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Abstract 

Wliile the  verification of the performance of coordinate measuring machines 

(CMMs) is self-evidently important, the  point coordinates they provide are 

usually the input to  form and tolerance assessment software that  calculate 

associated geometric features, such as a best fit cylinder to  the data .  For 

the measurement result to  be reliable, it is also necessary to  ensure that  the 

calculations perhrmed by this software are fit for purpose. The forthcoming 

standard I S 0  10360-6:2001 :l] specifies the  procedure by which Gaussian 

(least-squares) form assessment software should be tested. 

hIany t,olerance assessment problems relate to  Chebyshev (minimum- 

zone) fitting criteria in which the maximum error is minimized. These 

criteria lead to  nonlinearly constrained optimization problems that  are dif- 

ficult t o  solve reliably if appropriate algorithms are not employed. I\lany 

existing and proposed algorithms fail on seemingly simple da ta  sets. 

In this paper we examine the problem of how to generate reference da ta  

sets and corresponding refcrence results for testing software for computing 

Gaussian and Chebyshcv associated features. TVc indicate how to generate 

d a t a  sets for circles and cylinders, including da ta  set,s to  help expose the 

deficiencies of inadequate software. 

1 Introduction 

This paper is conccrned with the generation and use of reference data  

sets and corresponding reference results for testing geonietric tolerance as- 

sessment software used by ChIhIs. Such software is a key coniponcnt oi 

computer-aided inspection in manufacturing. In order t o  verify that  a rnan- 

ufactured artefact is within tolerance a CSILI is used t o  collect a set of data  
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(x i ,yz ,  z z )  representing points lying on the surface of the artefact.' The  tol- 

erance assessment software is used t o  analyse these data  points with respect 

t o  the design and tolerance specification for the mainlfactured artefact to 

determine if the artefact is within tolerance. 

It  is clearly important that  such software gives correct information and 

any serious quality management system will demand that  its reliability can 

be verified in a practical manner. Numerical software with a well defined 

computational aim can be tested using the following general approach [3, 41: 

I Determmc reference data  sets (appropriate for the computational aim) 

and corresponding reference results; 

I1 Apply the software under test to the refcrence da ta  sets to  produce 

test results; 

I11 Compare the test results with the reference results. 

However. t,hc approach poses two fundamental questions. Firstly, how do 

we determine correct reference results for data  sets? Secondly, how do 

we compare test results with reference results in a meaningful way? The  

viability of the approach depends on satisfactory answers to these questions 

and no formal software testing will be worthwhile unless these questions 

have been addressed. 

The standard I S 0  10360-6:2001 [l] defines a method (along the above 

lines) for testing software used to compute Gaussian associated features 

from coordinate  measurement,^. The geometric features covered are the 

line (in two and three dimensions), the plane, the circle (in two and three 

dimensions), the sphere, the cylinder. the cone, and the torus. To answer the 

first question, the Standard proposes the use of either reference software or 

da ta  generator software, but is not concerned with how such softwarc might 

be implemented. To answer the second question, the standard specifies the  

use of performance values that  measure the difference between reference 

parameter values and test parameter values for the four classes of parameters 

used (location, orientation, size and angle). 

In this paper we are concerned with generators of reference da ta  sets 

and corresponding results for testing tolerance assessment software. We ad- 

dress first the computations covered by I S 0  10360-6:2001 and,  thereafter, 

more general tolerance assessment problems including Chebyshev (or mini- 

nlunl zone) fitting criteria. 

2 Computational aitn of tolerance assessment software 

Geometric tolerance assessment software can he classified into two broad 

types: those that are  bascd on Gaussian and those on Chebyshev formula- 

'Because the tlp of the CMM probe has a finite radius the data  values recorded i n  

fact lie on a surface offset from the real silrface. Compensation tor this effect is possible 

121, but is not considered here. 
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tions. From a n  end-user perspective, both types perform roughly the same 

task - find the best-fit associated feature to  da ta  - but the optimisation 

technology employed is considerably different. This difference will h a w  

some bearing on the methods we employ to test such software. However. 

certain commonalities are present. 

The computational aim of most assessment software used in coordinate 

metrology (and other areas) can be fornlulated in terms of a n  optimisation 

problem. This is illustrated below using the exarnples of the Gaussian and 

Chebyshev best-fit. circles. 

Gaussian best-fit circle. X c~rcle  m the plane can be described by its 

centre coordmates (zo. go) and ~ t s  r a d ~ u s  ro The dlstance d from a point 

X = (X, y) t o  a c~rcle  defined by parameters a = (xo yo. r o )  IS glven by 

Given a set of data  points X = {X, : i = 1 , .  . . . m ) )  the Gaussian (least- 

squares) associated circle [5] is found by solving the optimisation problem 

Chebyshev best-fit circle. The Chebyshev or minimum zone circlc to  

da ta  points X is defined as the solution to the problem 

By introducing 

formulated as 

min s 
a.s 

mm max ldix,.a)l. 
a I = I ,  m 

the parameter S = max, jd(x,. a)/, thls problem can he re- 

subject t,o - s < d ( x , ,  a) 5 S, i = 1 . .  . . . m. (3)  

i.e., as a constrained optimisation problem in terms of parameters a and s .2  

3 Generation of reference data and results 

In this section we describe methods for generating reference da ta  and results 

"simultaneously", independently of reference software; see also 14, 7 .  81. 

Consider the Gaussian optimisation problem (2) .  It is possible to  de- 

rive s u f i c i e n c y  condit ions involving the  data  X and parameters a which 

when satisfied by a* will guarantee that  a* is a local minimum for the op- 

timisation problem. Algorithms for solving (2)  usually function by starting 

2Minirnum circumscribed and maximum inscribed problems can similarly he form~t- 

lated as coristrained optimisation problems [ G ] ,  but arc not considered here. 
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from an initial estimate of the  solution and t,hen making systematic progress 

until these conditions are satisfied. T h e  reference data  generation problem 

is in some sense dual to the optimisation problem: given "solution" param- 

eters a* find data  X such tha t  the sufficiency conditions are satisfied. T h e  

reference data  generation problem for the  Chebyshev problem is treated sim- 

ilarly by considering sufficiency conditions for a solution to the  optimisation 

problem (3 ) .  

An important aspect of the reference data  generation problem is that  

while the sufficiency conditions are usually over-determined with respect t o  

the optimisation parameters they are usually under-determined with respect 

to the da ta  points X. For this reason, it is generally much easier t o  solve 

the da ta  generation problem. 

3.1 Data generation for Gaussian best-fit features 

3.1.1 Sufficiency conditions 

Suppose a +- S(a) parametrizes a geometric feature and d = d ( x ;  a )  is the  

distance from a point X t o  the feature S ( a ) .  The suificiency conditions for 

a* to  be the Gaussian best-fit feature for a data  set X = {X,) are tha t  (i) 

JTd = 0, where J is the Jacobian matrix of partia.1 derivatives defined by 

and the i t h  element of d is d(x,, a*), and (ii) the Hessian matrix carrving 

second derivative information is strictly positive definite [g]. 
The sufficiency conditions correspond to the (familiar) conditions of 

zero first derivative and positive second derivative that charact,erize a min- 

imum of a function, but are here expressed in terms of the component 

distance functions d(x , ,a*)  that  define the Gaussian (least-squares) error 

measure in (2).  The  first of the conditions states that  d lies in the null 

space of JT, i.e.. in the vector space {z : J T z  = 0).  This obscrvation un- 

derpins the null space method for gcnerating reference da ta  that  has been 

applied a t  NPL to  test a wide range of least-squares software [4, 101. T h e  

method is illustrated below using the example of the  Gaussian best-fit circle. 

3.1.2 Gaussian best-f i t  circle 

Let a = (xo;  yo, r o )  and a* = (0,O.r;). Given a set of polar angles O,:i = 

l . .  . . ;m, with r n  > 3, define 

X: = r; (cos Q, ,  sin O , ) ,  

and 

X, = (T ;  + 6,)  (cos H,. sin B, ) .  

The points X* = {X:) lie on the circle specified by the parameters a': and 

the points X = {xi) a t  distances b, from this circle. Clearly, t,he solution 
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Figure 1: Reference da ta  sets for the Gaussian best-fit circle 

t o  the Gaussian best-fit circle problem for the  points X* is a*. The d a t a  

gcneration problem is to  determine values for 6, such tha t  the sufficiency 

conditions are sat,isfied. 

Now. using (1) and the  above definitions, i t  follows that  the elements 

of the Jacobian matrix J are given by 

Consequently, the  first of the sufficiency conditions takes the  form of the  

euuations 
m m m 

6, cos H1 = 6, sm 8, = = 0. 

The equations are under-determined because there are only 3 equations 

in the m unknowns b,,  i = 1 , .  . . . In. This property may be exploited to 

generate many reference da ta  sets having the same reference solution a* and 

to generate da ta  sets possessing prescribed properties. Having obtained a 

solution to these equations it  is necessary to use the second of the sufficiency 

conditions to  verify that  a' defines a ininilnunl of the Gaussian best-fitting 

problem. 

Figure 1 shows two reference da ta  sets for the Gaussian best-fit circle 

problem which have the same solution X; = 0, yi; = 0 and r(; = 1. T h e  

sccond of the d a t a  sets is constructed such tha t  the residual deviations 

for the solution circle exhibit a "three-lobed" pattern, thus mimicking a 

commonly-observed behaviour. 
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3.2 D a t a  g e n e r a t i o n  f o r  C h e b y s h e v  best-f i t  f e a t u r e s  

3.2.1 Sufficiency c o n d i t i o n s  

It  is convenient to  write the Chebyshev optimisation problem (3) in the 

general form 

mm F ( b )  subject to  cT(b)  > 0 and c; (b) 2 0. L = 1. .  . . , m, (4) 
b 

where b = (a .9 ) ;  F ( b )  = S ,  c:(b) = S - d ( x , , a ) .  and c;@) = S - d ( x , . a ) .  

The sufficiency conditions for h *  to be a local solution for (4) are (i) 

feasibility: all thc constraints are satisfied, i.e., c , f (bX) > 0 and c,(b') 2 0; 

(ii) the Kuhn-Tucker equations are satisfied, i.e., if J O  = {j : cf ( h * )  = 0) 

and KO = {k : cL(b*) = 0) specify Ihe indices of the active constraints, 

with Lagrange multipliers Xg > 0, j E JO, and PI, > 0, k E KO, and (iii) a 

Hessian-type matrix constructed from the matrices of second derivatives of 

the active constraint functions is strictly positive definite [ I l l .  

The sufficiency conditions have one very noticeable feature in that  only 

the active constraints feat,ure significantly. To generate data, sets with a 

known local solution it is sufficient to generate ( a  snlall number of) points 

which satisfy the optimality conditions and then introduce other da ta  points 

which satisfy the feasibility constraints. The  sufficiency conditions, and 

their use a s  the basis of generating reference da ta  sets, are illustrated below 

using the examples of the Chebyshev circle and cylinder problems. 

3.2.2 C h e b y s h e v  c i rc le  

Let b = (xo. go,  ro, S) and b* = (0: 0, r;, S * ) .  Define points X = {X, : i = 

1, .  . . , m )  by their polar coordinates r, and 0, to  satisfy 

and 

r,  = r; + S'. j E Jo. r = r - S *  k E KO 

Choosing thc values r i ,  i = 1. .... m. in this way ensures that  the constraints 

are satisfied for b*, and that  Jo and KO define the indices of the act,ive 

constraints. Geon~etrically, thc points X, lie between two concentric circles 

of radii r ;  - S* and r; + S",  and Jo and KO define the indices of the points 

lying on thrse circles. 

Now, 
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Figure 2: Reference da ta  sets for the Chebyshev hest-fit clrcle 

I t  follows (after some simplification) that  the Kuhn-Tucker equations (5) 

take the form 

and 

with 

1 X, = ): pi; = 1. 

These equations tell us how the polar angles H,, 3 E Jo, and O k ,  k E 

KO,  must be chosen if the sufficiency conditions a.re to  be satisfied and 

t,he solution t o  the Chebyshev best-fit circle problem for the data  X is 

to  be b*. One way for the equations to  hold is if there are two points 

on each of the concentric circles (identified by indices ,Jo and K O )  which 

when radially project,ed onto a common concentric circle define chords that  

intersect internally. 

However, there are  also other possibilities, e.g., i f  there are three points 

on each circle, lying on three radial lines. Such an arrangement also satisfies 

the sufficiency conditions and hence defines a local solutio~i,  although there 

is no subset of four points satisfying the  characterization given above. An 

"cxchange-type" algorithm for solving this problem that  operates by seeking 

a set of four points tha t  satisfy the sufficiency conditions for a solution inay 

cycle whcn it encounters such a situation. 

Figure 2 shows two reference da ta  sets for the Chebyshev best-fit circle 

problem which have the same solution xi = 0. y i  = 0, r t  = 1 and S "  = 0.1. 

In each case the points defining t,he active constraints are highlighted. For 

the first d a t a  set there are four such points, and for the second six  point,^. 
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3.2.3 Chebyshev cylinder 

Define points X = {X, : i = 1 . .  . . , m) by their cylindrical polar coordi- 

nates r i .  8, and 2,. For the Chebyshev cylinder, the optimality conditions 

corresponding t o  (5) for a solution cylindcr in standard position. i.e., with 

its axis coincident with the z-axis, are those for the Chebyshev circle given 

before together with the additional conditions 

1 X ,  z, cos 0, = C pkzk COS Bi;, C XI Z? sin 0, = ): pkzk sin Bi;. 

J E . J O  k € K o  J  E , l o  ~ E K O  

(6) 
We can use the (geometrical) characterization of a solution to the Chebyshev 

circle problem t o  determine 8, and X,. j E Jo, and Oi, and pi;, Ic E KO,  t o  

satisfy the  conditions for the Chebyshev circle. In this way the X- and y-  

components of the points defining the active constraints are determined. 

The =-components are chosen to satisfy the conditions (6) by solving a 

linear system of equations derived from those conditions. 

Having determined a set of contacting points in this way it is then 

necessary t o  verify the  second order optiniality conditions to  ensure the 

solution cylindcr corresponds to a local minimum. Further d a t a  points are  

added subject to  the constraint that they lie on or between the cylinders of 

radius I-; &S'. Finally, the solution cylinder and d a t a  points are transformed 

(rotated t o  adjust the orientation of the cylinder axis and translated t o  

adjust its position) t o  generate data and a corresponding solution in general, 

rather than standard, position. 

This procedure can be applied to  produce reference d a t a  sets for t h e  

Chebyshev cylinder with four or more contacting points at the solution. 

Table 1 contains a reference data  set for the Chebyshev cylinder problem. 

The solution for the da ta  set is a cylinder in standard position of radius 

TO*  = 100. The first five points define the active col~straints a t  the solut,ion. 

4 Concluding remarks 

We have considered methods for generating reference d a t a  sets and cor- 

responding reference results for testing Gaussian and Chebyshev feature 

fitting software. Such software plays an important part of computer-aided 

inspection in manufacturing and, consequently, it is essential that  the  nu- 

merical correctness of such software is verified. The  method of d a t a  gener- 

ation advocakd in this work is based on examining the (sufficiency) con- 

ditions for a solution to the problem considered, and determining da ta  t o  

satisfy the conditions for a solution specified a przorz. The approach has 

the advantages that  it does not require the development of reference soft- 

ware, allows many d a t a  sets with the same solution t o  be generated easily, 

and permits da ta  sets with specified properties to  be produced. The  ap- 

proach has been illustrated for Gaussian and Chcbyshev circle and cylindcr 

problems. 
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Table 1: Reference data  set for the Chebyshev cylinder problem. T h e  solu- 

tion is a cylinder with its axis coincident with the z-axis and radius 100. 

The first five points define the active constraints a t  the solution. 

METROS (the L I E T R O I O ~ ~  Software environment) [l21 is a system aimed 

at  provldmg nxtrolog~sts  wlth access to  software appropriate to thelr needs 

Reference d a t a  sets and correspond~ng results for the problems considered 

here will iubsequently he mcorporated In LIETROS 
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