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Abstract

While the verification of the performance of coordinate measuring machines
(CMMs) is self-evidently important, the point coordinates they provide are
usually the input to form and tolerance assessment software that calculate
associated geometric features, such as a best fit cylinder to the data. For
the measurement result to be reliable, it is also necessary to ensure that the
calculations performed by this software are fit for purpose. The forthcoming
standard ISO 10360-6:2001 /1] specifies the procedure by which Gaussian
(least-squares) form assessment software should be tested.

Many tolerance assessment problems relate to Chebyshev (minimum-
zone) fitting criteria in which the maximum error is minimized. These
criteria lead to nonlinearly constrained optimization problems that are dif-
ficult to solve reliably if appropriate algorithms are not employed. Many
existing and proposed algorithms fail on seemingly simple data sets.

In this paper we examine the problem of how to generate reference data
sets and corresponding reference results for testing software for computing
Gaussian and Chebyshev associated features. We indicate how to generate
data sets for circles and cylinders, including data sets to help expose the
deficiencies of inadequate software.

1 Introduction

This paper is concerned with the generation and use of reference data
sets and corresponding reference results for testing geometric tolerance as-
sessment software used by CMMs. Such software is a key component of
computer-aided inspection in manufacturing. In order to verify that a man-
ufactured artefact is within tolerance a CMM is used to collect a set of data
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(x4, 1., 2;) Tepresenting points lying on the surface of the artefact.! The tol-
erance assessment software is used to analyse these data points with respect
to the design and tolerance specification for the manufactured artefact to
determine if the artefact is within tolerance.

It is clearly important that such software gives correct information and
any serious quality management system will demand that its reliability can
be verified in a practical manner. Numerical software with a well defined
computational aim can be tested using the following general approach [3, 4]:

I Determine reference data sets (appropriate for the computational aim)
and corresponding reference results;

IT Apply the software under test to the reference data sets to produce
test results;

III Compare the test results with the reference results.

However, the approach poses two fundamental questions. Firstly, how do
we determine correct reference results for data sets? Secondly, how do
we compare test results with reference results in a meaningful way? The
viability of the approach depends on satisfactory answers to these questions
and no formal software testing will be worthwhile unless these questions
have been addressed.

The standard ISO 10360-6:2001 [1] defines a method (along the above
lines) for testing software used to compute Gaussian associated features
from coordinate measurements. The geometric features covered are the
line (in two and three dimensions), the plane, the circle (in two and three
dimensions), the sphere, the cylinder, the cone, and the torus. To answer the
first question, the Standard proposes the use of either reference software or
data gencrator software, but is not concerned with how such software might
be implemented. To answer the second question, the standard specifies the
use of performance values that measure the difference between reference
parameter values and test parameter values for the four classes of parameters
used (location, orientation, size and angle).

In this paper we are concerned with generators of reference data sets
and corresponding results for testing tolerance assessment software. We ad-
dress first the computations covered by ISO 10360-6:2001 and, thereafter,
more general tolerance assessment problems including Chebyshev (or mini-
mum zone) fitting criteria.

2 Computational aim of tolerance assessment software

Geometric tolerance assessment software can be classified into two broad
types: those that are based on Gaussian and those on Chebyshev formula-

1 Because the tip of the CMM probe has a finite radius the data values recorded in
fact lie on a surface offset from the real surface. Compensation for this effect is possible
[2], but is not considered here.
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tions. From an end-user perspective, both types perforni roughly the same
task — find the best-fit associated feature to data — but the optimisation
technology employed is considerably different. This difference will have
some bearing on the methods we employ to test such software. However,
certain commonalities are present.

The computational aim of most assessment software used in coordinate
metrology (and other areas) can be formulated in terms of an optimisation
problem. This is illustrated below using the examples of the Gaussian and
Chebyshev best-fit circles.

Gaussian best-fit circle. A circle in the plane can be described by its
centre coordinates (zg,yp) and its radius rp. The distance d from a point
x = (z,y) to a circle defined by parameters a = (xp,yo.7¢) is given by

d=dixia) = [(z = 20)2 + (y = v0)*] " = 1o, (1)

Given a set of data points X = {x; : 1 = 1,...,m}, the Gaussian (least-
squares) associated circle [3] is found by solving the optimisation problem

m
. 2/ 9
mamZd (x;,a). (2)

i=1

Chebyshev best-fit circle. The Chebyshev or minimum zone circle to
data points X is defined as the solution to the problem

min max |d(x;,a)l.
a i=1i,..m
By introducing the parameter s = max; jd(x;, a)|, this problem can be re-
formulated as

mins subject to —s<d(x;,a)<s, (=1,....m, (3)
a,s
i.c., as a constrained optimisation problem in terms of parameters a and s.?

3 Generation of reference data and results

In this section we describe methods for generating reference data and results
“simultaneously”, independently of reference software; see also [4, 7. 8].
Consider the Gaussian optimisation problem (2). It is possible to de-
rive sufficiency conditions involving the data X and parameters a which
when satisfied by a* will guarantee that a* is a local minimum for the op-
timisation problem. Algorithms for solving (2) usually function by starting

Minimum circumscribed and maximum inscribed problems can similarly be formu-
lated as constrained optimisation problems [6], but arec not considered here.
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from an initial estimate of the solution and then making systematic progress
until these conditions are satisfied. The reference data generation problem
is in some sense dual to the optimisation problem: given “solution” param-
eters a* find data X such that the sufficiency conditions are satisfied. The
reference data generation problem for the Chebyshev problem is treated sim-
ilarly by considering sufficiency conditions for a solution to the optimisation
problem (3).

An important aspect of the reference data generation problem is that
while the sufficiency conditions are usually over-determined with respect to
the optimisation parameters they are usually under-determined with respect
to the data points X. For this reason, it is generally much easier to solve
the data generation problem.

3.1 Data generation for Gaussian best-fit features

3.1.1 Sufficiency conditions

Suppose a ~ S(a) parametrizes a geometric feature and d = d(x;a) is the
distance from a point x to the feature S(a). The sufficiency conditions for
a* to be the Gaussian best-fit feature for a data set X = {x;} are that (i)
JTd = 0, where J is the Jacobian matrix of partial derivatives defined by

and the ith element of d is d(x;,a*), and (ii) the Hessian matrix carrying
second derivative information is strictly positive definite [9].

The sufficiency conditions correspond to the (familiar) conditions of
zero first derivative and positive second derivative that characterize a min-
imum of a function, but are here expressed in terms of the componcnt
distance functions d(x;,a*) that define the Gaussian (least-squares) error
measure in (2). The first of the conditions states that d lies in the null
space of JT, i.e., in the vector space {z : JTz = 0}. This observation un-
derpins the null space method for generating reference data that has been
applied at NPL to test a wide range of least-squares software [4, 10]. The
method is illustrated below using the example of the Gaussian best-fit circle.

3.1.2 Gaussian best-fit circle
Let a = (zp,¥g,70) and a* = (0,0,r5). Given a set of polar angles 0;,1 =
1,...,m, with m > 3, define

x] = r}{cosb;,sinb;),
and

x; = (1§ 4+ 6;)(cos 0;,sin8;).

The points X* = {x} lie on the circle specified by the parameters a*, and
the points X = {x;} at distances ¢; from this circle. Clearly, the solution



%ﬁ Transactions on Engineering Sciences vol 34, © 2001 WIT Press, www.witpress.com, ISSN 1743-3533

Laser Metrology and Machine Performance 371

1( T - 1
05 : . - '. . 05
ol 0
-05 -0.5
-1 ) -1 .
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Figure 1: Reference data sets for the Gaussian best-fit circle.

to the Gaussian best-fit circle problem for the points X* is a*. The data
generation problem is to determine values for d; such that the sufficiency
conditions are satisfied.

Now, using (1) and the above definitions, it follows that the elements
of the Jacobian matrix J are given by

%_—COSQ %——sine- 9di _
dxg Y dyy Y Org

Consequently, the first of the sufficiency conditions takes the form of the

equations
m m m
Zdicos@- = Zdisinei = Zdi = 0.
=1 1=1 i=1

The equations are under-determined because there are only 3 equations
in the m unknowns ¢;,7 = 1,...,m. This property may be exploited to
generate many reference data sets having the same reference solution a* and
to generate data sets possessing prescribed properties. Having obtained a
solution to these equations it is necessary to use the second of the sufficiency
conditions to verify that a* defines a minimum of the Gaussian best-fitting
problem.

Figure 1 shows two reference data sets for the Gaussian best-fit circle
problem which have the same solution z§ = 0, y5 = 0 and rj = 1. The
second of the data sets is constructed such that the residual deviations
for the solution circle exhibit a “three-lobed” pattern, thus mimicking a
commonly-observed behaviour.
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3.2 Data generation for Chebyshev best-fit features

3.2.1 Sufficiency conditions
It is convenient to write the Chebyshev optimisation problem (3) in the
general form

mbin F(b) subject to ¢ (b) >0 and ¢ (b} >0, i=1,...,m, (4)

where b = (a,s), F(b) = s, ¢/ (b) =s—d(x;,a), and ¢] (b) = s+ d(x;,a).
The sufficiency conditions for b* to be a local solution for (4) are (i)
feasibility: all the constraints are satisfied, i.e., ¢} (b*) > 0 and ¢ (b*) > 0;
(ii) the Kuhn- Tucker equations are satisfied, i.e., il J% = {j : +(b* =0}
and K% = {k : ¢; (b*) = 0} specify the mdlces of the active constraints,

then
VoF(b*) = > AVucl + Y mVoep, (5)

jeJgo ke KO

with Lagrange multipliers \; > 0, j € J° and px >0, k € K and (iii) a
Hessian-type matrix constructed from the matrices of second derivatives of
the active constraint functions is strictly positive definite [11].

The sufficiency conditions have one very noticeable feature in that only
the active constraints feature significantly. To generate data sets with a
known local solution it is sufficient to generate (a small number of) points
which satisfy the optimality conditions and then introduce other data points
which satisfy the feasibility constraints. The sufficiency conditions, and
their use as the basis of generating reference data sets, are illustrated below
using the examples of the Chebyshev circle and cylinder problems.

3.2.2 Chebyshev circle
Let b = (z0,%0,70,8) and b* = (0,0,7r5,s*). Define points X = {x; : i =
1,...,m} by their polar coordinates r; and 6; to satisfy

rg =8 < <rl+sT, i=1,....m,

and

ry=r5+s8, je€do, re=ry~s, k&Ko
Choosing the values r;, 1 = 1,...,m, in this way ensures that the constraints
are satisfied for b*, and that Jy and Ky define the indices of the active
constraints. Geometrically, the points x; lie between two concentric circles
of radii 7§ — ¢* and 7§ + s, and Jy and Kq define the indices of the points
lying on these circles.

Now,
VoF(Y) = (0.0.0,1)7
Vel (b") = (costy,sinf,,1,1)7,
Vyep (b*) = (—cosfy, —sinfy, —1, 1)T



%ﬁ Transactions on Engineering Sciences vol 34, © 2001 WIT Press, www.witpress.com, ISSN 1743-3533

Laser Metrology and Machine Performance 373

1 e D 1 S
T e - P N
- A .o
7 o RS
0.5 v 0.5f v/ RN
@, % e
ot - 0 '
Wi
ol
N
-05 N -0.5
'S / N
~ e ~N -~
NIGO) . //. ) /./
-1 T T -1 o T
-1 -05 0 0.5 1 -1 -05 0 0.5 1

Figure 2: Reference data sets for the Chebyshev best-fit circle.

It follows (after some simplification) that the Kuhn-Tucker equations (5)
take the form

Z Ajcosf; = Z 1ip cO8 O, Z A;sind; = Z L sin B,

j€Jo kEKg j€Jo kE€EKg
and
E /\j = E M = 1,
Jj€Jy keKy
with

A;>0,5€dy, x>0, ke Ky

These equations tell us how the polar angles 6;, j € Jo, and O, k €
Ky, must be chosen if the sufficiency conditions are to be satisfied and
the solution to the Chebyshev best-fit circle problem for the data X is
to be b*. One way for the equations to hold is if there are two points
on each of the concentric circles (identified by indices Jy and Ky) which
when radially projected onto a common concentric circle define chords that
intersect internally.

However, there are also other possibilities, e.g., if there are three points
on each circle, lying on three radial lines. Such an arrangement also satisfies
the sufficiency conditions and hence defines a local solution, although there
is no subset of four points satisfving the characterization given above. An
“exchange-type” algorithm for solving this problem that operates by seeking
a set of four points that satisfy the sufficiency conditions for a solution may
cycle when it encounters such a situation.

Figure 2 shows two reference data sets for the Chebyshev best-fit circle
problem which have the same solution 25 =0, y§ =0, r§ =1 and s* = 0.1.
In each case the points defining the active constraints are highlighted. For
the first data set there are four such points, and for the second six points.
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3.2.3 Chebyshev cylinder

Define points X = {x; : ¢ = 1,...,m} by their cylindrical polar coordi-
nates 7;, 8; and z;. For the Chebyshev cylinder, the optimality conditions
corresponding to (5) for a solution cylinder in standard position, i.e., with
its axis coincident with the z-axis, are those for the Chebyshev circle given
before together with the additional conditions

Z Ajzjcos0; = Z Jg 2k COS O, Z Ajzysinfl; = Z JpZg sin O,

ieTo kEKo 7€ KEKo
(6)

We can use the (geometrical) characterization of a solution to the Chebyshev
circle problem to determine §; and A;, j € Jo, and 0y and py, & € Koy, to
satisfy the conditions for the Chebyshev circle. In this way the z— and y—
components of the points defining the active constraints are determined.
The z—components are chosen to satisfy the conditions (6) by solving a
linear system of equations derived from those conditions.

Having determined a set of contacting points in this way it is then
necessary to verify the second order optimality conditions to ensurc the
solution cylinder corresponds to a local minimum. Further data points are
added subject to the constraint that they lie on or between the cylinders of
radius 7§ +s™. Finally, the solution cylinder and data points are transformed
(rotated to adjust the orientation of the cylinder axis and translated to
adjust its position) to gencrate data and a corresponding solution in general,
rather than standard, position.

This procedure can be applied to produce reference data sets for the
Chebyshev cylinder with four or more contacting points at the solution.
Table 1 contains a reference data set for the Chebyshev cylinder problem.
The solution for the data set is a cylinder in standard position of radius
r5 = 100. The first five points define the active coustraints at the solution.

4 Concluding remarks

We have considered methods for generating reference data sets and cor-
responding reference results for testing Gaussian and Chebyshev feature
fitting software. Such software plays an important part of computer-aided
inspection in manufacturing and, consequently, it is essential that the nu-
merical correctness of such software is verified. The method of data gener-
ation advocated in this work is based on examining the (sufficiency} con-
ditions for a solution to the problem considered, and determining data to
satisfy the conditions for a solution specified a priori. The approach has
the advantages that it does not require the development of refercnce soft-
ware, allows many data sets with the same solution to be generated easily,
and permits data sets with specified properties to be produced. The ap-
proach has been illustrated for Gaussian and Chebyshev circle and cylinder
problems.
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i T Ui zi
1 -0.5729898924454593 -100.0983600394290  30.56373320610054
2 99.93524267611404  -5.740842382977500 -11.47288911815088
3 2.067975691341978 100.0786364642326  -38.51138609240303
4 T3.37777456764940 -67.79168237696440  1.456636722411527
5 65.99221271537206  75.00025240576920 -26.31733206208247
6  -50.77237299225759 -86.08674501655730 -67.25866707485226
7 83.59457524517181  54.71596641722667  -99.43039920404216
8 -89.68897347648601 -44.30625130963349 15.82090089703252
9 50.71407491536649 -86.22792004622092  68.38301331354209
10 4.656525747369551 -99.97855791177561 -53.63577066834554

Table 1: Reference data set for the Chebyshev cylinder problem. The solu-
tion is a cylinder with its axis coincident with the z—axis and radius 100.
The first five points define the active constraints at the solution.

METROS (the METROlogy Software environment) [12] is a system aimed
at providing metrologists with access to software appropriate to their needs.
Reference data sets and corresponding results for the problems considered
here will subsequently be incorporated in METROS.
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