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Abstract—Validation is an important and particularly challeng-
ing task for remote sensing of soil moisture. A key issue in the
validation of soil moisture products is the disparity in spatial scales
between satellite and in situ observations. Conventional measure-
ments of soil moisture are made at a point, whereas satellite
sensors provide an integrated area/volume value for a much larger
spatial extent. In this paper, four soil moisture networks were
developed and used as part of the Advanced Microwave Scanning
Radiometer–Earth Observing System (AMSR-E) validation pro-
gram. Each network is located in a different climatic region of
the U.S., and provides estimates of the average soil moisture over
highly instrumented experimental watersheds and surrounding
areas that approximate the size of the AMSR-E footprint. Soil
moisture measurements have been made at these validation sites
on a continuous basis since 2002, which provided a seven-year
period of record for this analysis. The National Aeronautics and
Space Administration (NASA) and Japan Aerospace Exploration
Agency (JAXA) standard soil moisture products were compared to
the network observations, along with two alternative soil moisture
products developed using the single-channel algorithm (SCA) and
the land parameter retrieval model (LPRM). The metric used for
validation is the root-mean-square error (rmse) of the soil mois-
ture estimate as compared to the in situ data. The mission require-
ment for accuracy defined by the space agencies is 0.06 m3/m3.
The statistical results indicate that each algorithm performs dif-
ferently at each site. Neither the NASA nor the JAXA standard
products provide reliable estimates for all the conditions repre-
sented by the four watershed sites. The JAXA algorithm performs
better than the NASA algorithm under light-vegetation conditions,
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but the NASA algorithm is more reliable for moderate vegetation.
However, both algorithms have a moderate to large bias in all
cases. The SCA had the lowest overall rmse with a small bias.
The LPRM had a very large overestimation bias and retrieval
errors. When site-specific corrections were applied, all algorithms
had approximately the same error level and correlation. These
results clearly show that there is much room for improvement in
the algorithms currently in use by JAXA and NASA. They also
illustrate the potential pitfalls in using the products without a
careful evaluation.

Index Terms—Advanced Microwave Scanning Radiometer–
Earth Observing System (AMSR-E), passive microwave, soil mois-
ture, validation.

I. INTRODUCTION

THE ADVANCED Microwave Scanning Radiometer–Earth

Observing System (AMSR-E) projects of the National

Aeronautics and Space Administration (NASA) and the Japan

Aerospace Exploration Agency (JAXA) were the first satellite

programs to incorporate soil moisture as a standard product

[1], [2]. In addition to supporting several alternative retrieval

algorithms, these projects also initiated validation programs

specifically for soil moisture. For soil moisture, these agencies

specified an accuracy goal of less than 0.06 m3/m3. Validation

is a particularly challenging task for microwave remote sensing

of soil moisture. The key issue in the validation of soil moisture

products is the disparity in spatial scales between satellite and

in situ observations. Conventional measurements of soil mois-

ture are made at a localized point, whereas satellite sensors

provide an integrated area/volume value for a much larger

spatial extent. Spatial variations in soil moisture that must be

considered within these footprints occur at a variety of scales

including the point scale (soil properties), over geographic units

(land cover, soils, and topography), and as the result of rainfall

events and climate. Land remote sensing has focused on the me-

ter to kilometer scale. For microwave remote sensing, we must

consider scales of 1–40 km, which present new challenges.

There were several earlier efforts to generate soil moisture

products from other passive microwave satellites; however, all

have addressed validation after the fact and have used data

sources that were not designed for validating soil moisture es-

timates from satellite observations. These data sets were sparse

(i.e., one point in a footprint), consisted of too short a record,

were based on unverified instrumentation, and utilized incom-

patible measurement depths [3]–[5]. A dedicated soil moisture

validation program was one of the key “lessons learned” that

we attempted to correct during the AMSR-E project.
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There are several algorithms under consideration by NASA

and JAXA that had been demonstrated to varying degrees

[3], [6]–[10]. Each retrieval algorithm utilizes formulations,

parameters, and ancillary data that could not be thoroughly

developed and verified until the satellite began providing cal-

ibrated data. It is extremely difficult to translate first-principle

physics/electromagnetics to the scale of satellite footprints

due to the complexity in scaling points to large footprints.

Recognizing that validation is a necessity, we are faced with

how to approach this challenging problem. The spatial and

temporal variability of soil moisture, the large footprint size,

and other factors (particularly vegetation) pose significant

problems.

It is also important to clarify what the current investigation

is addressing—validation of the soil moisture product as

defined by the provider. The Committee on Earth Observation

Satellites (CEOS) defines validation as the process of

assessing by independent means the quality of the data

products derived from the system outputs (http://calvalportal.

ceos.org/CalValPortal/docs/information/TermsAndDefinitions.

pdf). The quality as applied to a satellite product such as

soil moisture will be a mission criterion, which, for AMSR-

E, was a root-mean-square error (rmse) of 0.06-m3/m3

surface soil moisture for areas with vegetation water

content < 1.5 kg/m2 ([1] and http://nsidc.org/data/amsr_

validation/pdfs/Version_3_SDV_Plan.pdf). The rmse is also

the metric used by the Soil Moisture Ocean Salinity [11] and

the Soil Moisture Active Passive [12] satellite missions. As

described in a later section, other metrics are also provided.

Our goal in this paper was to provide a close approximation

of the soil moisture within the area at the depth measured by

low-frequency passive microwave sensors that would result in a

robust data set for validating retrieval algorithms. The approach

used was to provide standardized, replicated, and verified

in situ measurements of surface soil moisture over spatial

domains that approximated the AMSR-E footprint size. This

paper will describe the methodology used to develop and im-

plement this soil moisture validation approach.

The soil moisture networks described here have been in op-

eration since the AMSR-E data start date in June 2002 and now

provide a substantial seven-year period of record for validation.

Preliminary validation activities have been performed [13];

however, there have been many caveats associated with these

due to both minor and major changes in brightness temperature

and soil moisture products by NASA and JAXA. Over this

period, some of these changes were only implemented from the

current point on, and the reprocessing of the entire period of

record was postponed. Therefore, some of the earlier validation

efforts may not be reliable. At this time, all data sets have been

reprocessed. Although there may be changes in the future, both

agencies are now supplying these standard products, and it is

important that potential users understand the status of these data

with respect to validation with ground truth.

II. KEY ISSUES IN SOIL MOISTURE VALIDATION

Some of the factors that contribute to the difficulty of validat-

ing satellite passive microwave soil moisture products and some

reasons why we have to consider ground-based validation as a

close approximation and not an absolute include the following.

1) For passive microwave radiometers, the satellite footprint

size is ambiguous. It is generally accepted that this is the

half-power beamwidth; however, radiation from outside

this region can contribute to the signal.

2) Most sensors observe an area that is not a circle, but

rather an ellipse, and the satellite track that might cover

a specific ground location changes from day to day (not

exact repeats). As a result, the center and orientation of

the footprint observed changes with every satellite pass:

A soil moisture network or a point might be centered in

the footprint one day and off center on another day.

3) The depth of soil that contributes to the measured radi-

ation varies with frequency and soil moisture condition

(level and profile distribution). Fortunately, soil moistures

in adjacent depth levels are highly correlated [14].

4) Passive microwave satellite footprints will contain mix-

tures of different surface types and soils. Retrievals rep-

resent spatial averages over ∼40-km footprints. Nonlin-

earities in the radiative transfer processes and scattering

may give rise to differences between retrieved and true

area-averaged quantities [15].

5) The natural soil moisture variability (spatial and tempo-

ral), together with the spatial extent of footprints, imposes

logistic constraints on replication.

Additional considerations in designing a validation method

were developed from review of the approaches that have been

tried in the past. Some of these include the following.

1) Traditional sampling programs, such as those described

in [16], did not characterize the near surface. These

typically had a first depth interval of 10–20 cm, which

is well beyond the sampling depth of the satellite sensors,

even when considering layer correlation. Using such data

for validation requires a strong correlation between the

sensor sampling depth and the soil depth measured.

2) Measurements were made using a variety of methods

(gravimetric, neutron probe, etc.). These different tech-

niques have differing sampling volumes and accuracies.

3) Typical densities of most networks were (at best) one

sample in a footprint, which is not a valid basis of

comparison. The densities of some widely used networks

that include soil moisture observations are one station

per 1600 km2 (Oklahoma Mesonet), 7500 km2 (Illinois

State Water Survey), and 85 000 km2 for the Soil Climate

Analysis Network (SCAN). It is unlikely that a single

point in a 40-km (or even a 5-km)-diameter footprint will

be representative of the average conditions. Local (e.g.,

topography, vegetation, and soils) and regional variability

(e.g., precipitation) must be considered. Sometimes, the

areal average and the point measurement will have similar

trends, which will be discussed in a following section.

However, establishing such relationships requires that

one obtains actual observational data sets.

4) The temporal frequency of most of the older long-term

records is poor, often once every 10–14 days. This results

in a sparse validation data set.
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TABLE I
USDA ARS WATERSHED CHARACTERISTICS

5) Data latency was poor. Few networks provided near-real-

time observations.

However, the biggest mistake of the past was the lack of any

type of dedicated validation effort during the satellite mission.

The AMSR-E programs have recognized this and have incor-

porated soil moisture validation into their projects. Since the

launch of AMSR-E, there have been a few attempts at validation

of selected products [17]–[24]. For the most part, these have

utilized short-term data sets, limited ground-based sampling,

selected algorithms, or preliminary versions of the sensor data

and/or algorithms. Here, we have attempted to address each of

these issues in our approach and implementation.

III. DEVELOPMENT OF WATERSHED

VALIDATION NETWORKS

Based upon the previous discussion, we identified the fol-

lowing criteria in designing a validation program for satellite

products.

1) Replication/density—multiple measurements within a

footprint.

2) Extent—25–50 km, the size of a typical passive mi-

crowave footprint.

3) Networks representing a wide range of vegetation/climate

conditions.

4) Standard and reliable instrumentation.

5) A 5-cm-depth measurement at all sites, and include at

least one full profile in each network site.

6) Temporal frequency of at least hourly.

7) Minimize latency.

8) All data in the public domain.

Cost and infrastructure are additional considerations, partic-

ularly if we wish to minimize data latency. Our solution to

this was to use existing dense meteorological networks as the

backbone of the soil moisture networks.

We choose to build on the experimental watershed net-

work resources of the Agricultural Research Service (ARS)

Watershed Research Program (http://ars.usda.gov/Main/docs.

htm?docid=9696). These watersheds had previously been se-

lected to represent typical conditions in specific climate regions

of the U.S., which addressed our criteria of diverse conditions.

We selected four watersheds (Table I and Fig. 1) that were the

appropriate size and had the necessary recording and reporting

infrastructure to minimize data latency.

To implement this network, additional surface soil moisture

and temperature sensors (0–5-cm depth) were installed at and

around existing instrument locations in the four ARS water-

sheds: Walnut Gulch, AZ; Little Washita, OK; Little River,

GA; and Reynolds Creek, ID. The vegetation conditions in the

selected watersheds are expected to be favorable for AMSR-E-

based soil moisture retrieval.

The same type of soil moisture/temperature instrument

(Stevens Water Hydra Probe) was used at all sites and wa-

tersheds. This is also the same sensor used at all SCAN sites

[25]. Each watershed has at least one SCAN site and additional

meteorological and hydrological instrumentation. All data col-

lection was initiated prior to the AMSR-E launch in 2002.

Since then, a number of investigations have been conducted

to verify and calibrate the network sensors and to characterize

the scaling behavior and how well the network represents the

spatial average.

A key component of both calibration and scaling of the

watershed soil moisture networks for satellite validation has

been a series of short-term and large-scale intensive field cam-

paigns that have provided a bridge between the point and the

footprint scales. As a result of these studies described here-

inafter, we have a high degree of confidence that the watershed

average soil moisture data being produced by the networks are

a reliable representation of the average near-surface condition.

The individual sites are presented in more detail, and the

related verification activities are described in the following

sections.

A. Walnut Gulch, AZ

The Walnut Gulch Experimental Watershed encompasses

148 km2 in southeastern Arizona that surrounds the historical

city of Tombstone. The watershed is representative of approxi-

mately 60 million ha (600 000 km2) of brush- and grass-covered

rangeland found throughout the semiarid southwest U.S. Cattle

grazing is the primary land use. The climate is classified as

semiarid with an annual mean temperature at Tombstone of

17.6 ◦C and an annual mean precipitation of 324 mm. Precip-

itation varies considerably both seasonally and interannually.

Approximately two-thirds of the annual precipitation occurs as

high-intensity convective thunderstorms of limited areal extent.

Soils are generally well drained, calcareous, gravelly loams

with large percentages of rock and gravel at the soil surface.

Soil surface rock fragment cover (erosion pavement) can range

from near 0% on shallow slopes to over 70% on very steep

slopes. The uppermost 10 cm of the soil profiles contains up

to 60% gravel, and the underlying horizons usually contain
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Fig. 1. Location of the validation sites. WG—Walnut Gulch, AZ. LW—Little Washita, OK. LR—Little River, GA. RC—Reynolds Creek, ID. The location of
the in situ soil moisture sampling sites within the watershed and the general land cover class is also shown.

Fig. 2. Representative photographs from (a) Walnut Gulch, AZ, (b) Little Washita, OK, (c) Little River, GA, and (d) Reynolds Creek, ID, showing the land cover
conditions in each watershed.

less than 40% gravel. Desert shrubs dominate the lower two-

thirds of the watershed, and desert grasses dominate the upper

(eastern) third of the watershed. Shrub canopy cover ranges

from 30% to 40%, and grass canopy cover ranges from 10%

to 80%. The average annual herbaceous forage production

is approximately 1200 kg/ha (0.12 kg/m2). Fig. 2(a) shows

landscape conditions in the watershed.

The Walnut Gulch Experimental Watershed is one of the

most densely instrumented semiarid watersheds in the world.

Rainfall is currently recorded on a continuous basis at 85 lo-

cations using digital recording weighing rain gauges. Runoff is

measured using a variety of methods from 29 nested watersheds

whose drainage areas range in scale from 0.2 to 14 800 ha. In

addition, the soils, vegetation, and terrain of the watershed have
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Fig. 3. Comparison of soil moisture averages during the SMEX04 study
period. (a) Time series of the geometrically weighted network average and
the field campaign results during SMEX04. (b) Comparison of the weighted
network average and the higher density field campaign average (bias =
0.005 m3/m3 and rmse = 0.010 m3/m3).

been extensively characterized. Several key microwave remote

sensing experiments have been conducted in Walnut Gulch

[26], [27]. Most recently, it was the focus of the Soil Moisture

Experiment 2004 (SMEX04) [28], [29]. Extensive additional

information regarding Walnut Gulch can be found in [30] and

at http://www.tucson.ars.ag.gov/dap/.

Surface soil moisture sensors were added to 19 of the rain

gauges and also at two sites outside the watershed. These

data are transferred via telemetry and the Internet. Periodic

gravimetric sampling has been conducted at all sites under

diverse moisture conditions to aid in calibration of the in situ

soil moisture sensors. During the SMEX04 campaign, extensive

spatial sampling was conducted to characterize how well the in

situ sensors represent the domain average soil moisture. A total

of 69 samples were taken each day within the watershed on a

semiuniform grid, and the average was computed according to

Cosh et al. [28] to take into account the significant rock fraction

present in the study region. When the average of this higher

sampling density was compared to the geometrically weighted

average from the in situ network, the rmse for the network was

less than 0.01 m3/m3. Fig. 3(a) shows the time series of the

network during SMEX04, and Fig. 3(b) shows a comparison of

Fig. 4. Time series for the Little Washita Watershed Micronet average versus
the SMEX03 field campaign sampling average for the watershed domain
(bias = 0.001 m3/m3, and rmse = 0.009 m3/m3).

the weighted network average and the higher density physical

sampling average.

B. Little Washita, OK

The Little Washita Watershed has been the focus of extensive

soil moisture remote sensing research for over 30 years [31]–

[33]. It is located in southwest Oklahoma in the Great Plains

region of the U.S. and covers an area of 610 km2. The climate

is classified as subhumid with an average annual rainfall of

750 mm. The topography of the region is moderately rolling

with a maximum relief of less than 200 m. Soils include a wide

range of textures with large regions of both coarse and fine

textures. Land use [see examples in Fig. 2(b)] is dominated by

rangeland and pasture (63%), with significant areas of winter

wheat and other crops being concentrated in the floodplain and

western portions of the watershed area.

At the time we initiated the project, within the watershed,

there was a network of 42 meteorological stations, distributed at

a 5-km spacing that is called the ARS Micronet. The Micronet

provides 5-min measurements of rainfall, air temperature, rel-

ative humidity, incoming solar radiation, and soil temperature

at 5, 10, 15, and 30 cm below the soil surface. The data are

delivered every 15 min via telemetry to a central facility where

the data are quality assured and archived. The data are currently

accessible via the Internet at http://ars.mesonet.org. Addition-

ally, one SCAN and two Department of Energy Atmospheric

Radiation Measurement program sites are located within the

watershed (http://www.arm.gov/sites/sgp).

A total of 20 of the Micronet sites were selected for in-

stallation of the 5-cm soil moisture sensors. Soil moisture

was measured hourly at each of the sites. Many of these also

included a surface temperature sensor. During the SMEX03

campaign, large-scale sampling of the Little Washita Watershed

was accomplished by sampling a variety of representative fields

within the study region each day during an extended drydown

[34], [35]. The rmse of the Micronet soil moisture average com-

pared to the field sampling average was less than 0.01 m3/m3.

Fig. 4 shows the pattern of soil network moisture during the

study period and the field sampling averages. The SMEX03

experiment was uncharacteristically dry, but it is reasonable to
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assume from these results that the network is a good estimator

of the large-scale moisture average.

At the end of 2005, the Micronet in the Little Washita

Watershed was transitioned to a new management system,

resulting in a reconfigured network with minor interruption in

data continuity.

C. Little River, GA

The Little River Watershed is located near Tifton,

GA, and has a drainage area of 334 km2. It was part

of the SMEX03 campaign [33] (http://nsidc.org/data/amsr_

validation/soil_moisture/smex03/index.html). Due to its south-

ern location, the area experiences long hot humid summers

and short mild winters. The average annual precipitation is

1203 mm. The topography is relatively flat, with upland slopes

varying from 1% to 5%. The dominant soil type is a sandy loam.

The Little River Watershed is typical of the heavily vegetated

slow-moving stream systems in the Coastal Plain region of

the U.S. The region is typified by broad floodplains with very

poorly defined stream channels and gently sloping uplands.

Approximately 36% of the watershed is forested, 40% is for

cropland, and 18% is pasture, and the remaining areas are

wetlands and residential areas [see Fig. 2(c)]. Major crops

in the area are peanuts and cotton. Swamp hardwoods occur

along the stream edges and are often accompanied by thick

undergrowth forming the riparian vegetation boundary along

the stream networks [36].

Within the watershed, there is a network of 35 tipping bucket

precipitation gauges recording 5-min cumulative rainfall. The

spacing between the precipitation gauges varies from 3 to 8 km.

There is one SCAN site located within the watershed. A net-

work of 29 sites was established to continuously monitor soil

moisture at 5, 20, and 30 cm. Each station within the Automated

NeTwork for Soil-water (ANTS) consists of a data logger, a

rain gauge, and three soil moisture probes for measurement of

volumetric soil water. Measurements are taken every half hour

at the sites to conform to the SCAN data. Calibration efforts are

described in [37].

As part of SMEX03, intensive measurements were made

for a six-day period in the Little River Watershed to produce

a large-scale estimate of the soil moisture in coordination

with aircraft measurements and satellite overpasses [38]. After

comparing the results from 49 fields within the study domain

to the watershed network, the network was found to have a

small dry bias (−0.02 m3/m3), and it was concluded that the

network average would serve as a valuable validation resource

for satellite remote sensing.

D. Reynolds Creek, ID

The Reynolds Creek Experimental Watershed is predomi-

nantly a rangeland watershed located in the Owyhee Moun-

tains of southwestern Idaho 80 km south of Boise, ID. The

238-km2 watershed has a total relief of over 1000 m resulting

in diverse topography, climate, soils, and vegetation typical of

the intermountain west. About 75% of the annual precipitation

at higher elevations is snow, whereas less than 25% is snow at

lower elevations. Soils range from steep rocky shallow soils in

mid elevations to rock-free saline soils in the valley to slightly

acid soils in upper elevations. All of the publicly owned land

in the watershed, which comprises 77% of the area, is grazed

by cattle. Hay production and grazing are the primary land

uses on private land. Fig. 2(d) shows typical land cover in the

watershed.

Historical monitoring of the watershed, which started in

1961, has included climate, precipitation, snow accumulation

and redistribution, snowmelt, frozen soils and frost depth, soil

water and temperature, streamflow and sediment yield, and veg-

etation. Recent improvements to the monitoring network have

included installation of a digital telemetry system enabling au-

tomated real-time data collection from most of the permanently

instrumented sites. Detailed meteorological measurements are

collected at 32 sites on the watershed representing a variety of

elevations on the watershed. Measurements collected at 15-min

intervals at these sites include air temperature, wind speed and

direction, relative humidity, solar radiation, and soil tempera-

ture [39], [40]. Precipitation is measured at 37 locations.

Profile soil moisture is measured at five sites coincident with

meteorological monitoring. Measurements are made biweekly

using a neutron probe at 14 different access tubes. The access

tubes are over 2 m in length, and measurements are made

in 30-cm increments. The record extends back to 1976. Soil

temperature profiles are collected hourly at these sites for ten

depths between 0 and 180 cm. Snow measurements on the

watershed have been made at seven locations on the watershed

at two-week intervals from December to May since 1961 [41].

The surface soil moisture network consists of 19 locations.

All sites are collocated with existing precipitation gauges

for which long-term records are available. All sites currently

telemeter the hourly data to the office in Boise, ID, on a daily

basis, where the data are evaluated and archived using existing

infrastructure. This watershed has been the site of extensive

soil moisture sampling in the past [41], [42] although not with

the goal of satellite validation. The significant topography and

extended snow coverage season limits conducting major field

experiments. Investigations into the performance of the soil

moisture sensors have been ongoing [43], [44]. However, we

must assume that the network average represents the region as

a whole based upon the years of study, which have indicated

that the physical locations of most of the soil moisture sampling

sites have proven to be stable sampling points [41].

IV. ALGORITHMS AND AMSR-E SOIL

MOISTURE PRODUCTS

Four soil moisture products derived from AMSR-E data

will be compared to the ground-based averages: NASA [10],

JAXA [6], [7], single-channel algorithm (SCA) [8], and land

parameter retrieval model (LPRM) [45], [46]. Note that all

versions used here are those designed to use X-band as the

lowest frequency in order to avoid well-known radio-frequency

interference issues with C-band observations in some regions,

in particular the U.S. [47], [48].

The NASA algorithm has gone through significant modifi-

cation from its earlier version described in [2]. As currently
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implemented, it uses normalized polarization ratios (PRs) of

the AMSR-E channel brightness temperatures. Vegetation and

roughness are accounted for using PRs at 10.65 and 18.7 GHz

in empirical relationships. The vegetation/roughness parameter

incorporates the effects of vegetation and roughness together,

because both have the same functional form (exponential) in

their influence on the normalized polarization differences in the

simplified model used in the retrieval algorithm. Soil moisture

is computed using the deviation of PR at 10.65 GHz from a

baseline value [10]. Baseline values are established from the

monthly minima at each grid cell. The soil moisture products

currently available in the archive are based on variations of

the soil moisture algorithm and the brightness temperature

products. Here, we extracted the level-2 soil moisture products

directly from the data archive (algorithm version B05, data

version V10).

In the JAXA algorithm, a forward radiative transfer scheme

was used to generate brightness temperatures for a range of

parameter values (vegetation and soils) for multiple frequen-

cies and polarizations. Results from synthetic runs were used

to create lookup tables for soil moisture that utilize PR at

10.65 GHz and the normalized brightness temperature differ-

ence between the 36.5- and 10.65-GHz horizontal channels [6],

[7]. The two agencies, namely, JAXA and NASA, calibrate the

data independently. Our original intention was to implement

the JAXA algorithm on our processor and run it using the

NASA level-2 brightness temperatures, which would eliminate

differences in the brightness temperature products and their

geolocation as sources of error. Although we were able to

reproduce the JAXA products fairly well, there were some

differences that could not be resolved. As a result, we decided

to use the JAXA level-2 soil moisture products (version 4) and

extracted these from the archive.

The SCA [8] is based on the radiative transfer equation

and uses the available channel that is most sensitive to soil

moisture, which, for AMSR-E, is the 10.65-GHz horizontal

polarization. The presence of radio-frequency interference at

6.9 GHz has limited the use of these observations in any

soil moisture algorithms. Brightness temperature is corrected

for the effects of temperature (AMSR-E 36.5-GHz vertical),

vegetation (ancillary database derived from Advanced Very

High Resolution Radiometer and Moderate Resolution Imag-

ing Spectroradiometer data), roughness and soil texture (static

ancillary data sets). The revised AMSR-E level-2 (orbital foot-

print observations) brightness temperature data (version V10)

available from NASA were used as input to the SCA to estimate

soil moisture.

The LPRM [45], [46] is a three-parameter retrieval model

(soil moisture, vegetation water content, and soil/canopy

temperature) for passive microwave data based on a microwave

radiative transfer model. It uses the dual-polarized 10.65 GHz

data for the retrieval of both surface soil moisture and vege-

tation water content. The land surface temperature is derived

separately from the vertically polarized 36.5-GHz channel.

Here, we use the data provided at http://geoservices.falw.vu.nl/

adaguc_portal_dev/. This soil moisture is a gridded 0.25◦

product derived using the NASA gridded brightness

temperatures.

V. RESULTS

The soil moisture products described in the previous section

were compared to the ground-based soil moisture derived by

averaging all points in the watershed at the time closest to that

of the overpass. Over a seven-year period of record (actually

seven years and two months), this resulted in a large data set

(see Table II for the number of observations). The performance

of the soil moisture algorithms over the watersheds was eval-

uated using two different methods. The first method analyzes

the rmse and bias. The rmse establishes whether an algorithm

can meet the mission performance criterion of 0.06-m3/m3

volumetric soil moisture. An algorithm with a smaller rmse and

a zero bias is desirable. In addition, for each watershed, a bias

correction was applied to compute the standard error of estimate

(SEE). A site-specific algorithm correction using a regression

equation was also used to correct for both trend and bias errors.

Correlation coefficients are also included in this portion of the

study. The second comparison involves time-series plots of the

observations, which provides some insight into how algorithms

perform annually, seasonally, and at various magnitudes of soil

moisture. Results for both the descending (1:30 A.M. equatorial

overpass time) and the ascending (1:30 P.M.) coverage are

included in the figures and tables. The conclusions are similar,

and since we anticipate somewhat better performance for the

descending coverage due to potentially more uniform near-

surface temperature and soil moisture profiles, the discussions

will focus on this overpass time.

The first network that will be discussed is the Walnut

Gulch Watershed in Arizona, which has very little vegetation

[normalized difference vegetation index (NDVI) ∼0.16–0.30;

also see Fig. 2(a)]. It is expected that this site would involve

minimal vegetation corrections, based on our understanding of

the effects of vegetation on soil moisture retrieval. Most of the

precipitation in this region occurs during the months of July

and August. In Fig. 5(a), the observed range of soil moisture is

∼0.10 m3/m3, which is typical for the sandy and stony soils in

this region that have low water-holding capacities. Fig. 5(a) also

shows that the NASA product overestimates soil moisture, has

a large bias, and exhibits a dampened range as compared to the

ground observations. Overall, the NASA algorithm produces

unrealistically wet results for this region. The JAXA product

is better but still has an overestimation bias. The SCA error

level falls below the accuracy requirement and has a low bias.

The LPRM has the highest rmse. Neither the NASA nor the

LPRM meet the mission accuracy requirement. The SEE values

are also included in Table II(a). For all the algorithms, the

application of a bias correction reduced the uncertainty in the

soil moisture estimates for the Walnut Gulch Watershed. When

the regression correction was applied, there was very little

change in the SEE for the JAXA, NASA, or SCA beyond the

improvement using bias alone. For the LPRM, the use of a

regression correction significantly improved the SEE over the

bias-only correction. This is associated with the difference in

the range of soil moisture values produced by the LPRM and

the in situ network.

The Little Washita and Little River data [Fig. 5(b) and

(c)] both have larger observed ranges of surface soil moisture
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TABLE II
SOIL MOISTURE ALGORITHM PERFORMANCE SUMMARY. (a) DESCENDING. (b) ASCENDING

(∼0.20 m3/m3). Both of these watersheds have moderate

vegetation for portions of the year (Little Washita NDVI

∼0.25–0.50; Little River NDVI ∼0.34–0.55) that may approach

levels of vegetation that cannot be reliably accounted for in

any of the algorithms. As pointed out earlier, most algorithms

providers indicate that accuracy goals are for vegetation water

contents < 1.5 kg/m2. For the Little Washita Watershed, the

NASA algorithm performs well in the wetter range but exhibits

overestimation bias for dry conditions, resulting in a dampened

range of variation in estimated soil moisture [Fig. 5(b)]. The

rmse falls in the acceptable range, and the bias is small. In

reviewing Fig. 5(b), the JAXA results exhibit some inconsistent

behavior; as a result, the rmse and bias are large. The SCA had

an acceptable rmse level and the smallest bias for the Little

Washita site. As in the case of Walnut Gulch, the LPRM has

a high rmse as a result of its large bias. In addition, the LPRM

estimates have a different trend, and the scatter is quite large as

compared to the in situ observations. Based upon these results,

the JAXA and LPRM algorithms do not meet the accuracy re-

quirement at this site. The improvements in SEE after removing

the bias for all the algorithms, with the exception of the LPRM,

were minor because their bias values were low to moderate.

The LPRM SEE exhibited a very significant reduction from the

rmse; however, the SEE of the LPRM was still larger than the

values for the other algorithms. When the regression correction

was applied, it had very little impact on the SEE values for the
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Fig. 5. Comparison of the observed and AMSR-E estimated soil moistures (for descending orbits) from four algorithms for (a) Walnut Gulch, AZ, (b) Little
Washita, OK, (c) Little River, GA, and (d) Reynolds Creek, ID.

NASA and SCA algorithms. This correction did significantly

improve the JAXA and LPRM SEE values beyond just the bias

correction. After this adjustment, all algorithms had the same

nominal SEE. This SEE was higher than that found for the

Walnut Gulch Watershed and likely reflects the difference in

vegetation cover between the two sites; we expect a larger SEE

when there is more vegetation.

For the Little River Watershed, the NASA product exhibited

very little variation in soil moisture (overestimating dry and

underestimating wet conditions) [Fig. 5(c)]. However, it had

the best overall rmse, i.e., below 0.06 m3/m3, and the lowest

bias. The JAXA product had an overestimation bias for dry

conditions and a large rmse. The values of these metrics were

similar to those found for the Little Washita Watershed. The

JAXA algorithm uses a lookup table for estimating the soil

moisture based on the vegetation conditions. It is likely that

the JAXA errors are associated with the vegetation corrections

used. In a recent study [49], the algorithm developers noted

this weakness and proposed a modified approach. As in the

Little Washita Watershed, the SCA performed well; however,

it had a slightly higher bias at this location than any of the

other sites. Once again, the LPRM has the highest rmse as

a result of its large bias, which, when removed, resulted in

a lower but still high SEE. For the Little River Watershed,

neither the JAXA nor the LPRM could meet the accuracy

requirement. As in the Little Washita Watershed, the bias

correction provided an improvement in SEE that was propor-

tional to the bias level of the algorithm, and the regression

correction significantly improved the SCA and LPRM SEE

values.
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Fig. 6. Comparison of the observed and AMSR-E estimated soil moistures (for ascending orbits) from four algorithms for (a) Walnut Gulch, AZ, (b) Little
Washita, OK, (c) Little River, GA, and (d) Reynolds Creek, ID.

Reynolds Creek had moderately low vegetation (NDVI

∼0.26–0.4), and based on this factor alone, we expected that

vegetation could reliably be accounted for in AMSR-E algo-

rithms. However, as noted earlier, the watershed has significant

topography and presented some difficult restrictions on data use

due to the potential presence of snow over an extended portion

of the year. To reduce the possibility of snow being present,

which the algorithms cannot correct for, all analyses were

limited to July through September. This resulted in a smaller set

of data and a very small observed range of soil moisture due to

limited rainfall in this season. In Fig. 5(d), it is apparent that the

NASA product overestimates soil moisture and has a large rmse

and a low correlation. The JAXA product is erratic, as compared

to the ground observations, which could be due to the use of

36.5-GHz channel to determine the soil moisture. Observations

made at 36.5 GHz are very sensitive to the presence of any snow

cover. It is possible that, even after limiting the seasonal time

window, as described previously, some snow may be present at

higher elevations. The JAXA rmse and bias are both large. The

SCA performs very well in terms of rmse and bias. The LPRM

had the largest rmse with a bias on the order of that found

for the NASA and JAXA products. Bias removal significantly

improved the NASA algorithm SEE beyond the rmse. Applying

the regression correction provided significant improvements in

SEE for the JAXA and LPRM algorithms.

As a reminder, the previous discussion focused on the de-

scending overpass data. We separated the descending (Fig. 5)

and ascending (Fig. 6) passes because it was expected that the

basic assumptions of the retrieval methods are more likely to be

satisfied by the nighttime coverage. These include uniformity

of the near-surface soil moisture and temperature profiles. The

results presented in Table II(a) and (b) indicate that the results
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TABLE III
SUMMARY SOIL MOISTURE ALGORITHM PERFORMANCE STATISTICS

TABLE IV
SUMMARY SOIL MOISTURE ALGORITHM CORRELATION

COEFFFICIENTS (R)

were about the same order of magnitude and that the best

performance was mixed by both site and product.

The overall performance statistics for all watersheds and

passes for each algorithm are summarized in Tables III and IV.

This includes the overall algorithm rmse, bias, and SEE values

for the approaches described by Table II(a) and (b) (watershed-

specific/global bias and regression corrections). These statistics

are computed by treating all estimates for all watersheds and

overpass times as an independent sample of the same popu-

lation. Based upon these results, we can make the following

inferences for the data used in this paper.

1) The NASA and SCA algorithms can provide soil moisture

estimates at an accuracy that is lower than the mission

rmse requirement of 0.06 m3/m3.

2) The SCA provided the lowest rmse and had no bias.

3) Applying a bias correction (specific to the water-

shed/overpass) improved the performance of all algo-

rithms and lowered the JAXA SEE to 0.06 m3/m3.

4) After applying a watershed/overpass-specific regres-

sion correction, all algorithms had SEE values below

0.04 m3/m3. After making this correction, the difference

between algorithm performances was minor.

The LPRM product has a greater dynamic range than

the observations or any of the other soil moisture products.

It routinely estimates very high soil moisture (greater than

0.4 m3/m3) over the validation sites. In other parts of the world,

LPRM soil moisture estimates are as high as 0.8 m3/m3. These

values are unrealistically high and not observed frequently in

nature (except during large-scale inundation). Bias removal

techniques can only correct for the systematic biases in the

algorithm and cannot correct for errors due to different dynamic

ranges and trends.

It must be noted that the information to perform either a

bias or a regression correction on a footprint or grid basis is

not available globally. Therefore, this is useful information for

algorithm evaluation and adjustment but cannot be imple-

mented with the operational product.

An alternative bias correction scheme that could be used

operationally might be to assume that the data set that is

available can be used to represent global conditions and to

use a single bias correction value for each algorithm. There

are, of course, many variations of this approach that could be

used, but this represents the most general approach. From the

results listed in Table III, we observed that applying this global

bias correction for each algorithm improves the accuracy of

all algorithms, except the SCA, which has a near-zero overall

bias. After making the correction, all algorithms, except the

LPRM (the JAXA algorithm was very close to the target

accuracy), can meet the mission requirement of 0.06 m3/m3.

The NASA and SCA have the lowest and similar SEE values.

It is important to note that, when a global bias correction was

applied, the increase in SEE over the values obtained using

the watershed-pass approach was very small. Of course, a

larger set of validation sites and conditions would be desirable,

but these results indicate that a first-order correction could

be applied to the existing products that would result in an

improvement.

Tables II and IV include the correlation coefficients for each

algorithm. The comparison of these values on an individual

watershed-pass basis (Table II) results in quite different results

than when they are computed for each algorithm (Table IV).

This is associated with the limited range of conditions observed

and, in some cases, the dampened range of response of some

algorithms for a specific watershed. Summarizing Table II, for

the descending passes, the LPRM has the highest correlations.

On the other hand, for the ascending results, the LPRM had

some of the lowest values. When the data are composited by

the algorithm in Table IV (column 2), all algorithms have a

good correlation that results from the larger range of observed

and estimated values. The R values for the NASA and SCA

decreased after bias removal. The highest correlations were

obtained after the regression correction and were quite similar

for all the algorithms.

The second method that we used for performance evaluation

of the algorithms was analysis of time-series plots. Patterns of

Soil moisture patterns may be apparent in time-series analysis

that cannot be readily detected in the observed versus predicted

plots of Figs. 5 and 6. First, we will discuss the NASA, JAXA,

and SCA results and then address the LPRM separately.

The time-series plot for the Walnut Gulch Watershed

[Fig. 7(a)] shows a small dynamic range of observed soil mois-

ture (0.15 m3/m3). The NASA algorithm consistently over-

estimates soil moisture in all seasons and fails to capture the

dry conditions prevalent in the watershed. The JAXA algorithm

compares well to the observed soil moisture, although it tends

to overestimate the soil moisture by ∼0.02 m3/m3. The JAXA

algorithm captures the soil moisture dynamics in all seasons.

The SCA algorithm compares well to the observations with no

significant bias in any season. The SCA ascending retrievals

[Fig. 8(a)] are drier than the observations, and the algorithm

has a smaller dynamic range for the descending orbits. This

result supports the previous discussion on diurnal effects. The

ascending orbits have an overpass time of 1:30 P.M. This is

also when the soil temperatures are highest and the gradient

is strongest.
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Fig. 7. Plots of the observed and four-algorithm estimated soil moistures as a function of time (for descending orbits) for (a) Walnut Gulch, AZ, (b) Little
Washita, OK, (c) Little River, GA, and (d) Reynolds Creek, ID.
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Fig. 8. Plots of the observed and four-algorithm estimated soil moistures as a function of time (for ascending orbits) for (a) Walnut Gulch, AZ, (b) Little Washita,
OK, (c) Little River, GA, and (d) Reynolds Creek, ID.
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The time-series plots for the Little Washita Watershed and

the Little River Watershed [Fig. 7(b) and (c)] exhibit a greater

range of observed soil moisture. The NASA algorithm has

a smaller range for all the seasons. The NASA algorithm

responds to the changes in soil moisture, but the response is

dampened as compared to the observations. Again, the NASA

algorithm fails to capture the dry conditions in all seasons. The

JAXA algorithm exhibits spurious behavior in every season.

The range of estimated soil moisture is very high (0.4 m3/m3),

with some estimates of 0.4–0.5 m3/m3. We believe that these

are due to the higher amount of vegetation present at these

locations. The current JAXA algorithm fails to correctly para-

meterize the vegetation effects [49].

The time-series analysis [Fig. 7(d)] for the Reynolds Creek

Watershed was done only for the months of July to September

in order to eliminate the possibility of snow contaminating the

footprint. The results reveal a small range and a low level

of soil moisture during the summer. The NASA algorithm

overestimates soil moisture and fails to capture the dry condi-

tions. The JAXA algorithm also has a positive bias, with some

spurious estimates, which may be due to the presence of snow

at higher elevations. The SCA captures the dry conditions and

performs well.

As noted previously, the time-series behavior of the retrievals

from the LPRM was quite different than that of the other

algorithms. It is obvious that there are seasonal effects that

are impacting the algorithm performance. Errors and bias are

largest in winter and lowest in summer. These variations are

not consistent with seasonal rainfall or soil moisture. For Little

Washita and Little River, the effect could be associated with

vegetation growth. However, the pattern is also evident in Wal-

nut Gulch, which has little vegetation. The soil moisture values

are different for the ascending and descending overpasses on

any given day. The LPRM soil moisture climatology is different

for the ascending and descending orbits. It is most likely

that the errors are associated with the seasonal temperature

cycle.

Based upon the results presented earlier and the mission

requirement of rmse < 0.06 m3/m3, the NASA and SCA meet

or exceed the specified accuracy. The JAXA algorithm performs

somewhat better under light-vegetation conditions (AZ and

ID), and the NASA algorithm is more reliable when there is

moderate vegetation (GA and OK). However, both algorithms

have moderate bias in all cases. The SCA algorithm performed

best overall with small bias. The LPRM has the largest rmse

as a result of the bias and the error pattern over the seasonal

cycle, which may indicate a structural problem in the algorithm.

A user will have to use site-specific calibration to match the

algorithm results to the ground observations.

VI. SUMMARY

Validation of satellite-based soil moisture products is nec-

essary to ensure the quality of information and to provide the

user with an assessment of its accuracy and reliability. Retrieval

algorithms have inherent limitations resulting from simplifica-

tions required for implementation. Soil moisture is particularly

difficult to validate due to the mismatch in observing scales

of conventional ground-based and satellite observing systems.

The issue of spatial scale is common to both current and future

satellite missions. In this paper, we developed an approach to

validate coarse footprint surface soil moisture retrievals and

applied it to the retrieval algorithms that are used to generate

the AMSR-E standard products by JAXA and NASA.

Ground-based networks of in situ soil moisture sensors were

established in four research watersheds. These networks pro-

vide estimates of the average soil moisture over the watersheds

and surrounding areas that approximate the size of the AMSR-E

passive microwave footprint. The watersheds were selected to

represent different climatic and vegetation conditions (com-

patible with the canopy attenuation limitations of X-band).

Verification of the sensor measurements and representation of

their respective domains were performed through field experi-

ments. These networks have been in operation since 2002, and

they provided over seven years of observations for the current

analyses.

The NASA and JAXA soil moisture products, along with

soil moisture determined via two alternative algorithms (SCA

and LPRM), were compared to the network observations. The

results indicate that each algorithm has different performance

statistics that depend upon the site. Neither of the two standard

products, namely, NASA or JAXA, can provide reliable esti-

mates of soil moisture for all of the conditions represented by

the test watershed sites. However, the NASA algorithm could

meet the accuracy requirement of 0.06 m3/m3. The JAXA

algorithm performs somewhat better under light-vegetation

conditions than the NASA algorithm, and the NASA algorithm

is more accurate when there is moderate vegetation. However,

both algorithms have moderate to large bias for all the water-

sheds. The SCA algorithm performed best overall with a very

small bias. The LPRM had the largest rmse as a result of the

bias and the error pattern over the seasonal cycle, which might

indicate a structural problem in the algorithm.

Using a simple bias correction procedure resulted in smaller

errors for all algorithms, with the exception of the SCA, which

had a near-zero bias. After bias removal, the NASA and SCA

algorithms had similar error levels of ∼0.04 m3/m3, and the

JAXA algorithm was close to 0.06 m3/m3. A second cor-

rection scheme using regression for each watershed/overpass

significantly improved the JAXA and LPRM SEE values. Af-

ter this correction, all algorithms had SEE values lower than

0.04 m3/m3. These are interesting results but cannot be imple-

mented on an operational basis because the ground data are not

available at enough sites to develop a robust technique. After all

of the various corrections were applied, the SCA had the best

performance for the conditions evaluated here.

There are more advanced techniques that could be used to

adjust the algorithm soil moisture products to the observed soil

moisture on a watershed and even seasonal basis. These include

regression and cumulative distribution function matching, as

described in [50]–[52]. However, like the corrections used here,

these approaches are site specific and rely on the availability of

observations. At this stage, they cannot be used to perform a

correction on the entire AMSR-E data set.

Our analysis focused on a basic question, do the soil moisture

products meet the agency mission requirement? which was an
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accuracy of less than or equal to 0.06 m3/m3. These results

clearly show that there is much room for improvement in many

of the algorithms. As noted earlier, each algorithm developer

starts from the same basic set of equations, makes numerous

assumptions, and applies various parameterizations. These de-

cisions are often based upon limited information. The results

presented here suggest that some of these may not be realistic.

The fact that some algorithms do perform well presents a

challenge to the others to improve.

The validation approach developed here provides a large

and representative data set; however, the number of sites and

length of record should be expanded. The issues addressed

here are common to both current and future satellite missions.

Regardless of the degree of difficulty, ground-based sampling

must remain a core component of validation.
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