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Abstract—Measurement of gait is becoming important as a 

tool to identify disease and disease progression, yet to date its 

application is limited largely to specialist centres. Wearable 

devices enables gait to be measured in naturalistic 

environments however questions remain regarding validity. 

Previous research suggests that when compared with a 

laboratory reference, measurement accuracy is acceptable for 

mean but not variability or asymmetry gait characteristics. 

Some fundamental reasons for this have been presented (e.g. 

synchronisation, different sampling frequencies) but to date this 

has not been systematically examined. The aims of this study 

were to: (i) quantify a comprehensive range of gait 

characteristics measured using a single tri-axial accelerometer-

based monitor, (ii) examine outcomes and monitor performance 

in measuring gait in older adults and those with Parkinson’s 
disease (PD) and (iii) carry out a detailed comparison with those 

derived from an instrumented walkway to account for any 

discrepancies. Fourteen gait characteristics were quantified in 

30 people with incident PD and 30 healthy age-matched 

controls. Of the 14 gait characteristics compared, agreement 

between instruments was excellent for 4 (ICCs 0.913 – 0.983); 

moderate for 4 (ICCs 0.508 – 0.766); and poor for 6 

characteristics (ICCs -0.637 – 0.370). Further analysis revealed 

that differences reflect an increased sensitivity of accelerometry 

to detect motion, rather than measurement error. This is most 

likely because accelerometry measures gait as a continuous 

activity rather than discrete footfall events, per instrumented 

tools. The increased sensitivity shown for these characteristics 

will be of particular interest to researchers keen to interpret 

‘real world’ gait data. In conclusion, use of a body worn 

monitor is recommended for the measurement of gait but is 

likely to yield more sensitive data for asymmetry and variability 

features.   

 
Index Terms — Accelerometer, algorithm, body worn monitor, 

Instrumented gait, instrumented walkway. 

 

I. INTRODUCTION 
Gait is emerging as a powerful tool in neurodegenerative 

disease to identify surrogate markers of incipient disease 
manifestation or disease progression [1-5].  

However, its widespread adoption for clinical and 
research purposes has been limited to date. This is largely 
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because the majority of studies have been carried out using 
specialised gait analysis equipment (most commonly 
instrumented walkways such as pressure-sensor activated, e.g. 
GaitRite) [6-9] which limits work to specialised centres and a 
sparse number of gait cycles [10]. In order to develop the use 
of quantitative gait analysis for clinical screening and 
research, low-cost tools are required that facilitate 
measurement in the clinic and home. This has driven an 
interest in the use of accelerometer-based body worn 
monitors (BWM) for measuring gait. 

BWM can provide a continuous sampling of whole body 
movement in controlled or habitual environments [11]. A 
BWM worn on the lower back implementing single/numerous 
algorithm(s) can provide a simple method to quantify gait; the 
adoption of the inverted pendulum model to evaluate step 
length and the use of appropriate filtering procedures to 
identify initial/final contact events within the gait cycle [12-
14]. However, it is essential to validate the combination of 
BMW and implemented algorithms to accurately capture gait 
outcomes before widespread adoption. Evidence suggests 
suitable validity and reliability of estimated mean values of 
gait outcomes to a trusted laboratory reference (GaitRite) [12, 
13, 15-19]. Yet moderate to poor agreement has been reported 
for step-to-step fluctuations (variability) and bilateral co-
ordination (asymmetry) [12, 14, 15, 17, 20-22]. This leaves 
the role of BWM to comprehensively quantify gait in ageing 
and pathology unclear.  

A comprehensive examination of systems is lacking within 
the literature, which is critical to further understand and 
explain the poor agreement for asymmetry and variability gait 
characteristics. Previous studies have tried to provide a 
rationale for the poor agreement such as: difference in 
sampling rates; misalignment due to device 
orientation/placement; and poor synchronization [12, 13, 15, 
23]. However, questions still remain. Furthermore, 
weaknesses of previous studies [12-15, 21] include: (i) 
limited and inconsistent reporting of gait characteristics [12-
15]; (ii) introduction of newly derived variables [23-25] 
which are difficult to interpret making mainstream use 
problematic; (iii) restricted testing on a single (small) cohort 
(ranging on average from 10 to 23 participants [12, 13, 15, 
20, 23]), often with a lack of consideration for the effects of 
pathology on BWM performance; and (iv) lack of BWM 
signal examination compared to video recordings. Evaluation 
of a comprehensive set of gait characteristics is therefore 
needed while undertaking a systematic examination of all 
data acquired during a validation-based study of a BWM. 

The purpose of this study was therefore to take a systematic 
approach to address gaps in the literature. Firstly we aimed to 
characterise a broad range of gait characteristics using a low 
cost BWM in a large cohort of participants.  Whilst multiple 
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characteristics can describe gait, studies have helped to 
provide a simplified framework for selection of important gait 
characteristics [5, 26, 27]. In this study characteristics were 
selected based on our previous work [27, 28] which identified 
a comprehensive range of 16 core gait characteristics (using 
GaitRite) recognised as indicative of healthy ageing and 
pathology (Parkinson’s disease, PD). Here, we used a BWM 
and adopted a novel combination of two algorithms to 
quantify gait grouped by the properties they measure such as 
summary mean values, variability and asymmetry and 
including phases of the gait cycle.  Secondly, we wanted to 
compare results in PD and older adults to see if the 
performance of the BWM remained stable in pathology. The 
adoption of two cohorts is a key feature of this work, 
providing contrasting features of gait, where asymmetric and 
variability characteristics are known to differ. Finally, we 
compared the findings from the BWM to a common 
laboratory reference for comparability with previous work 
and where possible carried out a detailed evaluation where 
differences were found between systems in order to 
characterise the source of error.  In adopting this process we 
wished to determine the ability of a low cost BWM to 
accurately measure a comprehensive set of core gait 
characteristics in normal and pathological conditions for 
confidence in more widespread adoption.  This forms part of 
our ongoing work to quantify gait simply and effectively 
within laboratory-based instrumented testing sessions, with a 
view to quantifying gait in real world environments. 

 
II. METHODS 

A. Participants 

Thirty PD patients within 4 months of diagnosis and 30 
healthy aged matched control subjects (HC) were recruited 
from the Incidence of Cognitive Impairment in Cohorts with 
Longitudinal Evaluation—GAIT (ICICLE-GAIT) study. This 
is a collaborative study with ICICLE-PD, an incident cohort 
study (Incidence of Cognitive Impairment in Cohorts with 
Longitudinal Evaluation—Parkinson’s disease) conducted 
between June 2009 and December 2011 [29]. This study was 
conducted according to the declaration of Helsinki and had 
ethical approval from the Newcastle and North Tyneside 
research ethics committee. All participants signed an 
informed consent form prior to testing. 

B. Demographic and Clinical Measures 

Age, gender and body mass index (BMI) were recorded for 
each participant. Cognition was assessed with the Montreal 
Cognitive Assessment (MoCA) [30]. Balance confidence was 
measured using the self-rated Activities Balance Self 
Confidence Scale [31]. The severity of PD motor symptoms 
in the PD participants was measured using the Hoehn and 
Yahr scale [32], which ranges from 0 (no symptoms) to 5 
(wheelchair bound or bedridden if unaided), and section III of 
the modified Movement Disorder Society version of the 
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS 
[33]), which ranges from 0 (no motor symptoms) to 132 
(severe motor symptoms). The Postural Instability and Gait 
Disorder (PIGD) and Tremor phenotype subscales were also 
calculated from the MDS-UPDRS [34]. Levodopa equivalent 
daily doses were calculated according to established methods 
[35]. 

C. Equipment 

 Each participant was asked to wear a low cost (<£100) tri-
axial accelerometer-based device (Axivity AX3, dimensions: 
23.0 × 32.5 × 7.6mm, weight: 9g) located on the fifth lumbar 
vertebrae (L5), Figure 1. It is a generic movement monitor 
that is non-specific for gait or ambulatory assessment and 
was held in place by double sided tape (Wig Tape, Natural 
Image, UK) and Hypafix (BSN Medical Limited, Hull, UK). 
The device measures vertical (av), anteroposterior (aa) and 
mediolateral (am) accelerations and was programmed to 
capture data at 50Hz and 100Hz (16-bit resolution) and at a 
range of ±8g. The change in sampling frequency was due to 
upgrading of the device during the longitudinal ICICLE-PD 
Gait study where updated versions had increased memory 
and sampling capabilities. However, for consistency of 
analysis all data were down-sampled, where necessary, to 50 
Hz.  

 Gait assessment was conducted concurrently as part of the 
ICICLE-GAIT study using a 7.0m long × 0.6m wide 
instrumented walkway (Platinum model GaitRite, software 
version 4.5, CIR systems, NJ, USA) which was synchronised 
with a video camera (Logitech, Webcam Pro 9000, CA, 
USA) recording at 25 Hz. The instrumented walkway had a 
spatial accuracy of 1.27cm and temporal accuracy of 1 
sample (240Hz, ~4.17ms).  

 The quartz stabilised real time clock of the accelerometer 
(accuracy: 20 parts per million) was synchronised with the 
computer used for the walkway recordings and for each 
walking trial the start and stop time were recorded by the 
assessor. Start and stop times were subsequently input to a 
bespoke MATLAB

® program that automatically segmented 
and analysed the accelerometer data. Digital synchronization 
to identify exact steps (left/right steps) between systems was 
not used due to the short distance traversed and lack of 
gyroscope within the BWM. However, the variability and 
asymmetry equations adopted in this study accounted for all 
steps to be used interchangeably (Section D. Laboratory 
reference: Instrumented walkway).  

C. Protocol and Data Collection 

Participants were asked to walk at their preferred speed, 
performing four intermittent straight line walking trials over 
10.0m. The 7.0m instrumented walkway was placed in the 
centre of the 10.0m (Figure 1) to ensure gait was captured at a 
steady speed. In addition synchronised video of frontal plane 
motion was recorded during each walk. PD participants who 
were on medication were tested approximately 1 hour after 
medication intake. 

 

 
Figure 1.  The tri-axial accelerometer-based device and site of attachment 
on the lower back (L5) and laboratory set up for testing intermittent walks. 
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D. Data Analysis 

BWM (accelerometer) data processing 

The BWM data were downloaded to a computer, 
segmented into the 4 different straight line passes using time 
stamps and analysed by the MATLAB

® program. 
Accelerometer signals were transformed to a horizontal-
vertical coordinate system [36], and filtered with a 4th order 
Butterworth filter at 20 Hz [12, 14] using the MATLAB 
functions: detrend, butter, and filtfilt. For the purposes of this 
study the program utilised the novel application of a 
combination of gait algorithms that have been previously 
developed for a single sensor attached to L5 on a cohort of 
healthy older adults: 
 
Gait algorithm #1 

The first algorithm estimated the initial contact (IC) and 
final contact (FC) events within the gait cycle (Figure 2), and 
is described in detail elsewhere [12]. In brief the algorithm 
consisted of the following: 

 The IC and FC events are estimated from a continuous 
wavelet transform (CWT, using the cwt MATLAB

® 
function) of av which was first integrated (cumtrapz) 
and then differentiated using a Gaussian CWT: the IC 
events were detected as the local minima of the CWT 
(findpeaks), Figure 3a. A further differentiation 
resulted in the local maxima being defined as the FC 
events (Figure 3a, Figure 4). 

Previously, the algorithm has been used to estimate step 
and stride times only [12]. However, in order to fully 
replicate the core characteristics of gait we needed to derive 
stance and swing time. This was achieved through the 
sequence of IC and FC events in relation to the double 
support phase of the gait cycle, Figure 2. From the sequence 
(i) of IC and FC events both left and right (opposite) events 
were identified where stride and subsequently stance and 
swing time were estimated, Equations (1, 2 & 3). For direct 
comparison to the steps quantified by the instrumented 
walkway, the initial and final 4 steps (walk to/from the 
walkway) of the accelerometer data (as determined by the 
IC/FC algorithm) were excluded from analysis. 

 
 

 
Figure 2.  Identification of stride, stance and swing times from the double 

support phase of the IC and FC algorithm Stance time = FC(𝑖 + 1) − IC(𝑖)         
Stride time = IC(𝑖 + 2) − IC(i)          
Swing time = Stride time − Stance time       


Gait algorithm #1: optimisation 

Upon initial inspection of the signal traces, spurious IC 
events (i.e. non-IC events, Figure 4a) were detected in 37% 
and 58% of the HC and PD groups, respectively. As a result, 
the algorithm to detect IC and FC events was refined to 
include a previous methodology for improved step detection: 
the updated algorithm only included IC peaks within a 
predetermined timed interval similar to Najafi et al. [17]. The 
optimisation procedure required IC events to be identified 
during a predefined interval (0.25-2.25s) from a previous IC 
event. Figure 4b shows an example of the updated algorithm 
with the correct estimation of IC and FC events.  

Gait algorithm #2 

The second gait algorithm estimated step length using the 
inverted pendulum model described by Zijlstra et al. [14] 
(Equation 4, Figure 3b) where h represents the change in 
height (vertical position) of the centre of mass (CoM) 
derived using double integration (cumtrapz) of av,, and l the 
pendulum length (sensor height from ground).   Step Length = 2 √2lh −  ℎ2           

Gait algorithm #2: optimisation 
We evaluated step length using 2 methods: (i) l estimated 

using leg length × correction factor [14] and (ii) l estimated 
from the height of the BWM located at L5, i.e. the ratio of 
the participants’ height (l = height × 0.53) [37]. Preliminary 
analysis revealed better agreement between systems for the 
second method compared with using the correction factor 
and as a result was adopted in this study.  

 
Gait algorithm #3 

To estimate a value for step velocity we utilised algorithm 
#1 and #2 and the simple ratio between distance (length) and 
time, Equation 5. Step Velocity = Step Length/Step Time    
 

 
Figure 3.  Flowchart of MATLAB® analysis: 

algorithm #1 (a), algorithm #2  (b) and algorithm #3 (step velocity). 
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We replicated 14/16 [27] clinically relevant gait 
characteristics (step width and step width variability could not 
be measured due to the adoption of a single tri-axial 
accelerometer). The mean, variability and asymmetry values 
of the gait characteristics were then calculated for direct 
comparison to gait characteristics determined by the 
instrumented walkway (see following section for details). 
Right and left IC’s were previously identified by the sign of 
the filtered vertical angular velocity at the instant of IC with 
the use of a gyroscope [12]. In this study right and left IC’s in 
the accelerometer signal were automatically selected from the 
MATLAB

® program consistently assigning right steps to the 
first detected step and alternating with left step assignment. 


Laboratory reference: Instrumented walkway 

Data for individual steps for each walk were extracted 
from the instrumented walkway database using Microsoft 
Access 2007 (Microsoft Corp., Redmond, WA, USA). Mean 
gait values were calculated for step time, stance time 
(duration the stance foot was in contact with the ground for a 
given stride), swing time (duration a foot was not in contact 
with the ground for a given stride), step length and step 
velocity. To calculate step variability, the standard deviation 
(SD) from all steps (left and right combined) was calculated, 
Equation 6. SD was selected as a measure of variability due 
to its robustness and dual use with both the BWM and 
walkway. Other measures of variability (harmonic ratio, 
coefficient of variation) have been suggested but have shown 
low to moderate agreement between systems [23, 24, 38, 39] 
and are not all quantifiable by an instrumented walkway. 

 

Figure 4.  An example of  ICs (squares) and FCs (circles) detection during 
a single pass on the walkway. The black solid line represents av, the dashed 
line the differentiated with Gaussian CWT of av (avd), and the dotted line the 
differentiated with Gaussian CWT of avd (avdd). Panel (a) shows the IC/FC 
algorithm with spuriously detected IC events (circled squares). Panel (b) 

shows the correct detection of the ICs and FCs with the optimised technique.  

We considered each walking pass separately and as a 
result, right and left steps were interchangeable. This method 

has no impact on evaluation of variability values which were 
described as the SD of all steps within walking trials, 
Equation 6. Asymmetry was determined as the absolute 
difference between left and right steps (alternating) for each 
walking pass, averaged across all passes, Equation 7. As 
asymmetry represents the absolute mean difference between 
right and left steps, it does not depend on the detection of the 
“true” right and left steps. 

 Variability = SD (Steps)              Asymmetry = |Average Left –Average Right|                       
 

E. Statistical Analysis 
 Statistical analysis was carried out using SPSS v19 (IBM). 

Descriptive statistics (means and standard deviations (SD)) 
were calculated for all gait characteristics, in PD and HC 
pooled across the 4 passes. Normality of data was tested with 
a Shapiro-Wilk test. Bland-Altman plots were used to 
visually check for non-linear or heteroscedastic distributions 
of error between the two systems (instrumented walkway v. 
BWM) as a function of the participants' mean gait 
performance. 

 Absolute agreement between the two systems was 
formally tested using Intraclass Correlation Coefficients 
(ICC2,1) and limits of agreement (LoA) expressed both as 
absolute values and as a percentage of the mean. Relative 
agreement between the two systems was also established 
using Pearson's correlations (r). Independent t-tests were 
used to examine the difference between groups for 
demographical data and systems’ outcomes (p value <0.05 
was considered as significant). 

III. RESULTS 
Demographic data 

Participant demographic, clinical and cognitive 
descriptors are shown in Table I. Compared to HC, PD 
participants  were aged matched; included proportionally less 
women (CL: 50%, PD: 33%); presented with lower 
confidence in their balance (ABCs), and poorer cognition 
(MoCA). No differences were found between HC and PD 
participants for both height and BMI. Participants with PD 
were in the early stages of the disease with mild motor 
symptoms. 
 
BWM and Instrumented walkway: agreement 

Table II shows the agreement between the two systems 
for ICC, r values and LoA (%). There was excellent 
agreement between the systems for all the mean gait 
variables (step velocity, step time, stance time and step 
length) except for swing time. In contrast asymmetry of steps 
(bilateral co-ordination) and variability (step to step 
fluctuations) showed poor agreement. 

Table III shows the results obtained from the derived gait 
parameters for both the BWM and instrumented walkway. 
Results show that the BWM had systematic longer/greater 
gait characteristics and this is significant for 10 of the 14 and 
9 of the 14 variables for HC and PD, respectively. 
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TABLE I.   CLINICAL AND DEMOGRAPHIC CHARACTERISTICS 
 

 BMI: Body Mass Index; MoCA: Montreal Cognitive Assessment; ABC: Activities 
specific balance confidence scale; UPDRS: Unified Parkinson’s Disease Rating Scale; 
PIGD: Postural instability and gait disorder phenotype; ID: indeterminate phenotype; 

TD: Tremor dominant phenotype. p difference between HC and people with PD. 

 
TABLE II.  AGREEMENT BETWEEN INSTRUMENTED WALKWAY AND BWM 
 

LoA expressed as a percentage (%) of the mean; Step vel.: Step velocity. 

 

 

 

BWM and Instrumented walkway: examination #1 

To explore differences between systems for variability and 
asymmetry an analysis was conducted to check the potential 
impact of the quality of the measured filtered acceleration av 
on the differences observed. For exploratory purposes we 
decided to examine step time variability obtained by both 
systems. 

A range of features based on the filtered av were calculated 
and averaged across the 4 passes: mean, standard deviation, 
root mean square values (RMS), number of peaks (maxima of 
av) and valleys (minima of av), number of zero crossing (ZC), 
and frequency below which is the 95% of the signal power 
spectrum (f95%). Pearson’s correlations explored the 
association between each of these features and the differences 
in step time variability of the two systems. None of the 
extracted features showed a strong positive correlation in 
either group (r < 0.353, Table IV), demonstrating that the 
poor agreement for the variability results could not be 
explained by the nature of the acceleration signal. 

 
BWM and Instrumented walkway: examination #2 

As no correlations were found between av and the mean 
differences between the systems, further analyses of the 
filtered av signal, estimated step times and instrumented 
walkway data were carried out to explore the source of 
discrepancy for asymmetry and variability. 

In first instance we explored the impact of the height of the 
participants on the evaluation of the gait characteristics. 
Pearson’s correlations revealed that only the HC stance time 
asymmetry (r = 0.435, p = 0.016) and the PD swing time 
variability (r = -0.362, p = 0.049) showed a poor correlation 
with height. Subsequently our analysis uncovered two key 
findings: 
 
i) Inspection of the filtered signal confirmed that the BWM 

identified each step, but with a greater range of step time 
values (Figure 5 and Figure 6). This accounted for higher 
variability and low agreement; moreover variability is 
evaluated considering all the steps (left and right 
combined). 
 

 
Figure 5.  Step time and steptime variability  (SD) evaluated with the 

instrumented walkway and the BWM for HC and PD participant. The BWM 
show higher step time variability for both  (a) HC and (b) PD. 

 
 

 

Characteristic 
HC (n = 30) 

Mean ± SD 

PD (n = 30) 

Mean ± SD 
p 

M/F (n) 15/15 20/10 0.197 

Age (years) 66.6 ± 7.7 66.9 ± 9.4 0.891 

Height (m) 1.7 ± 0.1 1.7 ± 0.1 0.795 

BMI (Kg/m2) 28.0 ± 4.6 28.7 ± 5.4 0.585 

MoCA (0-30) 27.9 ± 1.7 24.7 ± 3.1 <0.001 

ABCs (0-100%) 91.3 ± 12.7 81.7 ± 20.0 0.031 

Hoehn & Yahr (n) - 
HY I - 8 

HY II - 20  
HY III - 2 

- 

Levodopa Equivalent 
Daily Dose (mg/day) 

- 

163.3 ± 137.2 
HY I – 137 ± 112.9 
HY II – 177 ± 153.1 
HY III – 130 ± 14.1 

- 

MDS-UPDRS III - 

29.5 ± 10.7 
HY I – 17.5 ± 5.7 

HY II – 32.9  ± 8.2 
HY III – 43.5 ± 3.5 

- 

Motor Phenotype (n) - 
PIGD 10 

ID 4 
TD 16 

- 

Variable 
    HC     PD 

ICC2,1 r LoA ICC2,1 r LoA 

Mean gait characteristics 

Step time (s) 0.983 0.998 1.2 0.981 0.997 1.4 

Stance time (s) 0.927 0.912 9.5 0.913 0.854 1.4 

Swing time (s) 0.766 0.708 18.0 0.511 0.618 19.5 

Step length (m) 0.913 0.867 13.9 0.869 0.850 15.6 

Step vel. (m/s) 0.952 0.906 14.7 0.928 0.890 16.7 

Variability (var) gait characteristics 

Step time var (s) 0.508 0.429 100.9 0.627 0.633 132.6 

Stance time var (s) 0.645 0.747 159.9 0.529 0.576 164.2 

Swing time var (s) 0.307 0.302 206.7 0.366 0.512 171.1 

Step length var (m) 0.060 0.102 126.3 0.216 0.254 83.3 

Step vel. var (m/s) -0.143 -0.086 110.2 0.225 0.229 107.5 

Asymmetry (asy) gait characteristics 

Step time asy (s) -0.637 -0.349 268.2 0.811 0.757 130.2 

Stance time asy (s) 0.370 0.249 177.2 0.318 0.473 362.3 

Swing time asy (s) -0.229 -0.111 316.1 0.448 0.304 259.7 

Step length asy (m) 0.132 0.078 243.5 -0.223 -0.120 225.4 
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TABLE III. MEAN ± SD VALUES AND MEAN DIFFERENCES OF 14 GAIT PARAMETERS EVALUATED WITH AN INSTRUMENTED WALKWAY AND BWM 

 Mean difference: BWM – Instrumented walkway; Step vel.: Step velocity. 
 

 
ii) Where gait was clearly asymmetrical (e.g. PD), 

asymmetry results were comparable (Figure 6a), while 
more subtle asymmetric gait patterns (e.g. HC) were 
detected by the BWM but not instrumented walkway 
(Figure 6b). This may explain the higher agreement for 
PD participants’ asymmetry results compared to HC (step 
time asymmetry, Table II and Table III: people with PD 
often show a clear asymmetric gait pattern, whilst 
asymmetry is not as pronounced a feature in HC. This was 
confirmed in individual patient videos which were used as 
a reference to identify subtle features of gait identified by 
expert physiotherapists and biomechanists. 
 

TABLE IV:  RESULTS BETWEEN aV FEATURES AND DIFFERENCES BETWEEN 
INSTRUMENTED WALKWAY AND BWM STEP VARIBILITY 

 

 RMS: Root Mean Square values; SD: Standard Deviations; #: number; ZC: Zero 
crossing; f95%: frequency below which is the 95% of the signal power spectrum 

 

 
IV. DISCUSSION 

This study replicated 14 core characteristics of gait from a 
generic tri-axial accelerometer-based movement monitor 
using a novel combination of gait algorithms (BWM) to 
segment the gait cycle into discrete events. It is the largest 
and most comprehensive evaluation to date which 
incorporates comparison of pathological and non-
pathological cohorts.   

We compared the BWM results to a known laboratory 
reference (instrumented walkway, GaitRite) and were able to 
explain the systematic differences between systems 
unresolved by previous research. 
 

Mean characteristics and effect of pathology 

Excellent (ICCs > 0.900, LoA < 15.0%) agreement was 
found for mean step time, stance time, step length, and step 
velocity for HC (ICCs2,1 ≥ 0.913) and for step time, stance 
time, and step velocity for PD (ICCs ≥ 0.913), similar to 
other studies [12, 15]. Good agreement (ICCs 0.751 – 0.899, 
LoA > 15.0%) was found for swing time for HC (ICC2,1 = 
0.766) and step length for PD (ICCs2,1 = 0.869) similar to 
previous findings [15]. In contrast we only found moderate 
agreement (ICCs 0.500 – 0.750) for swing time for PD (ICCs 
= 0.511).  

The poorer agreement for mean swing time could be 
related to the limitation of the FC/IC algorithm where swing 
time was not accounted for in its design. Though the 

Characteristic 

HC PD 

Instrumented 

walkway 
BWM 

Mean 

Difference, % 
p 

Instrumented 

walkway 
BWM 

Mean 

Difference, % 
P 

Mean gait characteristics 

Step time (s) 0.554 ± 0.051 0.567 ± 0.054 0.013, 2.4% <0.001 0.543 ± 0.045 0.555 ± 0.047 0.012, 2.2% <0.001 

Stance time (s) 0.715 ± 0.080 0.731 ± 0.062 0.016, 2.2% 0.018 0.706 ± 0.072 0.717 ± 0.063 0.011, 1.6% 0.119 

Swing time (s) 0.393 ± 0.031 0.404 ± 0.051 0.011, 2.7% 0.116 0.380 ± 0.029 0.394 ± 0.044 0.014, 3.7% 0.052 

Step length (m) 0.692 ± 0.094 0.718 ± 0.099 0.026, 3.7% 0.009 0.638 ± 0.100 0.681 ± 0.089 0.043, 6.7% <0.001 

Step vel. (m/s) 1.266 ± 0.219 1.275 ± 0.220 0.009, 0.7% 0.606 1.187 ± 0.223 1.242 ± 0.218 0.055, 4.6% 0.007 

Variability (var) gait characteristics 

Step time var (s) 0.017 ± 0.008 0.024 ± 0.011 0.007, 32.8% 0.002 0.022 ± 0.012 0.031 ± 0.023 0.009, 41.8% 0.009 

Stance time var (s) 0.022 ± 0.012 0.026 ± 0.015 0.005, 21.8% 0.039 0.023 ± 0.010 0.033 ± 0.022 0.011, 46.3% 0.003 

Swing time var (s) 0.016 ± 0.009 0.027 ± 0.024 0.011, 66.3% 0.015 0.019 ± 0.007 0.031 ± 0.025 0.013, 65.9% 0.004 

Step length var (m) 0.023 ± 0.007 0.043 ± 0.021 0.021, 92.6% <0.001 0.025 ± 0.008 0.040 ± 0.015 0.015, 57.6%  <0.001 

Step vel. var (m/s) 0.058 ± 0.017 0.043 ± 0.021 -0.015. 25.4% 0.008 0.062 ± 0.023 0.040 ± 0.015 -0.022, 35.8%  <0.001 

Asymmetry (asy) gait characteristics 

Step time asy (s) 0.010 ± 0.006 0.015 ± 0.014 0.005, 38.2% 0.151 0.023 ± 0.027 0.023 ± 0.044 -0.0001, 0.3%  0.990 

Stance time asy (s) 0.020 ± 0.012 0.014 ± 0.013 -0.006, 30.9% 0.035 0.022 ± 0.009 0.023 ± 0.045 0.001, 6.9% 0.846 

Swing time asy (s) 0.010 ± 0.010 0.013 ± 0.015 0.003, 29.7% 0.387 0.018 ± 0.016 0.019 ± 0.024 0.001, 4.8% 0.848 

Step length asy (m) 0.022 ± 0.016 0.014 ± 0.017 -0.008, 37.8% 0.049 0.024 ± 0.017 0.014 ± 0.015 -0.010, 4.6% 0.023 

Features  
    HC     PD 

Mean ± SD r Mean ± SD r 

Mean av -0.990 ± 0.067 0.094 -1.001 ± 0.037 <0.001 
SD av 0.127 ± 0.050 0.353 0.166 ± 0.058 <0.001 
RMS  av 1.006 ± 0.067 0.003 1.026 ± 0.040 0.015 
# of peaks 128 ± 42 0.095 162 ± 61 0.048 
# of valleys 108 ± 29 <0.001 132 ± 39 0.077 
ZC 131 ± 37 0.009 167 ± 57 0.042 
f95% 10.660 ± 2.372 0.108 11.518 ± 2.269 0.003 
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algorithm [12] evaluated IC and FC events, the authors 
presented step and stride time values, which is based on IC 
estimation only. However, the detection of FCs allowed us to 
derive stance and swing time with contrasting results for 
both. Moreover, error is inherently assumed as swing time 
was computed in our study from the difference between 
stride and stance time, where small inaccuracies may also 
exist. Swing time estimation may be improved from direct IC 
and FC analysis rather than the method adopted here based 
on the relationship between stance, swing and stride time 
within the gait cycle. 

Good agreement was found for step length within the PD 
group while the HC had excellent agreement (ICC2,1 = 
0.913), similar to another study [15]. LoA for HC and PD 
were < 16.0% and mean percentage difference 3.7% for HC 
and 6.7% for PD which equates to longer estimated distances 
of 0.026m and 0.043m, respectively, which we consider 
acceptable [15]. Traditionally, high reproducibility has been 
problematic with step length due to adoption of the inverted 
pendulum model on which it is based [14, 40, 41]. The 
model assumes a compass gait cycle (circular trajectory) 
[14], which is not the case in an asymmetric disease (PD). 
Moreover, the model also assumes straight line walking at a 
constant pace which makes it problematic when testing 
within pathology or during laboratory-based protocols where 
continuous walking for better gait variability estimation is 
the recommendation [42]. Thus, there is a need to better 
refine step length estimation where the calculation of vertical 
displacement (h), pendulum length (l) or the adoption of a 
generic correction factor are sources of error. 

Algorithms independent of site specific variables (h, l) and 
correction factors will allow for more robust quantification 
of step length. To date individualised correction factors have 
been recommended for improved step length estimation 
rather than generic or group specific values [18, 20]. 
However, these would be time consuming and difficult to 
implement in day-to-day clinical practice or in large scale 
clinical/intervention-based studies where instrumentation of 
gait is often time constraint [43]. We were unable to 
calculate estimates for the remaining core gait 
characteristics, i.e. step width and step width variability due 
to the limitations of the BWM and adoption of a single tri-
axial accelerometer. Moreover, step width estimation is yet 
to be determined from a single accelerometer-based BWM 
due to the bipedal dynamics of human locomotion and 
relative mediolateral placement of feet. 

 
Variability and asymmetry characteristics and effect of 

pathology 
We found poor to moderate agreement between systems 

for all variability and asymmetry characteristics, similar to 
previous studies [23, 24, 38, 39, 44]. Therefore we conducted 
an analysis to explore the lack of agreement to offer new 
insight into gait quantification with these systems. We 
hypothesised that corrupt features of the filtered acceleration 
signal would impact on the error between systems. However, 
there were no significant correlations in any of the extracted 
features, verifying that the standard filtering procedure (4th 
order Butterworth, cut off 20Hz) and resulting signal were 

robust. Further exploration of the all the filtered acceleration 
signals together with all participant videos highlighted subtle 
asymmetries in gait that were only evident in the BWM 
signal and not instrumented walkway. A number of possible 
explanations account for these differences: 
i) We found that height of the participants had an impact on 

the error of the estimation of stance time asymmetry and 
swing time variability and this can be related to the 
limitation of the FC/IC algorithm.  
Asymmetry was more comparable between instruments 
for PD because it is a more prominent feature of 
pathological gait. Asymmetry in HC is subtle and more 
difficult to detect with an instrumented walkway due to 
slight variations in dynamics of the CoM rather than 
discrete footfalls. These results impact on variability 
which was not comparable. Greater asymmetry increases 
the estimation of variability for accelerometry given its 
sensitivity to detecting this feature of gait. 

ii) An instrumented walkway detects footfalls but an 
accelerometer-based BWM continuously tracks the 
position of the body resulting in a continuous signal 
(Figure 4 and 6). The resulting peak therefore represents 
the trajectory of the CoM rather than actually heel strike 
(IC) or toe off (FC) events determined by an 
instrumented walkway.  

iii) Gait algorithms are dependent on the signal 
characteristics (e.g. peaks reliant on polynomial 
coefficients or local maxima to locate the maximum of a 
peak). Thus, delay in the location of the 
maximum/minimum due to peak detection methods or 
smoothness of peak as a result of filtering or processing 
can introduce timing differences between the BWM 
signal and instrumented walkway to a resolution required 
for variability/asymmetric outcomes (ms). 
 

Instrumented walkway: functionality and sources of error 

The instrumented walkway used in this study (GaitRite) 
has been previously shown to be a reliable method for 
measuring mean gait characteristics [45], but less so for 
asymmetry and variability [23, 24, 38, 39]. Another plausible 
explanation for these discrepancies is the operational 
functionality of the walkway itself. Specifically the walkway 
is an array of pressure sensors that activate or trigger a 
footfall event when a load is applied. These events usually 
occur as a collective to define the entire surface area of the 
foot and subsequently IC and FC events. However, spurious 
contacts may result due to scuffing or a shuffling walk 
introducing false IC events. As a result, the 
technician/researcher can review the series of contacts 
(activated pressure sensors) for each footfall and subjectively 
include or exclude an individual sensor (within the array 
defining a foot) if they deem it suitable during a walk. With a 
spatial accuracy of 1.27cm this (subjective) 
inclusion/exclusion of sensors can be the difference of 
approximately 0.009s based on an estimated stepping speed 
(step velocity 142cm/s). With variability and asymmetry 
quantified at a similar resolution (Table III), the 
inclusion/exclusion of a single pressure sensor in the 
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Figure 6. (a) Example of clear asymmetric gait pattern of a PD participant (regular alternating of higher and lower absolute peak values of the accleration 
signal, X) and (b) subtle asymmetric pattern of a HC (less regular alternating of higher and lower absolute peak values of the accleration signal, Y). Each 

panel (a), (b) displays (i) accelerometer sensor waveform and a zoomed example of 4 consecutive steps (red dots/arrows), (ii) corresponding data from the 
instrumented walkway and a zoomed example of same 4 consecutive steps (red arrows) and (iii) mean results from the 2 systems for each example 

walkway can be a further source of disagreement between 
systems. 
 
Alternative laboratory reference 

Previous work has used continuous tracking of the 
CoM with a 3D motion analysis system [21, 46, 47]. Direct 
comparison of vertical acceleration, velocity, and position 
(displacement) traces together with spatial-temporal 
parameters showed good agreement between the optical 
motion capture system and an inertial measurement unit 
(BWM) [21, 46]. Despite good agreement, the comparison 
of an accelerometer-based BWM to a 3D system, though 
more similar in quantification of gait, measure different 
components; acceleration and displacement, respectively. 
Though acceleration and displacement can be related 
through single and double integration/derivation, that 
process introduces error through drift, where the error in 
the signal after each integration increases by ε = t1.5, where 
t is integration time and ε is error [21, 48].  

Therefore systematic errors will always remain between 
systems (instrumented walkway vs. accelerometer-based 
BWM on the lower back (L5) vs. 3D motion analysis 
system) even when measuring related components 
explaining why in our study there is lower agreement for 
the mean swing time, higher variability of step time (Figure 
6) and estimation of (subtle) symmetry differences. This 
however does not infer that one system is less valid, rather 
that both systems are valid but differences can be explained 
by different methodological approaches used to estimate 
gait events. 

BWM tend to have greater estimates for gait 
characteristics (a feature of the adopted algorithms), but 
was systematic in its nature and the values remained within 
expected ranges for both PD and HC. Importantly, 

pathology did not influence our findings although this may 
change with increased disease severity and gait 
impairment. 

 
Study limitations and future work 

This study achieved its aims of quantifying 14 core gait 
characteristics while also deriving a new rationale to 
account for poor agreement between a BWM (worn at L5) 
and an instrumented walkway. However, some limitations 
do exist and therefore we make recommendations for 
future research. For instance, the methodology presented 
has been tested in a laboratory environment, considering 
walking at self-selected speed on a group of healthy 
participants and those with PD. Therefore before being 
able to generalize our results in these groups, further 
analysis would be required to test the robustness of the 
combination of algorithms across different gait speeds.  

Moreover, our PD group had mild motor symptoms and 
more severe motor symptoms may influence the gait 
pattern and algorithm performance. For instance, lack of 
clearly identifiable signal characteristics (peaks/troughs) 
within the filtered signal may result in the miss or no 
detection of IC/FC events. While we included a range of 
PD participants (PIGD, ID, TD) there was no major 
(visually observant) limitation within their gait such as 
shuffling.  

The addition of a gyroscope sensor within the BWM 
would allow the complete quantification of the 16 gait 
characteristics identified as important [27, 28]. 
Additionally, the extra sensor would allow the correct 
identification and allocation of left/right steps. The 
improved step recognition methodology would allow the 
variance of left and right steps to be calculated separately 
and then be combined to find SD, Equation 8. This method 
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avoids confounding step-to-step variability with variation 
originating from asymmetry between left and right steps 
[42]. Moreover, the correct identification of each left/right 
step could then be directly compared between systems  

 SDleft or right = √(Varianceleft+Varianceright)2                        

 
V. CONCLUSION 

A simple tri-axial accelerometer device is able to 
replicate 14 clinically relevant core gait characteristics. 
Agreement with a laboratory reference system ranged from 
excellent (mean) to poor (variability and asymmetry), 
which we interpreted as primarily an intrinsic limitation of 
the comparison between two systems which measure 
different properties: continuous motion (BWM) vs. single 
footfall events (instrumented walkway). Despite this, we 
feel confident from our results that a single tri-axial 
accelerometer-based BWM is accurate for measuring gait 
variability and asymmetry.  

Accelerometer-based BWM may offer advantages over 
standard laboratory systems for select characteristics 
potentially making them a more sensitive device to detect 
any subtle changes in gait pattern due to ageing and/or 
pathology. When compared to an instrumented walkway, 
systematically greater values of mean gait characteristics 
need to be taken into consideration. However, a system 
currently doesn’t exist which: captures a broad range of 
gait outcomes sensitive to early pathology, is low-cost 
(<£100), and capable of being deployed in multi-centre 
large scale studies for instrumented testing or within the 
community for real-world continuous data collection. This 
approach (use of a generic movement monitor and 
algorithms from the literature) may therefore offer a low-
cost solution for quantitative gait evaluation in PD and HC 
during instrumented testing and in a wide variety of 
environments (including at home). Further work is ongoing 
to optimise gait quantification algorithms as well as 
explore step width estimation and the impact of algorithm 
sensitivity on disease progression and disease severity. 
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