Validation of components of local ties

<u>Susanne Glaser</u>^{1,2}, M. Fritsche^{1,3}, K. Sośnica⁴, C. J. Rodríguez-Solano⁵, K. Wang⁶, R. Dach⁴, U. Hugentobler⁵, M. Rothacher⁶, R. Dietrich¹

 ¹Technische Universität Dresden, ²now at: Technische Universität Berlin, ³now at: GFZ German Research Centre for Geosciences, ⁴Universität Bern, ⁵Technische Universität München, ⁶ETH Zürich

Kirchberg, October 13, 2014

Glaser et al.

Validation of LT

10/13/2014 1 / 23

Introduction	GNSS/SLR	GNSS+SLR	Conclusion	References
000	0000	0000000	00	
Outline				

Introduction	GNSS/SLR	GNSS+SLR	Conclusion	References
000	0000	0000000	00	
Outline				

- 2 Single-technique solutions
 - Input data
 - Preliminary analysis
 - Results

Introduction	GNSS/SLR	GNSS+SLR	Conclusion	References
000	0000	0000000	00	
Outline				

- 2 Single-technique solutions
 - Input data
 - Preliminary analysis
 - Results
- 3 Combined solution
 - Strategy
 - Results

Introduction	GNSS/SLR	GNSS+SLR	Conclusion	References
000	0000	0000000	00	
Outline				

- 2 Single-technique solutions
 - Input data
 - Preliminary analysis
 - Results
- 3 Combined solution
 - Strategy
 - Results

Introduction	GNSS/SLR 0000	GNSS+SLR 0000000	Conclusion 00	References
Outline				

- 2 Single-technique solutions
- 3 Combined solution
- 4 Conclusion

Introduction	GNSS/SLR	GNSS+SLR	Conclusion	References
●○○	0000	0000000	00	
Introduction				

Reference frame as the realization of a reference system

Figure: Reference frame as the connections of the three pillars of geodesy, according to IAG (2014)

Introduction	GNSS/SLR	GNSS+SLR	Conclusion	References
000				
Internetica.				

Combination of different geodetic space techniques

Introduction	GNSS/SLR 0000	GNSS+SLR 0000000	Conclusion 00	References
Motivation				
Combinat	ion strategy			

Introduction	GNSS/SLR 0000	GNSS+SLR 0000000	Conclusion 00	References
Motivation				
Combinat	ion strategy			

• Local ties at co-located sites

Introduction	GNSS/SLR 0000	GNSS+SLR 0000000	Conclusion 00	References
Motivation				
Combinati	on strategy			

- Local ties at co-located sites
 - Inhomogeneous data base
 - IERS Working Group on Site Survey and Co-location

Introduction	GNSS/SLR 0000	GNSS+SLR 0000000	Conclusion 00	References
Motivation				
Combinati	on strategy			

- Local ties at co-located sites
 - Inhomogeneous data base
 - IERS Working Group on Site Survey and Co-location
- Pole coordinates as global ties (Seitz et al., 2012)

Introduction	GNSS/SLR 0000	GNSS+SLR 0000000	Conclusion 00	References
Motivation				
Combinati	on strategy			

- Local ties at co-located sites
 - Inhomogeneous data base
 - IERS Working Group on Site Survey and Co-location
- Pole coordinates as global ties (Seitz et al., 2012)
- Our approach: combination of the pole coordinates and the degree-1 surface load coefficients (Blewitt, 2003), common origin of GNSS and SLR

Introduction	GNSS/SLR	GNSS+SLR	Conclusion	References
000	0000	0000000	00	
Outline				

- 2 Single-technique solutions
- 3 Combined solution

4 Conclusion

Introduction 000	GNSS/SLR ●000	GNSS+SLR 0000000	Conclusion 00	References
Input data				
Data				

Introduction 000	GNSS/SLR ●○○○	GNSS+SLR 0000000	Conclusion 00	References
Input data				
Data				

Introduction 000	GNSS/SLR ●ooo	GNSS+SLR 0000000	Conclusion 00	References
Input data				
Data				

IR

Introduction 000	GNSS/SLR ●○○○	GNSS+SLR 0000000	Conclusion 00	References
Input data				
Data				

from a homogeneous reprocessing (Fritsche et al., 2014)

Introduction	GNSS/SLR	GNSS+SLR	Conclusion	References
	0000			
Input data				

Station network

Figure: Globally distributed GNSS (red) and SLR (blue) stations

Introduction	GNSS/SLR	GNSS+SLR	Conclusion	References
	0000			
Preliminary analysis				

Preliminary analysis at station positions time series of all stations

Introduction	GNSS/SLR	GNSS+SLR	Conclusion	References
000	○○●○	0000000	00	
Preliminary analysis				

Preliminary analysis at station positions time series of all stations

- Elimination of position outliers
- Station events (jumps)
- Core stations for the definition of the geodetic datum

Introduction	GNSS/SLR	GNSS+SLR	Conclusion	References
000	○○●○	0000000	00	
Preliminary analysis				

Preliminary analysis at station positions time series of all stations

- Elimination of position outliers
- Station events (jumps)
- Core stations for the definition of the geodetic datum
 - Selection according to the length and accuracy of the station position time series and the global distribution
 - Similar to IGS and ILRS solutions

Introduction 000	GNSS/SLR ○○○●	GNSS+SLR 0000000	Conclusion 00	References
Results				
Pole coor	dinates			

Introduction	GNSS/SLR	GNSS+SLR	Conclusion	References
000	0000	0000000	00	
Results				

Pole coordinates

Figure: Differences Δx_P , Δy_P of estimated and "IERS 08 C04" pole coordinates

Offset, Trend	GNSS-only		SLI	R-only
Δx_P	-0.04 mas	0.00 mas/a	0.14 mas	0.00 mas/a
Δy_P	-0.06 mas	0.00 mas/a	0.11 mas	0.00 mas/a

0			
(laser	et	a
~	abei	~~	

Introduction 000	GNSS/SLR 0000	GNSS+SLR	Conclusion 00	References
Outline				

- 2 Single-technique solutions
- 3 Combined solution

4 Conclusion

Introduction 000	GNSS/SLR 0000	GNSS+SLR ••••••	Conclusion 00	References
Strategy				
Combination	strategy and	weighting		

Introduction 000	GNSS/SLR 0000	GNSS+SLR ●000000	Conclusion 00	References
Strategy				
Combination	strategy and	weighting		

$$\mathbf{N} \cdot \hat{\mathbf{x}} = \mathbf{n}$$

Introduction 000	GNSS/SLR 0000	GNSS+SLR ●000000	Conclusion 00	References
Strategy				
Combination	strategy and	weighting		

$$\mathbf{N} \cdot \hat{\mathbf{x}} = \mathbf{n}$$

with

 $\mathbf{N} = w_{GNSS}\mathbf{N}_{GNSS} + w_{SLR}\mathbf{N}_{SLR}$

$$\mathbf{n} = w_{GNSS}\mathbf{n}_{GNSS} + w_{SLR}\mathbf{n}_{SLR}$$

Introduction 000	GNSS/SLR 0000	GNSS+SLR ●000000	Conclusion 00	References
Strategy				
Combinat	ion strategy a	nd weighting		

 $\textbf{N}\cdot \hat{\textbf{x}} = \textbf{n}$

with

$$\mathbf{N} = w_{GNSS} \mathbf{N}_{GNSS} + w_{SLR} \mathbf{N}_{SLR}$$

$$\mathbf{n} = w_{GNSS}\mathbf{n}_{GNSS} + w_{SLR}\mathbf{n}_{SLR}$$

 $\quad \text{and} \quad$

$$w_{GNSS} = 1$$

 $w_{SLR} = \frac{s_{GNSS}^2}{s_{SLR}^2}$

Introduction 000	GNSS/SLR 0000	GNSS+SLR ●OOOOOO	Conclusion 00	References
Strategy				
Combination	strategy and	weighting		

 $\mathbf{N}\cdot\hat{\mathbf{x}}=\mathbf{n}$

with

$$\mathbf{N} = w_{GNSS}\mathbf{N}_{GNSS} + w_{SLR}\mathbf{N}_{SLR}$$

$$\mathbf{n} = w_{GNSS}\mathbf{n}_{GNSS} + w_{SLR}\mathbf{n}_{SLR}$$

and

$$w_{GNSS} = 1$$

$$w_{SLR} = \frac{s_{GNSS}^2}{s_{SLR}^2} \cdot \frac{N_{GNSS}^{mean}}{N_{SLR}^{mean}} = 0.81$$

based on Thaller (2008)

Introduction	GNSS/SLR	GNSS+SLR	Conclusion	References
000	0000	o●○○○○○	00	
Strategy				

Combination strategy

- Combination of the pole coordinates of GNSS and SLR
- Combination of the degree-1 surface load coefficients
- Station velocities at co-located sites were set to be equal

Introduction	GNSS/SLR	GNSS+SLR	Conclusion	References
000	0000	o●ooooo	00	
Strategy				

Combination strategy

- Combination of the pole coordinates of GNSS and SLR
- Combination of the degree-1 surface load coefficients
- Station velocities at co-located sites were set to be equal

Realization of the geodetic datum

Introduction	GNSS/SLR	GNSS+SLR	Conclusion	References
000	0000	o●ooooo	00	
Strategy				

Combination strategy

- Combination of the pole coordinates of GNSS and SLR
- Combination of the degree-1 surface load coefficients
- Station velocities at co-located sites were set to be equal

Realization of the geodetic datum

• Origin: GNSS and SLR observations

Introduction	GNSS/SLR	GNSS+SLR	Conclusion	References
000	0000	o●ooooo	00	
Strategy				

Combination strategy

- Combination of the pole coordinates of GNSS and SLR
- Combination of the degree-1 surface load coefficients
- Station velocities at co-located sites were set to be equal

Realization of the geodetic datum

- Origin: GNSS and SLR observations
- Network scale: GNSS and SLR observations

Introduction	GNSS/SLR	GNSS+SLR	Conclusion	References
000	0000	o●ooooo	00	
Strategy				

Combination strategy

- Combination of the pole coordinates of GNSS and SLR
- Combination of the degree-1 surface load coefficients
- Station velocities at co-located sites were set to be equal

Realization of the geodetic datum

- Origin: GNSS and SLR observations
- Network scale: GNSS and SLR observations
- Orientation:
 - NNR around the X, Y, Z axis for GNSS
 - NNR around the Z axis for SLR

temporal change: NNR around the X, Y, Z axis for GNSS

Introduction	GNSS/SLR	GNSS+SLR	Conclusion	References
000	0000	o●ooooo	00	
Strategy				

Combination strategy

- Combination of the pole coordinates of GNSS and SLR
- Combination of the degree-1 surface load coefficients
- Station velocities at co-located sites were set to be equal

Realization of the geodetic datum

- Origin: GNSS and SLR observations
- Network scale: GNSS and SLR observations
- Orientation:
 - NNR around the X, Y, Z axis for GNSS
 - NNR around the Z axis for SLR

temporal change: NNR around the X, Y, Z axis for GNSS

\rightarrow minimum constraint solution

Validation of LT

Estimation.	-f	بمما مبابركم من	al atau	
Results				
Introduction 000	GNSS/SLR 0000	GNSS+SLR ○○●○○○○	Conclusion 00	References

Estimation of components of the local ties

Introduction 000	GNSS/SLR 0000	GNSS+SLR 000000	Conclusion 00	References
Results				
- · ·	C			

Estimation of components of the local ties

Strategy

• a priori positions and velocities

$$\Delta \mathbf{X}^{LT} = \mathbf{X}_{SLR}^{LT} - \mathbf{X}_{GNS}^{LT}$$

• same velocities for the LT stations

Introduction 000	GI OO	NSS/SLR DOO	GNSS+SLR ○○●○○○○	Conclusion 00	References
Results					
· .			C.I. I. I.		

Estimation of components of the local ties

Strategy

• a priori positions and velocities

$$\Delta \mathbf{X}^{LT} = \mathbf{X}_{SLR}^{LT} - \mathbf{X}_{GNSS}^{LT}$$

• same velocities for the LT stations

Result

$$\delta \mathbf{X} = (\mathbf{X}_{SLR}^{est} - \mathbf{X}_{GNSS}^{est}) - \Delta \mathbf{X}^{LT}$$

Introduction	GNSS/SLR	GNSS+SLR	Conclusion	References
000	0000	○○○●○○○	00	
Results				

Local Ties

Figure: Histogram of differences δX_N [cm] in the north component of estimated and measured local ties.

Glaser et al.

Introduction 000	GNSS/SLR 0000	GNSS+SLR 0000000	Conclusion 00	References
Results				

Local Ties

Figure: Histogram of differences δX_H [cm] in the height component of estimated and measured local ties.

Introduction 000	GNSS/SLR 0000	GNSS+SLR ○○○○○●○	Conclusion 00	References
Results				
Effect of the	measured loc	al ties		

Introduction 000	GNSS/SLR 0000	GNSS+SLR ○○○○○●○	Conclusion 00	References
Results				
Effect of the	measured loc	al ties		

Using a 14-parameter Helmert transformation

- between the single-technique solutions
 - GNSS: X^{est} GNSS

• SLR + LT:
$$\mathbf{X}_{SLR}^{est} + \Delta \mathbf{X}^{LT}$$

Introduction	GNSS/SLR	GNSS+SLR	Conclusion	References
000	0000	000000	00	
Results				

Transformation parameters of a 14-parameter Helmert transformation

GNSS		SLR -	+ LT
<i>T_X</i> [mm]	\dot{T}_X [mm/a]	1,76	-0,38
<i>T_Y</i> [mm]	\dot{T}_{Y} [mm/a]	-16,51	0,39
<i>T_Z</i> [mm]	\dot{T}_{Z} [mm/a]	3,20	-0,14
R_X [masec]	\dot{R}_X [masec/a]	0,031	-0,012
R _Y [masec]	\dot{R}_{Y} [masec/a]	0,382	-0,007
R _Z [masec]	\dot{R}_Z [masec/a]	-0,147	0,005
<i>m</i> [mm/km]	\dot{m} [mm/km/a]	-0,00064	-0,00025

Introduction 000	GNSS/SLR 0000	GNSS+SLR 0000000	Conclusion	References
Outline				

- 2 Single-technique solutions
- 3 Combined solution

Introduction	GNSS/SLR	GNSS+SLR	Conclusion	References
000	0000	0000000	●○	
Summary				

Introduction	GNSS/SLR	GNSS+SLR	Conclusion	References
000	0000	0000000	●○	
Summary				

• **Combination** of GNSS and SLR with **minimum constraint** conditions.

Introduction	GNSS/SLR	GNSS+SLR	Conclusion	References
000	0000	0000000	●○	
Summary				

- **Combination** of GNSS and SLR with **minimum constraint** conditions.
- Estimation of components of the local ties at co-located sites using the pole coordinates as global ties.

Introduction	GNSS/SLR	GNSS+SLR	Conclusion	References
000	0000	0000000	●○	
Summary				

- **Combination** of GNSS and SLR with **minimum constraint** conditions.
- Estimation of components of the local ties at co-located sites using the pole coordinates as global ties.
- **Differences** between estimated and measured local ties: 88% in north, 52% in height component below 1 cm.

Introduction	GNSS/SLR	GNSS+SLR	Conclusion	References
000	0000	0000000	●○	
Summary				

- **Combination** of GNSS and SLR with **minimum constraint** conditions.
- Estimation of components of the local ties at co-located sites using the pole coordinates as global ties.
- **Differences** between estimated and measured local ties: 88% in north, 52% in height component below 1 cm.
- **Translation** in direction of Y and **rotation** of the network around Y by using all measured local ties.

Introduction	GNSS/SLR	GNSS+SLR	Conclusion	References
000	0000	0000000	●○	
Summary				

- **Combination** of GNSS and SLR with **minimum constraint** conditions.
- Estimation of components of the local ties at co-located sites using the pole coordinates as global ties.
- **Differences** between estimated and measured local ties: 88% in north, 52% in height component below 1 cm.
- **Translation** in direction of *Y* and **rotation** of the network around *Y* by using all measured local ties.

 \rightarrow Combination of different geodetic space techniques to realize a global terrestrial reference system in the framework of GGOS.

Introduction	GNSS/SLR	GNSS+SLR	Conclusion	References
000	0000	0000000	⊙●	
Summary				

Thank you very much for your attention.

susanne.glaser@tu-berlin.de

Introduction 000	GNSS/SLR 0000	GNSS+SLR 0000000	Conclusion 00	References
Summary				
References				

- Blewitt, G. (2003). Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. *J. Geophys. Res.*, 108(B2):2103.
- Fritsche, M., Sośnica, K., Rodríguez-Solano, C., Steigenberger, P., Wang, K., Dietrich, R., Dach, R., Hugentobler, U., and Rothacher, M. (2014). Homogeneous reprocessing of GPS, GLONASS and SLR observations. J. Geod., pages 1–18.
- IAG (2014). http://www.iag-ggos.org/about_geodesy/the_three_pillars.php.
- Seitz, M., Angermann, D., Bloßfeld, M., Drewes, H., and Gerstl, M. (2012). The 2008 DGFI realization of the ITRS: DTRF2008. J. Geod., 86(12):1097–1123.
- Thaller, D. (2008). Inter-technique combination based on homogeneous normal equation systems including station coordinates, Earth orientation and troposphere parameters. Deutsches GeoForschungsZentrum. Scientific Technical Report STR 08/15.

Definition of core stations

Figure: Definition of core stations (filled symbol) of the GNSS (red) the SLR (blue) network

Figure: Surface load coefficients and difference of CF w.r.t. CM

Modeling of surface loads (Blewitt, 2003)

Figure: Degree-1 surface load coefficients $(\sigma_{10}^{C}, \sigma_{11}^{C}, \sigma_{11}^{S})$ (left) and differences $[\Delta \mathbf{r}_{CF}]_{CM}$ (right)

Modeling of surface loads (Blewitt, 2003)

Figure: Degree-1 surface load coefficients $(\sigma_{10}^{C}, \sigma_{11}^{C}, \sigma_{11}^{S})$ (left) and differences $[\Delta \mathbf{r}_{CF}]_{CM}$ (right)