similar input optics with a field-of-view

of 2◦. They both have three gratings, which are attached to a

motorized turret. Resolution varies across the CCD chip from

0.5–2.5 nm for ozone; 0.5–1.0 nm for NO2 retrieved in the

visible region (NO2-vis); and 0.2–1.0 nm for NO2 retrieved

in the UV region (NO2-UV). Spectra from the GBSs are

recorded using thermoelectrically cooled back-illuminated

CCD detectors manufactured by ISA. The original UT-GBS

www.atmos-meas-tech.net/5/927/2012/ Atmos. Meas. Tech., 5, 927–953, 2012
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CCD, used from 1999–2004, had 2000 × 800 pixels and

reached temperatures of 230–250 K (Bassford et al., 2000).

From 2005–2011, a 2048 × 512 pixel CCD, which operated

at a temperature of 201 K, was used for the UT-GBS. The

PEARL-GBS CCD is identical to the UT-GBS CCD, ex-

cept it is coated with an enhanced broadband coating and its

operating temperature oscillates slightly from 203–205 K on

timescales of approximately 5 min.

The UT-GBS and PEARL-GBS measurements were an-

alyzed using the settings described in Sect. 3. Since the

UT-GBS and PEARL-GBS are very similar instruments and

data were analyzed with the same settings, their columns

agree within an average of 1 % for ozone, NO2-vis, and

NO2-UV. Therefore, the measurements for the UT-GBS and

PEARL-GBS were combined to form a single GBS dataset.

For twilight periods when both instruments took the same

measurement, data were averaged.

2.2 SAOZ DOAS instruments

The System D’Analyse par Observations Zenithales (SAOZ)

(Pommereau and Goutail, 1988) instruments are deployed

in a global network for measurements of stratospheric trace

gases and are also NDACC-certified instruments. A SAOZ

instrument was deployed at the PEARL Ridge Lab during

each spring for the 2005–2011 Canadian Arctic ACE Valida-

tion Campaigns. SAOZ-15 and SAOZ-7 were deployed from

2005–2009 and 2010–2011, respectively. For 2008–2009 and

2011, the SAOZ instrument took measurements outside on

the roof of the PEARL Ridge Lab, while in other years the

SAOZ instrument was installed inside the PEARL Ridge

Lab and took measurements through a UV-visible transpar-

ent window.

SAOZ-15 and SAOZ-7 are UV-visible grating spectrom-

eters which measure in the 270–620 nm region with 1.0 nm

resolution and a 10◦ field-of-view. They record spectra on

uncooled 1024-pixel linear diode array detectors every fif-

teen minutes during the day and continuously between SZA

80–95◦. SAOZ ozone and NO2 total columns were retrieved

with the settings discussed in Sect. 3.

SAOZ-15 and SAOZ-7 showed excellent agreement dur-

ing the Cabauw Intercomparison of Nitrogen Dioxide

Measuring Instruments campaign in Cabauw, Netherlands

(51.97◦ N, 4.93◦ E) (Piters et al., 2012; Roscoe et al., 2010),

despite slight differences in the instrument reference spectra.

Therefore, the SAOZ-15 and SAOZ-7 measurements were

considered as a single SAOZ dataset for this paper.

2.3 CANDAC Bruker FTIR

The CANDAC Bruker IFS 125HR Fourier transform infrared

spectrometer is an NDACC certified instrument that was in-

stalled inside the PEARL Ridge Lab in 2006 and is de-

scribed in depth by Batchelor et al. (2009). The Bruker FTIR

records spectra on either an InSb or HgCdTe detector. A KBr

beamsplitter is used and eight narrow-band interference fil-

ters cover a range of 600–4300 cm−1. Solar absorption mea-

surements consist of two to four co-added spectra recorded

in both the forward and backward direction. Each measure-

ment takes about 6 min and has a resolution of 0.0035 cm−1.

No apodization is applied to the measurements.

The Bruker FTIR ozone and NO2 measurements are

described by Batchelor et al. (2009) and Lindenmaier et

al. (2010, 2011). The SFIT2 Version 3.92c (v3.92c) algo-

rithm (Pougatchev et al., 1995) and HITRAN 2004 with

updates were used in order to produce volume mixing ra-

tio (VMR) profiles of the species using the optimal estima-

tion technique. Ozone 14–52 km partial columns and total

columns were retrieved in the 1000.0–1005 cm−1 microwin-

dow. Ozone has uncertainties of 4.3 % for total columns and

3.8 % for partial columns. NO2 17–40 km partial columns

were retrieved in five microwindows between 2914.590 and

2924.925 cm−1 with a mean uncertainty of 15.0 %. Only

NO2 partial columns for SZA smaller than 80◦ were in-

cluded in this study, due to oscillations in the NO2 profiles

for larger SZA.

2.4 Brewer spectrophotometers

Brewer spectrophotometers measure total ozone columns

using direct and scattered sunlight at UV wavelengths

(e.g. Savastiouk and McElroy, 2005). Four Brewer spec-

trophotometers took measurements from 2004–2011 at both

the PEARL Ridge Lab and the Eureka Weather Sta-

tion. Brewers #021 and #192 are both MKIII double

monochromaters, which took measurements from 2004–

2011, and 2010–2011 respectively. Brewer #069, a MKV

single monochromator, took measurements from 2004–2011

and Brewer #007, a MKIV single monochromator, took mea-

surements from 2005–2011. Data were analyzed using the

standard Brewer algorithm (Lam et al., 2007), with small

changes to the analysis parameters due to the high latitude of

the measurements. The AMF was limited to be smaller than

5 instead of 3.5, which is acceptable under low ozone condi-

tions and allows for more days with good data in the winter

months. Furthermore, the ozone layer was set at 18 km in-

stead of 22 km to better reflect Arctic conditions. For each

day, ozone data from all available instruments were averaged

to create one Brewer dataset. The random error in Brewer

measurements is typically less than 1 % (Savastiouk and

McElroy, 2005).

2.5 Ozonesondes

Ozonesondes are launched on a weekly basis from the Eu-

reka Weather Station (Tarasick et al., 2005). During the in-

tensive phase of the Canadian Arctic ACE Validation Cam-

paigns 2004–2011, ozonesondes were launched daily at

23:15 UTC, while, on occasion, the launch time was altered

to match a satellite measurement. Additional ozonesondes

Atmos. Meas. Tech., 5, 927–953, 2012 www.atmos-meas-tech.net/5/927/2012/
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were launched as a part of Determination of Stratospheric

Polar Ozone Losses (Match) campaigns. In this study,

ozonesonde measurements were combined with satellite

stratospheric partial columns for comparison with ground-

based instruments (see Sect. 4.2). Furthermore, ozonesonde

profiles were included in NO2 photochemical model calcu-

lations (see Sect. 4.3) and AMF calculations for DOAS re-

trievals (see Sect. 3.2).

2.6 OSIRIS

OSIRIS was launched aboard the Odin spacecraft in Febru-

ary 2001 (Llewellyn et al., 2004; Murtagh et al., 2002). It

observes limb-radiance profiles with a 1-km vertical field-of-

view over altitudes ranging from approximately 10–100 km,

with coverage of 82.2◦ N to 82.2◦ S. The grating optical spec-

trograph measures scattered sunlight from 280–800 nm, with

1-nm spectral resolution. OSIRIS measures within 500 km of

Eureka several times per day and measures ozone and NO2

during the sunlit part of the year.

The SaskMART v5.0x ozone dataset was used in this

study. The SaskMART Multiplicative Algebraic Reconstruc-

tion Technique (Degenstein et al., 2009) combines ozone ab-

sorption information in both the UV and visible parts of the

spectrum to retrieve number density profiles from the cloud

tops to 60 km (down to a minimum of 10 km in the absence

of clouds). SaskMART v5.0x ozone agrees with SAGE II

(Stratospheric Aerosol and Gas Experiment) ozone profiles

to within 2 % from 18–53 km (Degenstein et al., 2009). Ran-

dom errors due to instrument noise in 14–52 km partial col-

umn measurements within 500 km of Eureka, calculated for

a subset of the measurements, were on average 3.7 %. Sys-

tematic and other errors are expected to be on the same order

as the instrument noise.

For NO2, the v3.0 Optimal Estimation data product was

used. NO2 slant column densities (SCDs) are retrieved us-

ing the DOAS technique in the 435–451 nm range. These

SCDs are converted to number density profiles from 10–

46 km using an optimal estimation inversion, with high re-

sponse for 15–42 km (Brohede et al., 2008). The preci-

sion of these measurements is 16 % between 15–25 km and

6 % between 25–35 km based on comparisons with other

instruments (OSIRIS, 2011). The average random error in

17–40 km NO2 partial columns within 500 km of Eureka

was 6.8 %.

2.7 ACE-FTS and ACE-MAESTRO

ACE comprises two instruments, ACE-FTS and ACE-

MAESTRO, aboard the Canadian Space Agency’s SCISAT-

1, a solar occultation satellite launched in August 2003

(Bernath et al., 2005). SCISAT-1 measures above Eu-

reka near polar sunrise (February–March) and polar sunset

(September–October).

The ACE-FTS is a high-resolution (0.02 cm−1) infrared

FTS instrument, operating from 750–4400 cm−1, which

measures more than 30 different atmospheric species. Based

on a detailed CO2 analysis, pressure and temperature profiles

are calculated from the spectra using a global nonlinear least

squares fitting algorithm. Then VMR profiles are retrieved,

also using a nonlinear least squares fitting algorithm. ACE-

FTS v2.2 data with the ozone update (Boone et al., 2005) as

well as preliminary v3.0 data were included in this study.

ACE-MAESTRO is a UV-visible-near-IR double spec-

trograph, with a resolution of 1.5–2.5 nm, and a wave-

length range of 270–1040 nm (McElroy et al., 2007). ACE-

MAESTRO v1.2 visible ozone update and UV NO2 were

used for this study. ACE-MAESTRO VMRs were converted

to number densities using pressure, temperature, and density

information from the ACE-FTS v2.2 data.

When ACE ozone profiles are compared with other instru-

ments, typical relative differences of +1 to +8 % are found for

ACE-FTS v2.2 measurements from 16–44 km and ±10 % for

ACE-MAESTRO measurements from 18–40 km (Dupuy et

al., 2009). For the 14–52 km ozone partial columns used in

this study, the average random errors were 1.4 % for ACE-

FTS v2.2, 1.6 % for ACE-FTS v3.0, and 1.3 % for ACE-

MAESTRO.

For NO2, ACE-FTS v2.2 and ACE-MAESTRO typically

agree with other satellite measurements to within ∼25 %

from 23–40 km, with ACE-MAESTRO measuring higher

VMRs than ACE-FTS (Kar et al., 2007; Kerzenmacher et

al., 2008). The average random error of the 17–40 km par-

tial columns used in this study was 3.7 % for ACE-FTS v2.2,

2.7 % for ACE-FTS v3.0, and 2.3 % for ACE-MAESTRO.

3 DOAS measurements

The PEARL-GBS and SAOZ are both NDACC-certified in-

struments and, therefore, data retrieved from these instru-

ments and submitted to the NDACC database are expected

to agree well. Furthermore, the UT-GBS and SAOZ both met

NDACC standards during the 2009 Cabauw Intercomparison

of Nitrogen Dioxide measuring Instruments (Roscoe et al.,

2010). GBS and SAOZ ozone and NO2 measurements have

been compared during several Arctic and mid-latitude cam-

paigns using the same analysis settings and the same soft-

ware (Fraser et al., 2007, 2008, 2009).

In this study, GBS and SAOZ ozone total columns were

retrieved independently, following the new NDACC guide-

lines (Hendrick et al., 2011), with different analysis software

and small differences in retrieval settings. Therefore, this is a

good example of the practical implementation of the new set-

tings and the resulting homogeneity of the NDACC dataset.

The NDACC UV-Visible Working Group is currently de-

veloping similar guidelines for NO2 and they will be made

available in the near future. Therefore, for the present study,
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the GBS and SAOZ datasets were analyzed with their own

preferred settings.

3.1 Differential slant column densities

The DOAS technique (e.g. Platt and Stutz, 2008) was used

to retrieve the SAOZ, UT-GBS and PEARL-GBS differen-

tial SCDs (DSCDs). SAOZ DSCDs were retrieved using in-

house software, while the GBS DSCDs were retrieved with

the QDOAS software (Fayt et al., 2011). For SAOZ, a single

reference spectrum was used each year, while for the GBS,

daily reference spectra were selected. For both instruments,

wavelengths were calibrated against the solar spectrum based

on the reference solar atlas (Kurucz et al., 1984).

Ozone DSCDs were retrieved using the settings recom-

mended by the NDACC UV-visible working group (Hen-

drick et al., 2011). For SAOZ, ozone was retrieved in the

450–550 nm window. 450–545 nm and 450–540 nm win-

dows were used for the UT-GBS and PEARL-GBS respec-

tively, because data quality decreased for larger wavelengths

taken at the detector edge. The following cross-sections

were all fitted during the DOAS procedure: ozone mea-

sured at 223 K (Bogumil et al., 2003), NO2 measured at

220 K (Vandaele et al., 1998), H2O (converted from line

parameters given in Rothman et al., 2003), O4, and Ring

(Chance and Spurr, 1997). The GBS DSCDs were retrieved

using the wavelength-corrected Greenblatt et al. (1990)

O4 cross-section, which was recommended by NDACC in

2009, while the SAOZ DSCDs were retrieved with the Her-

mans (2004) cross-section, which was included in the Hen-

drick et al. (2011) NDACC recommendations. Based on sen-

sitivity tests performed using the GBS datasets, this is ex-

pected to have less than a 1 % impact on the DSCDs. An ad-

ditional cross-section was also included in the GBS analysis

to correct for systematic polarization errors.

GBS and SAOZ NO2 DSCDs were retrieved in three dif-

ferent wavelength regions. SAOZ NO2 was retrieved us-

ing the same methods and cross-sections as for ozone, in

the 410–530 nm range, with a gap from 427-433 nm. The

GBS DSCDs were retrieved in the 425–450 nm visible range

(NO2-vis), when the 600 gr mm−1 and 400 gr mm−1 grat-

ings were used, and the 350–380 nm UV range (NO2-UV),

when measurements were taken with the 1200 gr mm−1 and

1800 gr mm−1 gratings. The NO2-vis measurements were

retrieved with the same parameters and cross-sections as

for ozone, except a first order offset was applied to correct

for dark-current and stray-light. The GBS NO2-UV DSCDs

were retrieved with same retrieval settings as NO2-vis, with

the addition of a BrO cross-section measured at 223 K (Fleis-

chmann et al., 2004) and an OClO cross-section measured at

204 K (Wahner et al., 1987). Polarization correction cross-

sections were not included in the GBS NO2-vis and NO2-

UV retrievals because there was no evidence of polarization

errors in the residuals, likely due to the small wavelength

intervals of the analyses.

3.2 Vertical columns

Ozone and NO2 columns were retrieved using the Langley

method with the settings described in Hendrick et al. (2011).

For each twilight, DSCDs in the SZA 86–91◦ window were

selected, when those SZAs were available. Otherwise, the

nearest available 5◦ SZA window was used. For the GBS

instruments, a daily average reference column density was

calculated from the morning and evening twilights because

a daily reference spectrum was used in the DSCD retrievals.

For SAOZ, a single average of monthly average reference

column densities was calculated for each spring. For both the

GBS and SAOZ, total columns throughout the twilight were

calculated using the reference column density and AMFs. A

single column value was produced for each twilight from the

weighted mean of the columns in the selected SZA range,

weighted by the DOAS fitting error divided by the AMF.

For DOAS ozone retrievals, the inclusion of daily ozone

data in the AMF calculations improves results, especially

under vortex conditions (Bassford et al., 2001). Ozone to-

tal columns for both instruments were retrieved using the

NDACC-recommended AMF LUTs (Hendrick et al., 2011).

Daily AMFs are extracted from these LUTs based on the

latitude and elevation of the PEARL Ridge Lab, day of

year, sunrise or sunset conditions, wavelength, SZA, surface

albedo, and ozone column. For the GBS, daily ozone total

columns interpolated from ozonesonde data were input to

the AMF LUTs, while for SAOZ, measured ozone SCDs for

each twilight were input.

For NO2, the ozone profile has a small impact on DOAS

AMFs (Bassford et al., 2001) and therefore daily ozone data

is not necessary for the interpolation of AMFs. For the GBS

measurements, daily AMFs were extracted from a new set of

LUTs, developed by the Belgian Institute for Space Aeron-

omy (BIRA-IASB) (see Appendix A for details). The NO2

VMR below 17 km was set to zero, so these AMFs produce

partial columns from 17 km upward. SAOZ data were ana-

lyzed with a single set of AMFs constructed from an average

of summer evening composite profiles derived from POAM

III (Polar Ozone and Aerosol Measurement) and SAOZ bal-

loon measurements in the Arctic. 30 % of the NO2 in this

profile is below 17 km. These SAOZ Arctic AMFs are then

used to convert the measured slant column densities into total

columns of NO2.

A detailed error analysis was performed on the GBS mea-

surements, including random error as well as systematic er-

rors from cross-sections, residual structure in DOAS fits, and

AMFs. For NO2, the temperature dependence of the cross-

section and the impact of the diurnal variation were also

considered. A mean total ozone error of 6.2 % was calcu-

lated. This is slightly larger than the 5.9 % total error reported

for NDACC ozone column measurements (Hendrick et al.,

2011), but is consistent with the challenges of taking DOAS

measurements at high latitudes (see Sect. 3.3), particularly

during seasons when the 86–91◦ SZA range is not available
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(see Fig. 6 of Fraser et al., 2009). Mean total errors for 2003–

2011 of 23 % for NO2-vis and 22 % for NO2-UV were cal-

culated. These errors are heavily weighted by uncertainties

of up to 100 % in the early spring when concentrations of

NO2 are low and daylight SZA ranges are limited. For mea-

surements taken between days 80–260, the mean total error

is 18 % for NO2-vis and 20 % for NO2-UV.

For SAOZ, the estimated total error in ozone is 5.9 %

(Hendrick et al., 2011). For NO2, the precision and accuracy

are estimated at 1.5 × 1014 mol cm−2 and 10 %, respectively.

When applied to the 2005–2011 Eureka measurements and

added in quadrature, this yields an average 13.2 % total error

in NO2.

3.3 Effect of 24-h sunlight on DOAS analysis

The evolution of available SZA ranges above Eureka is

shown in Fig. 6 of Fraser et al. (2009). At the summer sol-

stice, the maximum SZA above Eureka is 76◦. This yields

AMFs of ∼4 for both ozone and NO2, which is approx-

imately four times smaller than the typical AMF at SZA

90◦. Furthermore, the range in AMFs for SZAs 86–91◦ is

greater than 10, while for SZAs 71–76◦, the range in AMFs

is smaller than 1. This leads to larger uncertainties in the

summertime reference column density calculations from the

Langley plots. For Arctic ozone, these small AMFs coincide

with low ozone total columns, leading to small differential

optical depths in the DOAS fitting process.

Furthermore, the altitude sensitivity of DOAS measure-

ments changes significantly between the spring and sum-

mer. The approximate averaging kernels for DOAS ozone

and NO2 measurements were calculated using the method of

Eskes and Boersma (2003) for SZA 90◦ in March and SZA

76◦ in June at 75◦ N and are shown in Fig. 1. For ozone,

the averaging kernels were produced with the Total Ozone

Mapping Spectrometer (TOMS) v8 climatology for 375 DU

of ozone (Hendrick et al., 2011). For NO2, the sunrise NO2

profiles from the Lambert et al. (1999, 2000) climatology,

described in Appendix A, were used. The averaging kernels

indicate that for the large SZA, corresponding to spring and

fall measurements at Eureka, sensitivity peaks in the strato-

sphere, with very little sensitivity to the troposphere. This is

expected as strong scattering occurs in the stratosphere for

these SZAs. In the summer, photons are scattered throughout

the atmosphere, leading to enhanced sensitivity to the tropo-

sphere and clouds. This reduces the quality of the DOAS fits,

particularly in the ozone retrieval window, as O4 and water

vapour interfere with the measurements. This enhanced sen-

sitivity to clouds also yields additional uncertainties in the

AMFs (e.g. Bassford et al., 2001). Due to these factors, sum-

mertime DOAS measurements at 80◦ N are very challenging

and therefore it is especially important to validate these mea-

surements against other instruments.
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Fig. 1. Approximate column averaging kernels for DOAS measure-

ments of ozone and NO2 in March at SZA 90◦ and June at SZA

76◦. For ozone, the Hendrick et al. (2011) AMF LUTs were used

and for NO2, the AMF LUTs described in Appendix A were used.

Note that for NO2, measurements do not extend below 17 km, as

AMFs are set to zero below 17 km.

4 Methodology

Coincident measurements for this validation study were se-

lected using the criteria described in Sect. 4.1. Satellite

ozone partial columns were calculated and combined with

ozonesonde data to create total columns as described in

Sect. 4.2. Using the method described in Sect. 4.3, all

NO2 measurements were scaled to local solar noon prior

to comparison.

Agreement between these datasets was evaluated using

several methods. The mean absolute difference 1abs between

sets of coincident measurements (M1 and M2) is defined as

1abs =
1

N

N∑

i=1

(M1i − M2i), (1)

where N is the number of measurements. The mean relative

difference 1rel between M1 and M2 is defined as

1rel = 100 % ×
1

N

N∑

i=1

(M1i − M2i)

(M1i + M2i)/2
. (2)

The standard deviation (σ ) and the standard error (σ /
√

N ) of

the mean absolute and relative differences were also calcu-

lated. The standard error is the reported error throughout this

paper. To assess correlation between the datasets, correlation

plots were also produced. Measurement errors were not in-

cluded in the linear regressions.

The OSIRIS, ACE-FTS, and ACE-MAESTRO satellite in-

struments have better vertical resolution than the ground-

based ozone and NO2 instruments included in this study.

Some studies (e.g. Batchelor et al., 2010; Dupuy et al., 2009;

Kerzenmacher et al., 2008) account for this by smoothing
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the higher-resolution measurements by the averaging kernel

of the lower-resolution measurements (Rodgers and Conner,

2003). Data were not smoothed in the present study because

averaging kernel matrices were not available for some of

the ground-based instruments and we preferred to treat all

datasets in a consistent manner. In previous studies, ACE-

FTS data have been smoothed to the resolution of the Bruker

FTIR (Batchelor et al., 2010; Lindenmaier et al., 2011).

Smoothing is expected to have a small impact on ozone in-

tercomparisons, since the Bruker FTIR has good sensitivity

for most of the ozone column (Batchelor et al., 2009). A sub-

set of ACE-FTS NO2 measurements was smoothed to the

resolution of the Bruker FTIR by Lindenmaier et al. (2011).

ACE partial columns for 17–40 km changed on average by

1 %, with a 4 % standard deviation, when smoothing was per-

formed. This is small compared with the agreement between

NO2 measurements in this study. The impact of smoothing

on OSIRIS measurements is expected to be comparable.

4.1 Coincidence criteria

Temporal coincidence criteria were selected to maximize the

number of coincident data points while minimizing the re-

liance on the photochemical model corrections for the di-

urnal variation of NO2, described in Sect. 4.3. For compar-

isons between the ACE-FTS v3.0, ACE-FTS v2.2, and ACE-

MAESTRO measurements, coincidences were restricted to

the same occultation. For the twilight-measuring instruments

(ACE and the DOAS instruments), measurements were com-

pared from the same twilight. This prevents morning twilight

measurements from being scaled to the evening by the pho-

tochemical model and vice versa. For intercomparisons be-

tween all remaining instruments, a ±12 h coincidence crite-

rion was used.

Satellite ozone and NO2 measurements taken within a

500-km radius of the PEARL Ridge Lab were selected for in-

tercomparisons with the ground-based measurements. Note

that the satellite geolocations are given at the geometric tan-

gent heights of 25 km for OSIRIS ozone, 35 km for OSIRIS

NO2, and 30 km for ACE ozone and NO2. ACE solar occul-

tations typically have ground tracks of 300–600 km (Dupuy

et al., 2009), while OSIRIS limb measurements have ground

tracks of ∼500 km.

None of the instruments included in this study measures

air masses directly above PEARL. Instead they sample air

masses along their lines-of-sight. Figure 2 shows the lon-

gitude and latitude of the sampled air masses in the strato-

sphere at 25 km for OSIRIS and 30 km for ACE, the Bruker

FTIR, and the GBS. The OSIRIS measurements (panel a)

do not reach latitudes above 82.2◦ N. The ACE measure-

ments (panel b) are distributed approximately evenly within

500 km of PEARL. The Bruker FTIR spring-time measure-

ments (panel c) follow the location of the sun during typi-

cal operational hours (e.g. ∼09:00–16:00 local time), with

larger SZA measurements sampling air masses further from
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Fig. 2. Location of ozone air mass sampled by (a) all OSIRIS

scans and (b) ACE-FTS v2.2 occultations used in this study; and

(c) Bruker FTIR and (d) GBS spring-time measurements. PEARL is

indicated by the red star. Locations of the OSIRIS scans are shown

for the 25-km air mass, while all other measurements are shown for

the 30-km air mass.

PEARL. The Brewer instruments, which also measure direct-

sunlight, would have similar sampling to the Bruker FTIR in

the spring. The DOAS instruments’ approximate sampling

(panel d) depends on the location of the sun, as described

in Appendix B. Like the Bruker FTIR, the DOAS measure-

ments get closer to PEARL as the sun gets higher. Further-

more, as sunrises and sunsets shift northward in azimuth, the

DOAS measurements shift north of PEARL.

4.2 Ozone

For comparison against ground-based total column ozone

measurements, an altitude range of 14–52 km was chosen

for satellite partial columns. This was the maximum alti-

tude range for which the majority of OSIRIS, ACE-FTS,

and ACE-MAESTRO profiles within 500 km of PEARL had

available data. Ozonesonde data from the nearest day were

added to the satellite profiles from 0–14 km, in a similar ap-

proach to Fraser et al. (2008). The resulting satellite-plus-

sonde profile was smoothed from 12–16 km using a mov-

ing average filter in order to avoid discontinuities where the

two profiles joined. No correction was applied above 52 km,

since according to the United States 1976 Standard Atmo-

sphere (Krueger and Minzner, 1976), there is less than 1 DU

of ozone above 52 km. This is much smaller than the mea-

surement errors of the various instruments (see Table 2). The

satellite-plus-sonde columns are denoted with * in the figures

and tables throughout this text.

Atmos. Meas. Tech., 5, 927–953, 2012 www.atmos-meas-tech.net/5/927/2012/



C. Adams et al.: Validation of ACE and OSIRIS 935

4.3 NO2

NO2 partial columns for satellite and Bruker FTIR measure-

ments were calculated for 17–40 km. The lower value of this

range was determined by GBS partial columns, which range

from 17 km to the top of the atmosphere. The upper value

of this altitude range was determined by the availability of

OSIRIS, ACE-FTS, and ACE-MAESTRO data. For compar-

ison between the satellite and GBS partial columns, no cor-

rection was applied above 40 km, because less than 1 % of the

NO2 column resides at these altitudes, which is much smaller

than the measurement error (see Table 2). For comparison

against the partial columns, the SAOZ total column measure-

ments were scaled down by 30 %, corresponding to the frac-

tion of NO2 below 17 km in the profiles used to construct the

SAOZ AMFs. These scaled SAOZ measurements are indi-

cated by a * in the figures and tables throughout this text.

NO2 has a strong diurnal variation and therefore correc-

tions must be applied when comparing measurements taken

at different times (e.g. Brohede et al., 2008; Kerzenmacher

et al., 2008; Lindenmaier et al., 2011). A photochemical box

model (Brohede et al., 2007b; McLinden et al., 2000) was

used to simulate the evolution of NO2 at Eureka (80◦ N)

for each measurement day. Ozone profiles and temperatures

from the ozonesonde launched closest to the measurement

day were used to constrain the model.

The seasonal variation of NO2 17–40 km partial columns,

calculated by the photochemical model using ozonesondes

launched in 2009, is shown in Fig. 3a. NO2 at solar noon

(black) increases throughout the spring as PEARL exits polar

night. It reaches a maximum during the summer period of 24-

h sunlight and then decreases again in the fall. Throughout

the year, the diurnal variation of NO2 also changes, as can be

seen by the morning (blue) and evening (red) twilight partial

columns, where twilight is defined as SZA 90◦ or the closest

available SZA. In the spring and fall, NO2 increases from

morning to evening as NOx (NOx = NO2 + NO) is released

from its night-time reservoirs. In the summer 24-h sunlight,

NO2 decreases at noon as it is photolyzed to NO.

The ratios of NO2 in the evening and morning twilights

retrieved by the GBS instruments and calculated with the

photochemical model are shown in Fig. 4 for 2007–2010.

The measurements and model show good agreement. In

spring 2007, when the vortex passed back and forth over

PEARL, there is more scatter in the values than in the less

dynamically active 2008–2010 yr. This may be because the

GBSs are sampling different air masses between the morn-

ing and evening twilights. Systematic discrepancies appear

in the late fall (days 280–300), as PEARL enters polar night.

This may be caused by measurement error since NO2 con-

centrations become very low as NO2 is converted to its

night-time reservoirs.

The instruments compared in this study sample NO2 at dif-

ferent times of day, or different parts of the diurnal cycle,

as shown in Fig. 3b. Instruments that measure columns at
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Fig. 3. Seasonal evolution of NO2 in 2009. (a) 17–40 km partial

columns calculated by the photochemical model initialized with

ozonesondes for morning twilight (thick cyan line), evening twi-

light (red dashed line), and solar noon (thin black line). (b) Mea-

surement SZAs. Note that ACE, the GBS, and SAOZ all measure at

approximately the same SZA and, therefore, have overlapping data

points. Similarly OSIRIS and the FTIR measure at approximately

the same SZA. (c) NO2 partial columns measured by ground-based

and satellite instruments. (d) Same as (c) except all measurements

scaled to solar noon using photochemical model. Instrument abbre-

viations are given in Table 1.

larger SZAs (GBS, SAOZ, and ACE) tend to measure more

NO2 than instruments that measure columns at smaller SZAs

(OSIRIS and Bruker FTIR), as can be seen in Fig. 3c. In or-

der to correct for this, ratios of NO2 partial columns at noon

and the measurement time were calculated using the photo-

chemical model. These ratios were multiplied by the mea-

surements to produce an NO2 partial column at noon. The

resulting noon-time measurements are shown in Fig. 3d and

were used in all NO2 intercomparisons. The model profiles

were not degraded to the resolution of the ground-based in-

struments prior to scale-factor calculations. The modeled ra-

tio of twilight to noon NO2 does not vary greatly with alti-

tude for 15–35 km, where the bulk of the NO2 column re-

sides. Therefore, the error that this introduces is expected

to be small. Lindenmaier et al. (2011) estimate the error in

www.atmos-meas-tech.net/5/927/2012/ Atmos. Meas. Tech., 5, 927–953, 2012



936 C. Adams et al.: Validation of ACE and OSIRIS

50 100 150 200 250 300

1

1.5

2

Day

R
at

io
 P

M
 / 

A
M

a) 2007

 

 

GV
GU
Mod

50 100 150 200 250 300

1

1.5

2

Day

R
at

io
 P

M
 / 

A
M

b) 2008

 

 

50 100 150 200 250 300

1

1.5

2

Day

R
at

io
 P

M
 / 

A
M

c) 2009

 

 

50 100 150 200 250 300

1

1.5

2

Day

R
at

io
 P

M
 / 

A
M

d) 2010

 

 

Fig. 4. Ratio of evening twilight to morning twilight NO2 as mea-

sured by the GBS-vis (black squares) and GBS-UV (blue circles)

and as calculated using a photochemical model (red dots). Ratios

are plotted against day of year for (a) 2007, (b) 2008, (c) 2009, and

(d) 2010.

NO2 scale factors from the same photochemical model at

7.7–16.4 % above PEARL, with the maximum values around

days 90 and 240, when the ratio of twilight-to-noon NO2 is

largest.

In addition to affecting measurements taken at different

times, the diurnal variation of NO2 can introduce errors in

individual measurements through the “diurnal effect”, which

is also referred to as “chemical enhancement” (e.g. Fish

et al., 1995; Hendrick et al., 2006 McLinden et al., 2006;

Newchurch et al., 1996). The diurnal effect is a result of

sunlight passing through a range of SZAs, and hence sam-

pling NO2 at different points in its diurnal cycle, on its way

through the atmosphere to the instrument. An error is intro-

duced when this variation is not accounted for in the anal-

ysis, and the SZA assigned to a retrieved profile or column

corresponds to the location of the instrument (for a ground-

based observation) or to the location of the tangent height

(for a limb observation). This effect is largest when the

range of SZAs encountered includes twilight, when NO2

varies rapidly.

For OSIRIS, these errors are relevant to measurements

taken at SZAs greater than 85◦ (during the spring and fall,

for measurements near PEARL) and can introduce errors

up to 40 % below 25 km (Brohede et al., 2007a; McLinden

et al., 2006). The 60◦ N error profiles shown in Fig. 9 of

Brohede et al. (2007a) were applied to the OSIRIS profiles

used in this study and yielded less than 10 % error in the

17–40 km NO2 partial columns. For ACE-FTS and ACE-

MAESTRO, measurements of NO2 can be biased high below

25 km by up to 50 % (Kerzenmacher et al., 2008). When the

ACE profiles included in this study were increased by 50 %

below 25 km, the 17–40 km NO2 profiles increased by up

to ∼20 %. Based on the viewing geometry described in Ap-

pendix B, DOAS instruments sample a 30-km layer of the at-

mosphere with an SZA that is up to 3◦ smaller than the SZA

at the instrument. This causes the underestimation of NO2

concentrations, particularly for measurements taken at large

SZAs in the spring and fall. The Bruker FTIR NO2 measure-

ments were restricted to SZA less than 80◦. Since NO2 varies

slowly for those SZAs, the diurnal effect for the Bruker FTIR

is small.

The instruments also sample the NO2 maximum at differ-

ent latitudes, as shown in Fig. 2. This is of particular concern

at high latitudes during polar sunrise and sunset, as NOx is

released from and returns to its night-time reservoirs, lead-

ing to a strong gradient in NO2, with lower concentrations at

higher latitudes (Noxon et al., 1979). Using the photochem-

ical model initialized with climatological ozone and temper-

ature profiles (McPeters et al., 2007), 17–40 km NO2 partial

columns were calculated at various latitudes for the evening

twilight (SZA = 90◦ or nearest available SZA). Ratios of NO2

partial columns calculated at 78◦ N over 82◦ N are shown in

grey in Fig. 5. This represents a typical latitude difference

between measurements. On days 55 and 290, which are near

the first and last measurement days of the season, NO2 partial

columns at 78◦ N are ∼7 times larger than at 82◦ N. The dif-

ference between the columns decreases throughout the spring

until approximately days 80–85. Throughout the summer, no

strong latitudinal gradient is observed in NO2 until approx-

imately days 265–270, as polar night begins. Ratios of NO2

partial columns calculated at 76◦ N over 84◦ N, representing

the maximum latitude difference between coincident mea-

surements, are also shown in Fig. 5 in red. ACE measures

above PEARL during the spring and fall periods for which

this effect is significant. The impact of the latitudinal gradi-

ent in NO2 on the spring-time intercomparisons is assessed

in Sect. 7.

5 Ozone intercomparisons

Ozone partial and total column measurements made by the

ground-based and satellite instruments were compared us-

ing the methods described in Sect. 4. The resulting mean

absolute and relative differences are summarized in Table 3

and are discussed below. Available coincident measurements

from all time periods are included in the intercomparisons.

5.1 Satellite versus satellite partial columns

The 14–52 km ozone partial columns measured by the satel-

lite instruments were compared and are shown in the first

section of Table 3. Partial columns from all four satellite in-

struments agree very well, with mean relative differences of

3 % or lower. Correlation plots between the satellite measure-

ments are shown in Fig. 6 have R2 values of 0.821 or greater.
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Table 3. Number of coincidences (N), mean absolute difference (1abs) and mean relative difference (1rel) between ozone measurements

with respective standard deviation (σ) and standard error (err). Instrument abbreviations are summarized in Table 1.

N 1abs (DU) σabs (DU) errabs (DU) 1rel (%) σrel (%) errrel (%)

Satellite versus satellite 14–52 km partial columns

OS – A2 800 9.8 22.9 0.8 3.0 7.4 0.3

OS – A3 754 3.8 18.1 0.7 1.2 5.8 0.2

OS – MA 559 7.4 28.3 1.2 2.8 9.6 0.4

A2 – A3 210 −0.3 9.9 0.7 0.0 3.1 0.2

A2 – MA 198 7.5 23.3 1.7 2.7 7.8 0.6

A3 – MA 162 7.8 22.4 1.8 2.8 7.5 0.6

Satellite-plus-sonde 0–52 km partial columns versus ground-based total columns

OS* – GV 4727 19.9 27.4 0.4 5.7 7.8 0.1

OS* – SA 2065 32.2 29.3 0.6 7.3 6.7 0.1

OS* – FT 11 388 −0.4 25.4 0.2 0.1 6.2 0.1

OS* – BW 4115 10.3 21.5 0.3 2.8 5.8 0.1

A2* – GV 147 28.0 29.2 2.4 6.5 6.6 0.5

A2* – SA 122 14.4 26.6 2.4 3.2 6.1 0.6

A2* – FT 371 −33.0 33.5 1.7 −6.7 7.6 0.4

A2* – BW 6 9.0 13.9 5.7 3.4 5.2 2.1

A3* – GV 141 28.4 27.7 2.3 6.5 6.1 0.5

A3* – SA 146 19.2 25.5 2.1 4.8 6.0 0.5

A3* – FT 481 −21.6 28.6 1.3 −4.7 6.6 0.3

A3* – BW 5 5.8 15.3 6.9 2.3 5.7 2.6

MA* – GV 117 21.7 32.8 3.0 5.0 7.6 0.7

MA* – SA 79 8.7 39.4 4.4 1.6 8.8 1.0

MA* – FT 204 −29.8 35.0 2.4 −6.1 7.9 0.6

MA* – BW 6 −2.8 18.3 7.5 −1.1 6.7 2.7

Ground-based versus ground-based total columns

GV – SA 296 −14.2 22.0 1.3 −3.2 5.6 0.3

GV – FT 1894 −25.9 30.5 0.7 −6.9 7.8 0.2

GV – BW 658 −4.0 22.7 0.9 −1.4 6.9 0.3

SA – FT 1474 −39.1 23.3 0.6 −9.2 5.2 0.1

SA – BW 107 1.9 21.1 2.0 0.4 5.3 0.5

FT – BW 1491 9.7 10.3 0.3 2.6 2.5 0.1

Satellite versus ground-based 14–52 km partial columns

OS – FT 11388 −11.1 20.4 0.2 −3.3 6.3 0.1

A2 – FT 371 −45.9 37.3 1.9 −12.2 10.6 0.5

A3 – FT 481 −32.1 31.2 1.4 −9.2 8.8 0.4

MA – FT 204 −40.3 37.9 2.7 −11.2 11.2 0.8

* Indicates 0–52 km satellite-plus-sonde partial columns.

The mean relative difference between ACE-FTS v3.0 and

v2.2 ozone partial columns is 0.0 ± 0.2 %. Furthermore, the

two datasets are extremely well correlated, with an R2 value

of 0.973. Note that the ACE-FTS v2.2 and v3.0 datasets have

slightly different results when compared with the other in-

struments in this study because data were compared for dif-

ferent time periods, based on data availability. Therefore, fall

2010 and spring 2011 are included for v3.0, but not for v2.2.

ACE-FTS v2.2, ACE MAESTRO v1.2, and OSIRIS

SaskMART v5.0.x ozone measurements have been compared

in previous studies. Fraser et al. (2008) found a mean rela-

tive difference of +5.5 % to +22.5 % between ACE-FTS v2.2

and ACE-MAESTRO v1.2 ozone 16–44 km partial columns

from 2004–2006, which is larger than the +2.7 % mean rel-

ative difference found in this study. Dupuy et al. (2009)

compared profiles from ACE-FTS v2.2, ACE-MAESTRO

v1.2, and OSIRIS SaskMART v2.1 data. They found ACE-

MAESTRO profiles agreed with OSIRIS to ±7 % for 18–

53 km. ACE-FTS profiles were typically +4 % to +11 %

larger than OSIRIS profiles above 12 km. This is oppo-

site to the findings of this study, in which ACE-FTS par-

tial columns are lower than OSIRIS partial columns. Since

OSIRIS SaskMART v2.1 and v5.0x are very similar for the

14–52 km altitude range, this difference is likely because the
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Fig. 5. Ratios of 17–40 km NO2 partial columns at various latitudes

during the evening twilight, calculated with photochemical model

initialized with climatological ozone and temperatures. During the

spring and fall, when the sun rises and sets, the evening twilight is

defined as SZA = 90◦. During polar night, the evening twilight is de-

fined as the minimum available SZA. During summer, when the sun

is above the horizon 24-h per day, the evening twilight is defined as

the maximum available SZA. 76◦ N to 84◦ N is the maximum range

over which coincident measurements were selected (see Fig. 2). The

thin black line indicates a ratio of one.

present study included only measurements taken in the Arc-

tic, while Dupuy et al. (2009) considered measurements at

all latitudes.

5.2 Satellite versus ground-based columns

Mean absolute and relative differences between ground-

based total columns and satellite-plus-sonde 0–52 km

columns are included in the second section of Table 3. The

satellite-plus-sonde measurements are consistently larger

than the DOAS measurements and smaller than the Bruker

FTIR measurements. The Brewer columns fall between the

satellite-plus-sonde and other ground based measurements.

All ground-based measurements are within 7.3 % of the

satellite-plus-sonde columns. Comparisons are not shown

between ACE and the Brewer instruments because there

are few coincident measurements as ACE measures above

PEARL in the early spring and late fall during periods when

the SZA is too large for Brewer direct-sun measurements.

The timeseries of absolute differences between the four

satellite-plus-sonde data products and the ground-based mea-

surements are plotted in Figs. 7 and 8. The largest discrep-

ancies occur in the spring-time for all measurements, with

the Bruker FTIR measuring more ozone and the DOAS and

Brewer instruments measuring less ozone than the satellite-

plus-sondes. Although there is some year-to-year variability

in the absolute differences, there is no apparent system-

atic change between the satellite and ground-based measure-

ments in time. The year-to-year variability has no obvious re-

lation to vortex activity above Eureka, such as sudden strato-

spheric warmings. This suggests that the performance of

OSIRIS, ACE-FTS, and ACE-MAESTRO has not changed

and their measurements of ozone within 500 km of PEARL

are suitable for multi-year analyses.

Figure 9 shows correlation plots between the satellite-

plus-sonde and ground-based total ozone columns. R2 co-

efficients range from 0.518–0.910. Note that ACE-FTS v3.0

data were retrieved for spring 2011, which had abnormally

low ozone values (Manney et al., 2011), and therefore has

higher correlation coefficients than v2.2.

5.3 Comparisons with NDACC DOAS measurements

Intercomparison results between SAOZ and GBS ozone total

columns retrieved from 2005–2011 using the NDACC set-

tings (described in Sect. 3) are shown in Fig. 10. The ab-

solute difference between the SAOZ and GBS ozone total

columns (panel a) shows good agreement for most years.

SAOZ measures more ozone than the GBS in 2005 and 2007,

two years in which the polar vortex passed over Eureka. This

may be due in part to the different fields-of-view of the two

instruments, leading to sampling of different air masses. The

correlation plot between SAOZ and GBS ozone (panel b)

shows a strong correlation between measurements, with an

R2 value of 0.898. For large ozone total columns, the GBS

measures systematically lower than SAOZ. The mean rela-

tive difference for GBS minus SAOZ ozone is −3.2 ± 0.3 %

(see third section of Table 3). This is well within the com-

bined error of the two instruments and is comparable to the

values of −6.9 % to −2.3 % found by Fraser et al. (2008,

2009) for 2005–2007, when SAOZ and GBS data were re-

trieved by the same analysis group, using the same analysis

software. This demonstrates that, even when implemented in-

dependently with slight differences in the analysis settings

and software, the new NDACC data standards are sufficient

to produce a homogeneous ozone dataset.

Absolute differences (panel c) and correlations (panel d)

between the DOAS (GBS and SAOZ) and Brewer data are

also shown in Fig. 10. Good agreement between the in-

struments is evident throughout the year. The mean rela-

tive difference between the GBS [SAOZ] and Brewer total

ozone column measurements is −1.4 % [+0.4 %]. This is bet-

ter than the high-latitude agreement reported by Hendrick

et al. (2011), who found that SAOZ ozone total columns

were systematically lower than Brewer measurements at So-

dankyla (67◦ N, 27◦ E) by 3–4 %, with the largest discrepan-

cies in the spring and fall. Hendrick et al. (2011) accounted

for this bias with the temperature dependence and uncertainty

in the UV ozone cross-section used in Brewer measurements.

The agreement between the GBS, SAOZ, and Brewer in the

present study is remarkable given the challenges of taking
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Fig. 6. Correlations between satellite 14–52 km ozone partial columns. Red lines indicate linear fit (m = fitted slope, y = fitted y-intercept).

Black lines indicate 1-1. Instrument abbreviations are given in Table 1.

2003 2004 2005 2006 2007 2008 2009 2010 2011

−100

0

100

GV
SA

a) OS* minus DOAS

Year

D
iff

er
en

ce
 (

D
U

)

2003 2004 2005 2006 2007 2008 2009 2010 2011

−100

0

100

b) A2* minus DOAS

Year

D
iff

er
en

ce
 (

D
U

)

2003 2004 2005 2006 2007 2008 2009 2010 2011

−100

0

100

c) A3* minus DOAS

Year

D
iff

er
en

ce
 (

D
U

)

2003 2004 2005 2006 2007 2008 2009 2010 2011

−100

0

100

d) MA* minus DOAS

Year

D
iff

er
en

ce
 (

D
U

)

Fig. 7. Absolute differences (circles) and mean absolute differences

(dashed lines) between satellite-plus-ozonesonde and GBS (grey)

and SAOZ (red). The solid black lines indicate zero.

2003 2004 2005 2006 2007 2008 2009 2010 2011

−100

0

100

FT
BW

a) OS* minus FT/BW

Year

D
iff

er
en

ce
 (

D
U

)

2003 2004 2005 2006 2007 2008 2009 2010 2011

−100

0

100

b) A2* minus FT/BW

Year

D
iff

er
en

ce
 (

D
U

)

2003 2004 2005 2006 2007 2008 2009 2010 2011

−100

0

100

c) A3* minus FT/BW

Year

D
iff

er
en

ce
 (

D
U

)

2003 2004 2005 2006 2007 2008 2009 2010 2011

−100

0

100

d) MA* minus FT/BW

Year

D
iff

er
en

ce
 (

D
U

)

Fig. 8. Absolute differences (circles) and mean absolute differences

(dashed lines) between satellite-plus-ozonesonde and Bruker FTIR

(grey) and Brewer (red). The solid black lines indicate zero.
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Fig. 9. As for Fig. 6, satellite-plus-ozonesonde versus ground-based total ozone columns. Note that comparisons between ACE and Brewer

measurements are not shown because there are few coincidences between these instruments.

DOAS measurements at 80◦ N, particularly in the summer

(see Sect. 3.3).

The DOAS measurements are systematically lower than

the Bruker FTIR total column and satellite-plus-sonde mea-

surements by 1.6–9.2 % (see Table 3). Discrepancies be-

tween the satellite-plus-sonde and DOAS measurements,

shown in Fig. 7, are particularly large in the spring. Cor-

relation plots, shown in Fig. 9, indicate that the satellite-

plus-sonde measurements are systematically higher than the

DOAS measurements for high ozone columns. R2 corre-

lation coeffictions for the satellite-plus-sonde versus GBS

[SAOZ] ozone columns are greater than 0.84 [0.51].

Fraser et al. (2008) compared 15–40 km ACE par-

tial columns with ozonesonde measurements added to the

columns below 15 km against GBS and SAOZ. The GBS

and SAOZ measurements had been retrieved by the same

analysis group with identical settings, including the Bur-

rows et al. (1999) ozone cross-section and the AMFs de-

scribed in McLinden et al. (2002). They found mean relative

differences between ACE-FTS v2.2 satellite-plus-sonde and

GBS [SAOZ] measurements of +3.2 to +6.3 % [+0.1 to

+4.3 %]. This is similar to the values of +6.5 % [+3.2 %]

found in the present study. Fraser et al. (2008) found that

the mean relative difference between ACE-MAESTRO v1.2

plus updates and the GBS [SAOZ] was −19.4 % to −1.2 %

[−12.9 % to −1.9 %]. In this study, the mean relative differ-

ence for ACE-MAESTRO minus GBS [SAOZ] was +5.0 %

[+1.6 %].

The differences between satellite and DOAS measure-

ments in this study are larger than the values reported for

comparisons between SAOZ and satellite ozone total column

measurements in Table 10 of Hendrick et al. (2011). The

satellite data products compared by Hendrick et al. (2011)

were TOMS v8, GOME-GDP4 (Global Ozone Monitoring

Instrument GDP4 retrieval), OMI-DOAS (Ozone Monitoring

Instrument retrieved with DOAS algorithm), OMI-TOMS

(OMI data retrieved with TOMS algorithm), and two SCIA-

MACHY (SCanning Imaging Absorption spectroMeter for

Atmos. Meas. Tech., 5, 927–953, 2012 www.atmos-meas-tech.net/5/927/2012/



C. Adams et al.: Validation of ACE and OSIRIS 941

2005 2006 2007 2008 2009 2010 2011
−150

−100

−50

0

50

100

150
a) Difference GV minus SA

Year

G
V

 m
in

us
 S

A
 (

D
U

)

0 200 400 600
0

200

400

600

m=0.829
y=55

R2=0.898

SA (DU)

G
V

 (
D

U
)

b) Regression GV vs SA

2005 2006 2007 2008 2009 2010 2011
−150

−100

−50

0

50

100

150

GV SA

c) Difference DOAS minus BW

Year

D
O

A
S

 m
in

us
 B

W
 (

D
U

)

0 200 400 600
0

200

400

600

m=0.963
y=8.2
R2=0.832

m=0.881
y=51

R2=0.715

BW (DU)

D
O

A
S

 (
D

U
)

d) Regression DOAS vs BW

SAGV

Fig. 10. (a) Absolute difference (circles) between GBS and SAOZ

ozone total columns. (b) Correlation between GBS and SAOZ

ozone total columns. (c) Absolute difference (circles) between GBS

(grey) and SAOZ (red) minus Brewer ozone total column mea-

surements. (d) Correlation for GBS (grey) and SAOZ (red) versus

Brewer ozone measurements. In (a) and (c), the solid black lines

indicate the zero line and the dashed lines indicate mean absolute

differences. In (b) and (d), the solid black lines indicate the 1-1 line

and the dashed lines indicate linear fit (m = fitted slope, y = fitted

y-intercept).

Atmospheric CartograpHY) products, SCI-TOSOMI (SCIA-

MACHY with TOSOMI algorithm developed at the Royal

Netherlands Meteorological Institute – KNMI) and SCIA-

OL3 (SCIAMACHY offline v3). For various stations, Hen-

drick et al. (2011) found that agreement between SAOZ total

ozone columns and satellite total ozone columns ranged from

−4.1 % to +3.1 %. The agreement in Hendrick et al. (2011)

is better than the present study for several possible rea-

sons. Hendrick et al. (2011) corrected satellite columns for

temperature and SZA dependence using comparisons with

the SAOZ measurements. Furthermore, DOAS retrievals are

particularly challenging for higher latitudes (see Sect. 3.3).

The present study compares different satellite instruments at

80◦ N, which is higher than the maximum latitude of 71◦ N

considered by Hendrick et al. (2011). Furthermore, the satel-

lite instruments compared by Hendrick et al. (2011) are all

nadir sounders, which take dedicated ozone column mea-

surements, while in the present study, satellite ozonesonde

profiles are combined to calculate a total column.

5.4 Comparisons with Bruker FTIR measurements

On average, the Bruker FTIR measures more ozone than

most other instruments (see Table 3), with the largest differ-

ences observed in the spring (see Fig. 8). A mean relative

difference of +0.1 % is calculated for OSIRIS-plus-sonde

minus Bruker FTIR total columns, reflecting particularly

good agreement in the summer and fall (see Fig. 8). The

mean relative difference for the ACE-FTS v2.2 [v3.0] mi-

nus the Bruker FTIR is −6.7 % [−4.7 %]. A similar mean

relative difference of −6.1 % is observed between ACE-

MAESTRO and the Bruker FTIR. The comparisons worsen

for 14–52 km partial columns, to −3.3 % for OSIRIS minus

Bruker FTIR, −12.2 % [−9.6 %] for ACE-FTS v2.2 [v3.0]

minus Bruker FTIR, and −11.2 % for ACE-MAESTRO mi-

nus Bruker FTIR. This may be due in part to the altitude

resolution of the Bruker FTIR, which is lower than the satel-

lite instruments (see Sect. 4). Bruker FTIR 10–50 km partial

columns of ozone have on average 4.4 degrees of freedom for

signal. Therefore, there is sufficient information to calculate

partial columns in the 14–52 km altitude range.

Batchelor et al. (2010) found mean relative differences

between ACE-FTS v2.2 and Bruker FTIR ozone partial

columns of −7.45 % in spring 2007 and −4.26 % in spring

2008, for an average partial column altitude range of 6–

43 km. This is similar to the results for total column inter-

comparisons in the present study. Batchelor et al. (2010)

found that agreement improved with the addition of dynami-

cal coincidence criteria. This is discussed further in Sect. 7.

Dupuy et al. (2009) compared ACE-FTS v2.2 with

ground-based FTS measurements at four locations north

of 60◦ N latitude from 2004–2006. They applied the same

smoothing and altitude selection scheme as Batchelor et

al. (2010). No vortex filtering was performed. This yielded

various partial column altitude ranges with minimum values

of 10 km and maximum values of 46.9 km. Mean relative dif-

ferences for satellite minus ground-based FTS of −9.1 % to

+3.2 % for the ACE-FTS and −8.7 % to −0.5 % for ACE-

MAESTRO were obtained. This is similar to the level of

agreement found in the present study.

6 NO2 intercomparisons

NO2 partial column measurements made by the ground-

based and satellite instruments were compared using the

methods described in Sect. 4. ACE, OSIRIS, and Bruker

FTIR partial columns were calculated for 17–40 km; GBS-

UV and GBS-vis partial columns were retrieved for 17 km to

the top of the atmosphere; and SAOZ total column measure-

ments were scaled to partial column amounts (see Sect. 4.3).

The resulting mean absolute and relative differences are sum-

marized in Table 4 and are discussed below. Available coin-

cident measurements from all time periods are included in

the intercomparisons.

6.1 Satellite versus satellite partial columns

Mean absolute and relative differences between 17–40 km

NO2 partial columns measured by the satellite instruments

are included in the first section of Table 4, with corre-

lation plots shown in Fig. 11. R2 correlation coefficients
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Table 4. As for Table 3, NO2 partial columns. All measurements were scaled to local solar noon using the photochemical model. Instrument

abbreviations are summarized in Table 1.

N 1abs σabs errabs 1rel σrel errrel

(1015 mol cm−2) (1015 mol cm−2) (1015 mol cm−2) (%) (%) (%)

Satellite versus satellite partial columns

OS – A2 632 −0.8 3.1 0.1 −6.4 26.8 1.1

OS – A3 595 −0.9 3.2 0.1 −7.4 30.0 1.2

OS – MA 583 −5.9 5.9 0.2 −34.2 39.2 1.6

A2 – A3 187 0.0 0.2 0.0 −0.2 0.9 0.1

A2 – MA 163 −4.2 4.3 0.3 −24.5 26.4 2.1

A3 – MA 157 −4.4 3.2 0.3 −26.9 19.6 1.6

Satellite versus ground-based partial columns

OS – GV 3186 −3.0 5.7 0.1 −7.8 25.3 0.4

OS – GU 2885 −2.0 5.0 0.1 −3.3 18.5 0.3

OS – SA* 1510 2.0 4.0 0.1 10.2 33.9 0.9

OS – FT 4958 2.2 3.6 0.1 12.2 17.4 0.2

A2 – GV 143 1.7 1.7 0.1 15.0 15.6 1.3

A2 – GU 29 1.4 1.4 0.3 10.3 11.6 2.2

A2 – SA* 107 2.2 2.6 0.2 18.4 21.7 2.1

A3 – GV 151 1.6 1.7 0.1 15.2 16.3 1.3

A3 – GU 38 1.7 1.5 0.3 13.6 13.4 2.2

A3 – SA* 147 1.7 2.8 0.2 12.7 25.5 2.1

MA – GV 118 5.6 4.6 0.4 39.1 31.0 2.8

MA – GU 31 9.1 4.4 0.8 52.1 23.6 4.2

MA – SA* 74 7.2 4.4 0.5 48.5 22.8 2.7

Ground-based versus ground-based partial columns

GV – GU 388 1.5 2.5 0.1 6.1 7.9 0.4

GV – SA* 295 1.1 2.8 0.2 3.8 18.8 1.1

GV – FT 1503 5.5 3.5 0.1 16.3 10.5 0.3

GU – SA* 208 −0.7 2.6 0.2 −6.4 16.2 1.1

GU – FT 1498 5.4 4.2 0.1 19.2 13.5 0.3

SA* – FT 518 1.7 4.2 0.2 12.0 23.0 1.0

* Indicates scaling of primary total column measurements to partial columns.

between all satellite measurements are greater than 0.61, ex-

cept for ACE-MAESTRO versus OSIRIS, which has an R2

value of 0.352.

ACE-FTS v2.2 and v3.0 partial columns are nearly iden-

tical, with a mean relative difference of −0.2 ± 0.1 % and

a correlation coefficient of 0.999. Note that the ACE-FTS

v2.2 and v3.0 datasets have slightly different results when

compared with the other instruments in this study because

data were compared for different time periods, based on data

availability. Therefore, fall 2010 and spring 2011 are in-

cluded for v3.0, but not for v2.2.

The ACE-FTS v2.2 [v3.0] data are systematically higher

than the OSIRIS dataset with mean relative differences of

6.4 % [7.4 %]. These values are outside the combined random

errors of the instruments (see Table 2) suggesting that the dis-

crepancies originate from systematic errors in the measure-

ments, the photochemical model scale factors, or the diurnal

effect. See Sect. 4.3 for a discussion of errors associated with

scale factors and the diurnal effect. This is opposite to the re-

sults for globally coincident measurements in Kerzenmacher

et al. (2008), who found that on average OSIRIS measure-

ments were 17 % larger than ACE v2.2 measurements at the

NO2 maximum, with better agreement below the NO2 maxi-

mum. This may be because Kerzenmacher et al. (2008) com-

pared coincident measurements at all latitudes. Furthermore,

they corrected for the diurnal effect in the ACE and OSIRIS

measurements prior to comparison, eliminating a high-bias

in the ACE measurements below 25 km (see Sect. 4.3).

The OSIRIS, ACE-FTS v2.2, and ACE-FTS v3.0 datasets

are 24.5–34.2 % lower than the ACE-MAESTRO measure-

ments. Since the ACE-FTS and ACE-MAESTRO instru-

ments take measurements at the same time and location,

this bias cannot be attributed to coincidence criteria, photo-

chemical model scaling, or the diurnal effect. The mean rel-

ative difference for ACE-FTS v2.2 minus ACE-MAESTRO

of −24.5 % is comparable to the range of −5.7 % to −35 %

Atmos. Meas. Tech., 5, 927–953, 2012 www.atmos-meas-tech.net/5/927/2012/
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Fig. 11. As for Fig. 6, satellite 17–40 km NO2 partial columns.

found by Fraser et al. (2008) for 22–40 km partial columns

from 2004–2006 within 500 km of PEARL. This offset may

be due in part to an error of up to a few kilometers in

the ACE-MAESTRO tangent heights, which can lead to a

high bias in ACE-MAESTRO NO2 data at high latitudes

(Kerzenmacher et al., 2008).

6.2 Satellite versus ground-based partial columns

The comparisons between the ground-based and satellite

measurements are summarized in the second section of Ta-

ble 4. The GBS measures partial columns from 17 km to

the top of the atmosphere. SAOZ measures total columns,

which were scaled down to 17 km to the top of the atmo-

sphere, as described in Sect. 4.3. 17–40 km partial columns

were calculated from satellite and Bruker FTIR profiles. The

amount of NO2 above 40 km is negligible compared with the

error in the NO2 partial columns. Therefore no correction

was applied above 40 km. No coincidences were available

between the Bruker FTIR and ACE instruments because only

Bruker FTIR data for SZAs smaller than 80◦ were included

in this study.

On average, OSIRIS NO2 measurements fall in the mid-

dle of the ground-based measurements, with mean rela-

tive differences of −7.8 % to +12.2 %. ACE-FTS measures

larger values of NO2 than the DOAS instruments, with

mean relative differences of +10.3 % to +18.4 %, while

ACE-MAESTRO has mean relative differences of +39.1 to

+52.1 %, compared with the DOAS instruments.

The timeseries of the absolute differences between the var-

ious satellite and ground-based measurements is shown in

Fig. 12. Good agreement is observed between the DOAS and

OSIRIS measurements in the spring and fall (panel a). In

the summer, the GBS-vis and GBS-UV measure significantly

larger NO2 columns than OSIRIS. A similar seasonal vari-

ation is observed between OSIRIS and Bruker FTIR mea-

surements (panel b). There is also a slight seasonality ob-

served in differences between the Bruker FTIR and DOAS

measurements (not shown here). This suggests that there are

seasonal systematic errors in one or more of the datasets or in

the diurnal correction scale factors. The differences between

the ACE-FTS and the GBS partial columns (panels c, d) are

more scattered in the spring than the fall, likely due to in-

creased spatial variability of NO2 when the polar vortex is

changing structure and position rapidly in spring. The ACE-

MAESTRO measurements are systematically higher than the

DOAS measurements except in fall 2009 (panel e). Differ-

ences between the satellite and ground-based measurements

do not change year-to-year, indicating that the satellite mea-

surements have not changed systematically over time.

Correlations between the satellite and ground-based mea-

surements are shown in Fig. 13. The Bruker FTIR and GBS

measure more NO2 than OSIRIS for larger NO2 columns.

This corresponds with seasonal variation in the discrepan-

cies discussed above. ACE-MAESTRO measurements are

not as well correlated with the ground-based measurements

as OSIRIS and ACE-FTS.

6.3 Comparisons with DOAS measurements

The mean relative difference for GBS-vis minus GBS-UV

NO2 is +6.1 ± 0.4 %. This demonstrates good agreement,

despite the shorter paths through the stratosphere taken by

zenith-scattered light at UV wavelengths. Furthermore it
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Fig. 12. Absolute difference between satellite and GBS-vis (cyan),

GBS-UV (blue), SAOZ (red), and Bruker FTIR (grey) partial

columns of NO2. Dashed lines indicate mean absolute difference.

The black line indicates the zero line.

indicates that the new AMFs used for the GBS retrievals (see

Appendix A) produce similar NO2 columns for both UV and

visible wavelengths.

The GBS-UV, GBS-vis, and SAOZ partial columns for

17 km to the top of the atmosphere all agree to within 6.4 %.

Fraser et al. (2008, 2009) found a comparable agreement of

2.2–12.3 % for 2005–2007, when SAOZ and GBS NO2 to-

tal columns were retrieved using the same analysis settings.

In Fig. 14, the absolute difference (panel a) and correlation

plot (panel b) between SAOZ and GBS-vis (grey) and GBS-

UV (red) NO2 are shown. The offset between the GBS mi-

nus SAOZ measurements appears to vary year-to-year, with

positive offsets in 2005, 2006, 2010 and 2011 and negative

offsets in 2007, 2008 and 2009. Similar year-to-year varia-

tion is observed in the differences between the satellite and

SAOZ measurements (see Fig. 12). This may be because the

SAOZ instrument measures total columns of NO2, which

have been scaled down to 17-km to the top of the atmosphere

by a fixed value. Therefore, year-to-year differences in lower

stratospheric NO2 may be a factor. Furthermore, this may re-

flect year-to-year differences in the SAOZ reference column

density, which is averaged on a campaign basis. These rea-

sons may also explain why the GBSs are more strongly corre-

lated with the satellites than SAOZ for NO2 (see Fig. 13). The

DOAS NO2 measurements are systematically lower than the

satellite NO2 measurements in the spring. This may be due

to the diurnal effect, which causes the GBS partial columns

to be lower and the ACE partial columns to be higher (see

Sect. 4.3).

6.4 Comparisons with Bruker FTIR measurements

The Bruker FTIR measures less NO2 than the other in-

struments by 12.2–19.2 %. This is similar to the results

of Lindenmaier et al. (2011) who found that Bruker FTIR

NO2 15–40 km partial columns were systematically lower

than GEM-BACH (Global Environmental Multiscale strato-

spheric model with the online Belgium Atmospheric CHem-

istry package), CMAM-DAS (Canadian Middle Atmosphere

Model Data Assimilation System), and SLIMCAT (Single-

Layer Isentropic Model of Chemistry and Transport) models

for the entire measurement season. Aside from these model

comparisons, the PEARL Bruker FTIR NO2 has not previ-

ously been validated.

Kerzenmacher et al. (2008) compared ACE-FTS v2.2 and

ACE-MAESTRO v1.2 partial columns with ground-based

FTS measurements from other stations. For that study, the

ACE data were smoothed to the resolution of the FTSs

and partial columns were calculated in ranges determined

by the instrument sensitivities. Mean relative differences

for satellite minus ground-based FTS 14.8–32.9 km par-

tial columns measured at Ny Alesund, Svalbard (78.9◦ N,

11.9◦ E) were +20.9 % for the ACE-FTS and +25.6 % for

ACE-MAESTRO. This is consistent with the results of the

present study.

7 Spring-time coincidence criteria

In this study, it was found that agreement between the var-

ious instruments was worse for both ozone and NO2 in the

spring. This may be attributed to the different lines-of-sight

described in Sect. 4.1, which can result in instruments sam-

pling very different air masses. This is especially relevant

during spring when air masses inside and outside the vortex

can be close spatially but isolated from one another. Ozone

and NO2 columns tend to be lower when the lower strato-

sphere (∼18–20 km) is inside the polar vortex. Furthermore,

the latitudinal distribution of NO2 has a strong gradient in

the spring (see Sect. 4.3). Therefore, additional coincidence

criteria were tested for the 2004–2009 GBS, SAOZ, Bruker

FTIR, OSIRIS and ACE-FTS v2.2 datasets. Spring-time data

for days 50–78 (19 February to 18/19 March) were selected

as this is the approximate period of spring-time ACE mea-

surements within 500 km of PEARL.

In order to identify similar air masses, derived meteorolog-

ical products (DMPs) (Manney et al., 2007) from the GEOS

v5.0.1 (Reinecker et al., 2008) analysis were calculated along

the line-of-sight of the ACE-FTS, the Bruker FTIR, and the

DOAS (GBS and SAOZ) instruments, and at the longitude
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Fig. 13. As for Fig. 6, satellite versus ground-based NO2 partial columns. Note that comparisons are not shown for ACE versus the Bruker

FTIR because most ACE measurements above PEARL were for early spring and late fall when SZA > 80◦ and Bruker measurements were

excluded for these SZA.
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Fig. 14. (a) Absolute difference (circles) and mean absolute dif-

ference (dashed line) between GBS-vis (grey) and GBS-UV (red)

minus SAOZ NO2 partial column measurements. The solid black

line indicates zero. (b) Correlation for GBS-vis (grey) and GBS-UV

(red) versus SAOZ NO2 partial column measurements. The solid

black line indicates the 1-1 line and the dashed line indicates linear

fit (m = fitted slope, y = fitted y-intercept).

and latitude of the OSIRIS 25-km tangent height. To de-

termine whether measurements were sampling similar air

masses, scaled potential vorticity (sPV), a dynamical param-

eter used to estimate the location of the vortex edge, and tem-

perature profiles were considered. Lindenmaier et al. (2012)

present the evolution of sPV in the lower stratosphere above

Eureka for springs 1997–2011.

The selection criteria of Batchelor et al. (2010) could

not be applied directly to the DOAS (GBS and SAOZ) and

OSIRIS datasets because only pressure levels were available

for these DMPs. Furthermore the imposition of dynamical

coincidence criteria at altitudes up to 46 km reduced the com-

parison statistics. Therefore, a new set of dynamical coinci-

dence criteria were developed. The best results were obtained

when dynamical coincidence criteria were imposed only in

the lower stratosphere, where the bulk of the ozone col-

umn resides, at 131 hPa (∼14 km), 72.5 hPa (∼18 km), and

53.9 hPa (∼20 km). The difference in temperature between

www.atmos-meas-tech.net/5/927/2012/ Atmos. Meas. Tech., 5, 927–953, 2012
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measurements at each of these layers was restricted to

<10 K. Furthermore, coincident measurements were selected

only if they were both inside (sPV > 1.6 × 10−4 s−1) or

both outside (sPV < 1.2 × 10−4 s−1) the polar vortex at the

selected pressure levels. All measurements on the vortex

edge (sPV between 1.2 × 10−4 s−1 and 1.6 × 10−4 s−1) at

131 hPa, 72.5 hPa, and 53.9 hPa were rejected. With these

additional selection criteria, four out of nine instrument in-

tercomparisons improved within standard error. For the re-

maining five intercomparisons, changes were not significant.

The largest improvement was observed for ACE-FTS mi-

nus Bruker FTIR, which had a mean relative difference of

−5.0 ± 0.4 % without the dynamical selection criteria and

−3.1 ± 0.8 % with the dynamical selection criteria.

These modest improvements may be limited by the nar-

row 500-km coincidence criterion already in place and the

approximate line-of-sight calculations used in this study. The

DOAS and OSIRIS instruments measure scattered sunlight,

for which photons travel various paths through the atmo-

sphere to the instrument. Therefore, precise line-of-sight cal-

culations cannot be performed. The DOAS DMPs were cal-

culated along the approximate line-of-sight (see Appendix B)

and the OSIRIS DMPs were calculated at the fixed latitude

and longitude of the 25-km tangent height. This weakens the

dynamical selection criteria.

For NO2, dynamical coincidence criteria did not improve

comparison results. The uncertainties in the measurements,

the diurnal scale factors, and the diurnal effect likely over-

whelm the impact of the polar vortex on these intercompar-

isons (see Sect. 4.3). This is consistent with the results of

Kerzenmacher et al. (2008), who found that scatter in the dif-

ferences between ACE and high-latitude ground-based FTIR

measurements could not be attributed to the polar vortex.

Due to the latitudinal gradient of NO2 in the early spring

(see Sect. 4.3), a narrower ±1◦ latitude coincidence crite-

rion was applied to the 30-km tangent height of the ACE

measurements, the 35-km tangent height of OSIRIS mea-

surements, and the location of the 30-km layer along the cal-

culated line-of-sight of the DOAS measurements. Dynamical

coincidence criteria were not included. The Bruker FTIR was

not included in this comparison because NO2 measurements

for this time period were removed by the SZA < 80◦ filter.

The resulting mean relative differences with (grey circles)

and without (red stars) the additional latitude coincidence cri-

terion are shown in Fig. 15 for comparisons with twenty or

more measurement points. The impact of the additional cri-

terion suggests that the latitudinal gradient of NO2 plays a

role in the intercomparisons. During the time period consid-

ered, the average latitude was 77.9◦ N for GBS-vis, 80.2◦ N

for GBS-UV, 78.1◦ N for SAOZ, 80.2◦ N for OSIRIS, and

79.6◦ N for ACE-FTS. Therefore, with the new criterion, the

GBS-vis, SAOZ, and ACE-FTS measurements (taken on av-

erage at lower latitudes) decrease relative to the OSIRIS mea-

surements (taken on average at higher latitudes). Mean rel-

ative differences between OSIRIS and SAOZ improve from
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Fig. 15. Mean relative difference for spring-time OSIRIS minus

ACE-FTS v2.2, GBS-vis, GBS-UV, and SAOZ NO2 without (grey

stars) and with (red circles) additional ±1◦ latitude selection crite-

ria. Errorbars indicate standard error.

−5.1 ± 1.6 % to +2.3 ± 1.7 % with the latitude filter. Further-

more, mean relative differences between OSIRIS and ACE-

FTS improve from −6.7 ± 2.4 % to −1.1 ± 2.1 %. Agree-

ment between OSIRIS and GBS-vis also improves, but is not

significant within standard error. The mean relative differ-

ence between the GBS-UV and OSIRIS NO2 (which mea-

sure at the approximately the same average latitude) changes

only by a small amount. While some of these improve-

ments may be due in part to the isolation of similar dy-

namical air masses, this suggests that the latitudinal distri-

bution of NO2 plays a significant role in validation exercises

at high latitudes.

8 Conclusions

Ground-based and satellite ozone and NO2 columns were

compared for satellite measurements within 500 km of the

PEARL Ridge Lab. Satellite ozone and NO2 partial columns

were calculated from 14–52 km and 17–40 km, respectively.

For comparison with ground-based measurements, satellite-

plus-sonde 0–52 km columns were calculated by adding

ozonesonde data to the satellite partial columns from 0–

14 km. For NO2 intercomparisons, the satellite data were

compared directly to the ground-based data, as all ground-

based instruments except SAOZ measured partial columns

above 17 km. For SAOZ, the total column measurements

were scaled down to 17 km to the top of the atmosphere. All

satellite and ground-based NO2 measurements were scaled

to solar noon with the same photochemical model prior to

comparison to account for the diurnal variation of NO2.

DOAS ozone total columns were retrieved for the GBS

and SAOZ by independent analysis groups using the new

NDACC guidelines (Hendrick et al., 2011). The mean
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relative difference between the GBS and SAOZ ozone total

columns was −3.2 %. The DOAS instruments agreed with

the Brewer to 0.4–1.4 %, indicating that the NDACC set-

tings perform well, even in the summer months at PEARL,

when the maximum SZA of 76◦ makes DOAS measurements

challenging. Therefore, the NDACC settings and AMFs for

DOAS ozone are successful in producing a homogeneous

and accurate dataset at 80◦ N.

For DOAS NO2, NDACC-recommended settings do not

yet exist. GBS NO2 partial columns for 17 km to the top of

the atmosphere were calculated in the 425–450 nm window

(GBS-vis) and the 350–380 nm window (GBS-UV), using

the new AMF LUTs described in Appendix A. The mean rel-

ative difference for GBS-vis minus GBS-UV measurements

was +6.1 %, indicating that, despite the challenges of retriev-

ing stratospheric columns at UV wavelengths, the GBS-UV

measurements perform well. The GBS NO2 agreed to within

6.5 % of the SAOZ measurements, which had been calcu-

lated using SAOZ Arctic AMFs which were scaled down to

partial columns by a fixed scale-factor.

Partial columns measured by the various satellite instru-

ments showed good agreement for measurements within

500 km of PEARL. For ozone, all satellite instruments agreed

with each other within 3 %. For NO2, all satellite instru-

ments except for ACE-MAESTRO agreed within 7.4 %.

ACE-MAESTRO NO2 measurements were systematically

higher than the others by 24.5–34.2 %, perhaps due to a

problem with tangent height gridding (Kerzenmacher et al.,

2008; Manney et al., 2007). ACE-FTS NO2 is systematically

larger than OSIRIS by 6.4–7.4 %, perhaps due to the diur-

nal effect on the ACE-FTS measurements (Kerzenmacher et

al., 2008). ACE-FTS v2.2 and v3.0 ozone and NO2 partial

columns were found to be strongly correlated, with mean

relative differences of 0.0 ± 0.1 % and −0.2 ± 0.1 %. This in-

dicates that ACE-FTS v2.2 and v3.0 partial columns of ozone

and NO2 within 500 km of PEARL are nearly identical.

Satellite measurements were validated against four

ground-based ozone and four ground-based NO2 datasets

from PEARL. Satellite-plus-sonde measurements agree with

ground-based total ozone columns with a maximum mean

relative difference of 7.8 %. The Bruker FTIR and satel-

lite instruments measure larger ozone total columns than the

DOAS and Brewer instruments, with the largest discrepan-

cies in the spring.

For NO2, OSIRIS, ACE-FTS v2.2 and ACE-FTS v3.0 data

agreed with all ground-based measurements to within 20 %.

ACE-MAESTRO measured systematically larger NO2 than

the ground-based instruments, with mean relative differences

of 39.1–52.1 %. The Bruker FTIR measured systematically

lower NO2 than the other instruments, which is similar to the

comparison results of Kerzenmacher et al. (2008) for other

Arctic ground-based FTIR instruments. In the spring, the

GBS and SAOZ also measured lower NO2 partial columns

than the satellite instruments, perhaps in part due to the di-

urnal effect (see Sect. 4.3). Large seasonal variation in the

differences between satellite and ground-based NO2 mea-

surements was observed, with more scatter in the differ-

ences in the spring than in the fall. The differences between

OSIRIS and the ground-based measurements varied system-

atically throughout the year, reaching minima in the sum-

mertime. This could point to seasonal systematic errors in

the measurements or in the diurnal scaling applied prior to

intercomparison.

Since intercomparison results for both ozone and NO2

columns were worse in the spring, several filtering tests were

applied to the datasets. The addition of dynamical coinci-

dence criteria in the lower stratosphere improved the agree-

ment between some of the datasets by 1–3 %. This improve-

ment is likely limited because the 500-km distance coinci-

dence criterion was already narrow and the line-of-sight cal-

culations for the DOAS and OSIRIS instruments are approx-

imate. Furthermore, an additional latitude-filtering criterion

was tested on the NO2 measurements in order to account for

the strong latitudinal gradient in NO2 at high latitudes in the

spring and fall. The addition of latitudinal filtering improved

agreement between some spring measurements.

For both ozone and NO2, the OSIRIS, ACE-FTS and

ACE-MAESTRO satellite measurements do not change sys-

tematically relative to ground-based measurements taken

from 2003 to 2011. This indicates that these satellite instru-

ments continue to perform well and demonstrates the useful-

ness of acquiring long-term datasets at PEARL.

Appendix A

BIRA-IASB NO2 AMFs

LUTs of NO2 AMFs used for the GBS-vis and GBS-UV

retrievals were generated by BIRA-IASB using the clima-

tology of stratospheric NO2 profiles at sunrise and sunset

developed by Lambert et al. (1999, 2000) for volcano-free

conditions. The climatology is based on a Fourier harmonic

decomposition of UARS/HALOE v19 (Upper Atmosphere

Research Satellite/HALogen Occultation Experiment) and

SPOT-4/POAM-III (Satellite Pour l’Observation de la Terre

4/POAM-III) v2 NO2 profile satellite data records as well

as complementary information from NDACC ground-based

measurements. Fourier coefficients were retrieved using a

least-squares analysis for sixteen latitude bands between

85◦ S and 85◦ N and 44 equidistant altitude levels from 17

to 60 km. This climatology is for the retrieval of global total

NO2 fields from the recent European UV-visible nadir satel-

lite sounders GOME and GOME-2 (e.g. Valks et al., 2011).

Sunrise and sunset NO2 AMF LUTs are calculated for

eighteen 10◦ latitude bands between 85◦ S and 85◦ N us-

ing the UVSPEC/DISORT radiative transfer model, which

is based on the Discrete Ordinate Method and includes a

treatment of the multiple scattering in a pseudo-spherical

geometry. This model has been validated through several
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Table A1. Parameters used to initialize the UVSPEC/DISORT ra-

diative transfer model for the calculation of the NO2 AMF LUTs.

Parameter Value

NO2 profile Lambert et al. (1999, 2000) climatology:

Latitude: 85◦ S to 85◦ N step 10◦

Day number: 1 to 365

Sunrise or sunset conditions

O3, temperature and

pressure profiles

TOMS v8 climatology

Altitude grid 0 to 90 km step 1 km

Wavelength 350 to 550 nm step 40 nm

Surface albedo 0 and 1

Altitude output 0 and 4 km

SZA 10, 30, 50, 70, 80, 82.5, 85, 86, 87, 88, 89,

90, 91, and 92◦

intercomparison exercises (Hendrick et al., 2006; Wag-

ner et al., 2007). Parameter values used to initialize

UVSPEC/DISORT for the calculation of the AMF LUTs are

summarized in Table A1. Ozone, temperature, and pressure

profiles are taken from the TOMS v8 climatology, which is

similar to the climatology of McPeters et al. (2007). Since

this climatology is limited to the 0–60 km altitude range,

the ozone, temperature, and pressure profiles are comple-

mented above 60 km by the Air Force Geophysical Labo-

ratory (AFGL) Standard Atmosphere to match the 0–90 km

altitude grid chosen in UVSPEC/DISORT. The NO2 profiles

are also complemented above 60 km by the AFGL Standard

Atmosphere and set to zero below 17 km altitude. There-

fore the calculated AMFs are purely stratospheric. The sur-

face albedo and altitude output values (varying from 0 to

1 and 0 to 4 km, respectively) allow coverage of all sta-

tions with UV-visible instruments. For the aerosol settings,

an extinction profile corresponding to a background aerosol

loading has been selected from the aerosol model of Shet-

tle (1989) included in UVSPEC/DISORT. Therefore, as men-

tioned above, the NO2 AMF LUTs are not applicable to

times when there are large volcanic eruptions such as Mount

Pinatubo in 1991.

The calculated LUTs depend on the following set of pa-

rameters: latitude, day of year, sunrise or sunset conditions,

wavelength, SZA, surface albedo, and altitude. As for the

ozone AMF LUTs described in Hendrick et al. (2011), an in-

terpolation routine has been developed for extracting appro-

priately parameterized NO2 AMFs for various stations with

UV-visible instruments. A global monthly mean climatology

of the surface albedo derived from satellite data at 380 and

494 nm (Koelemeijer et al., 2003) were coupled to the inter-

polation routine, so the latter can be initialized with realistic

albedo values in a transparent way.

Table B1. Mean scattering height (z) for zenith-sky measurements

at various SZA and wavelengths.

SZA z (km) z (km) z (km)

(◦) at 365 nm at 425 nm at 500 nm

86 16.1 12.4 9.8

88 19.1 15.1 11.7

90 23.5 19.5 15.6

Appendix B

Line-of-sight of zenith-scattered measurements

Zenith-sky instruments sample the atmosphere along a line-

of-sight which varies in latitude and longitude with altitude,

SZA, solar azimuth angle, and wavelength. This appendix

outlines a method for calculating the approximate line-of-

sight of zenith-scattered measurements, which is used in the

calculation of DMPs and the application of additional coin-

cidence criteria.

For measurements above SZA 85◦, most light is scattered

at an altitude called the scattering height, as shown in Fig. 1

of Solomon et al. (1987). The radiance of sunlight in the

zenith as a function of scattering height was calculated with

a radiative transfer model (McLinden et al., 2002), using the

methods described by Solomon et al. (1987). The zenith-

scattered radiance at the surface versus the scattering altitude

is shown in panel a of Fig. B1 for various SZA and wave-

lengths. The wavelengths correspond to the GBS DSCD re-

trieval windows described in Sect. 3.1 (500 nm for ozone,

425 nm for NO2-vis, and 365 nm for NO2-UV). Approxi-

mate scattering heights for the various SZA and wavelengths

were calculated by taking the weighted means of the scat-

tered radiances and are shown in Table B1. The scattering

height is lower for longer wavelengths and for smaller SZA,

as expected.

Using the scattering height and SZA, the distance between

the PEARL Ridge Lab and the ground location directly be-

low the sampled air mass can be calculated, using the geom-

etry in Solomon et al. (1987). The latitude and longitude of

the sampled air mass can then be calculated from the distance

and the solar azimuth angle. The distances from the PEARL

Ridge Lab are shown in panel b of Fig. B1 and vary consid-

erably depending on the SZA, altitude, and wavelength. At

an altitude of 18 km, in the lower stratosphere where spring-

time ozone depletion can occur, measurements can range

from directly above the PEARL Ridge Lab for NO2-UV to

175 km away. At 30 km, DOAS instruments sample an air

mass up to 400 km away from the PEARL Ridge Lab.
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Fig. B1. (a) Zenith-scattered radiance at the surface and (b) hori-

zontal distance of sampled air mass from the PEARL Ridge Lab

as a function of the altitude of the sampled airmass for various

SZA and wavelengths. Note that the horizontal distance of the sam-

pled airmass was calculated with fixed scattering heights, given in

Table B1.
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ley, C. S., Hannigan, J. W., Höpfner, M., Jin, J. J., Jones, A.,

Jones, N. B., Jucks, K., Kagawa, A., Kasai, Y., Kerzenmacher,
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