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1.  INTRODUCTION

Global climate models (GCMs) are state-of-the-art

tools used to predict the evolution of the Earth’s cli-

mate system (Meehl et al. 2007). However, the direct

use of climate projections from GCMs for local

assessments of climate change impacts is problem-

atic because of the coarse spatial resolution, which

results in significant errors, biases and large uncer-

tainty in their output at a local scale, particularly

for precipitation (Knutti 2008, Annan & Hargreaves

2010, Iizumi et al. 2010, Eden et al. 2012). Various

downscaling techniques have been developed to

support local-scale impact assessments, including

statistical downscaling (Wilby et al. 1998, Fowler et

al. 2007, Maraun et al. 2010) and weather generators

(WGs) (Wilks 1992, Barrow & Semenov 1995, Street

et al. 2009). These techniques allow for the genera-
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tion of daily local-scale climate scenarios suitable for

non-linear process-based impact models, e.g. crop

simulation models, which are used in impact assess-

ments (White et al. 2011). Stochastic WGs are the

most commonly used tool to generate local-scale

daily climate change scenarios. Among various WGs,

LARS-WG was intensively tested over diverse cli-

mate zones (Semenov et al. 1998, Qian et al. 2004,

Qian et al. 2008, Semenov 2008, Street et al. 2009,

Haris et al. 2010, Lazzarotto et al. 2010, Semenov et

al. 2010, Luo & Yu 2012). Overall performance of

LARS-WG in representing the statistical characteris-

tics of observed climatic variables, including extreme

events, was generally good (Qian et al. 2008, Se -

menov 2008, Iizumi et al. 2012a). LARS-WG is avail-

able from www.rothamsted.ac.uk/mas-models/ larswg.

php.

LARS-WG was used recently to develop ELPIS, a

repository of local-scale climate scenarios for Europe

(Semenov et al. 2010, Semenov & Stratonovitch 2010,

Calanca & Semenov in press). ELPIS consists of

LARS-WG site parameters for the baseline (1980−

2010) climate derived from the European Crop

Growth Monitoring System (CGMS) data set (van der

Goot 1997), and climate projections from the CMIP3

multi-model ensemble of 15 GCMs (Meehl et al.

2007) and the EU-ENSEMBLES ensemble of 9 re -

gional climate models (van der Linden & Mitchell

2009). LARS-WG generates future climate scenarios

by altering the baseline site parameters using change

factors derived from climate projections (Se menov &

Stratonovitch 2010, Iizumi et al. 2012a).

In ELPIS, site parameters for the baseline climate

were derived from the CGMS gridded daily meteor-

ological data set. CGMS was developed by the EC

Joint Research Centre for agricultural assessments

and yield predictions for major agricultural crops in

Europe (Semenov et al. 2010). It is the core of the

MARS Crop Yield Forecast System used in fore -

casting activities in Europe in support of the Com-

mon Agricultural Policy. Gridded daily weather in

CGMS was constructed by interpolating observed

daily weather from a large number of sites to a 25 km

grid over Europe (van der Goot 1997). The number of

sites used for interpolation varied between climatic

variables, with over 2500 sites for precipitation and

temperature and under 400 sites for sunshine hours.

The main objective of this study was to compare

ELPIS-generated 1980−2010 baseline scenarios with

observed daily weather for the same period 1980−

2010 at the selected sites obtained from the European

Climate Assessment (ECA) data set, which repre-

sents one of the best sources of publically available

weather records in Europe (Klein Tank et al. 2002,

Klok & Klein Tank 2009). We used the Kolmogorov-

Smirnov test (KS-test) to compare distributions of

daily values, the t-test to compare monthly means,

and the paired t-test for monthly means to check for

a potential bias. This comparison is different from a

previous comparison of ELPIS-generated baseline

scenarios with the CGMS gridded daily weather, as

in that study the ability of LARS-WG to reproduce

diverse weather patterns in Europe was tested

(Semenov et al. 2010).

2.  MATERIALS AND METHODS

2.1.  The ELPIS baseline scenarios

ELPIS is a repository of LARS-WG site parameters

over Europe combined with climate projections

from the CMIP3 and EU-ENSEMBLES multi-model

ensembles. The LARS-WG site parameters were

derived from the CGMS meteorological data set of

observed daily weather for the period 1980−2010.

Daily weather series in CGMS were interpolated to a

25 km grid across Europe and include precipitation,

minimum and maximum temperature, and solar radi-

ation. Daily solar radiation was estimated from daily

sunshine hours using Supit’s equation (Supit &

Van Kappel 1998). The interpolation procedure was

selected to ensure that gridded daily values could be

interpreted as typical weather over agricultural land

and used in agricultural assessments (van der Goot

1997).

Semenov et al. (2010) showed that LARS-WG

was able to generate synthetic weather that was

statistically similar to the CGMS daily weather

(Semenov et al. 2010). By using change factors

derived from climate projections to perturb para -

meters of site distributions of climatic variables,

LARS-WG can generate plausible future climate

scenarios at a site with weather statistics similar to

those predicted by climate models (Semenov &

Stratonovitch 2010). Climate scenarios of arbitrary

length can be generated; these can be used in risk

assessment and analysis of extreme events. For

example, Iizumi et al. (2012b) generated a 2000-yr-

long precipitation series using the LARS-WG to

analyse the statistical characteristics of daily pre-

cipitation indices in Japan (Iizumi et al. 2012b).

Also, Kapphan et al. (2012) generated 1000 yr of

weather records to examine the weather insurance

design for agricultural production (Kapphan et al.

2012).
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2.2.  The ECA data set of daily observations

The ECA data set of daily weather is maintained by

the Royal Netherlands Meteorological Institute

(KNMI) as a part of the European Climate Assess-

ment & Dataset project (Klein Tank et al. 2002). ECA

has been widely used for studies on climate extremes

and climate change, and represents the best source

of publically available daily weather for Europe (Klok

& Klein Tank 2009, Flaounas et al. 2012, van den

Besselaar et al. 2012). ECA contains observations

from a large number of stations located in Europe

and the Mediterranean, including over 2500 sites

with daily precipitation and over 1300 sites with min-

imum and maximum temperatures. For a smaller

number of sites additional variables are available,

including air pressure, cloud cover, sunshine dura-

tion, snow depth and relative humidity.

2.3.  Validation set-up

For our study, we selected 263 sites from the ECA

data set that have observed data for the period

1980−2010 and include daily precipitation, minimum

and maximum temperature, and sunshine hours.

Sunshine hours were converted into solar radiation

using the equation described in Rietveld (1978). The

locations of these sites are presented in Fig. S1 (in

the Supplement at www-int-res.com/articles/ suppl/

c057 p001_supp.pdf).

For each selected ECA site, LARS-WG site para -

meters from a corresponding ELPIS grid-cell were

used to generate 30 yr of daily weather. ECA-

observed and ELPIS-generated baseline weather

were compared using statistical tests. The altitude of

an ELPIS grid-cell represents the altitude of typical

agricultural land within a grid-cell and is not neces-

sarily equal to the altitude of the corresponding ECA

site. As will be demonstrated later, this is an impor-

tant consideration for explaining systematic differ-

ences in temperature and precipitation.

We used 3 statistical tests to compare observed and

generated daily data. The KS-test was used to com-

pare distribution of daily variables for each month (12

tests for each variable and for each site). The t-test

was used to compare monthly means of climatic

 variables (12 tests). To check for a potential bias, we

used the paired t-test to compare 12 monthly means

of ECA-observed and ELPIS-generated daily data

under the null hypothesis of no difference. For the

seasonal distribution of the length of dry and wet

series, the KS-test was used (4 tests for each series,

wet or dry). The significance level was set to α = 0.01.

Statistical tests were based on the assumption that

the observed and generated daily weather data are

both random samples from existing distributions, and

they tested the null hypothesis that these 2 distribu-

tions were the same. For each test we computed a 

p-value, which is a measure of how likely the data

has occurred by chance, assuming the null hypo -

thesis was true. Hence, a very low p-value means

that the generated daily weather is unlikely to be the

same as the observed weather. A large p-value indi-

cates that the differences between generated and

observed weather are small enough that there is

insufficient evidence to reject the null hypothesis.

Such tests cannot prove that the distributions are the

same and the null hypothesis is true. The required

closeness of the generated and observed data de -

pends upon the application in which the generated

data are used.
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Number of sites (total number is 263)

Bias sgna Bias > TRb KS sgn>0c KS sgn>3c t-test sgn>0c t-test sgn>3c

Precipitation 99 65 11 0 81 41

Wet series − − 3 0 − −

Dry series − − 0 0 − −

Min. temperature 152 77 22 17 201 109

Max. temperature 133 59 23 19 166 74

Solar radiation 78 29 95 4 259 225

aNumber of sites where the bias test showed significant results; the number of sites with the altitude difference >50 m was 88
bNumber of sites where bias was significant and its absolute value exceeded a threshold (TR). For precipitation, TR = 10 mm;

for temperature, TR = 0.6°C; and for solar radiation, TR = 1 MJ m−2 d−1. Threshold values were set for each climate variable as

a minimum value that exceeds bias calculated for those sites where bias test results were not significant
cNumber of sites where the number of significant test results was >0 or >3, respectively

Table 1. Summary of statistical test results. sgn: significant; KS, Kolmogorov-Smirnov test

http://www.int-res.com/articles/suppl/c057p001_supp.pdf
http://www.int-res.com/articles/suppl/c057p001_supp.pdf
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3.  RESULTS AND DISCUSSION

Table 1 presents a summary of statistical test re -

sults comparing ECA-observed and ELPIS-generated

baseline scenarios.

3.1.  Analysis of precipitation

The KS-test for seasonal distributions of dry series

showed no significant results for all 263 sites. The

KS-test for the seasonal distribution of wet series (4

tests per site) showed 1 significant result at 2 sites,

and 2 significant results at 1 site in Spain (SID03939,

Spain). The KS-test for the distribution of daily pre-

cipitation (12 tests per site) showed 1 significant re -

sult at 3 sites, and 2 significant results at 8 sites. Note,

though, that even when samples come from the same

distribution, the KS-test allows for a small proportion

of significant test results. For instance, when the sig-

nificance level is set to 0.01, in principle, 1 out of 100

test results could be significant. For precipitation

tests, the number of significant results was in line

with expectation, if we assume that precipitations are

spatially and temporally independent.

Although application of the KS-test to the distribu-

tion of daily precipitation amounts (12 tests per sites)

showed a relatively small number of significant re -

sults, the bias test (1 test per site) was more sensitive

and showed significant results at 99 sites (Fig. 1A),

compared with 164 sites for which the test indicated

no significant bias results (Fig. 1B). For the former

sites, bias values varied from 100 to −33.2 mm

(Fig. 1C), whereas for the latter, differences were

typically of the order of a few millimeters, with only a

few sites displaying absolute differences in excess of
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Fig. 1. (A,B) Number of sites with the exact number of significant results for t-tests comparing monthly mean precipitation for

ECA and ELPIS: (A) sites where the test for precipitation bias showed significant results; (B) sites where test results for pre -

cipitation biases were not significant. (C,D) Precipitation bias between ECA and ELPIS calculated as the average difference

in mean monthly precipitation: (C) sites ordered from highest to lowest bias, where the test for precipitation bias showed 

significant results; (D) sites where test results for precipitation bias were not significant
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10 mm (Fig. 1D). This latter value was therefore used

as a threshold for further tests as reported in Table 1.

Fig. 2A shows precipitation bias and the altitude

difference between an ECA site and a corresponding

ELPIS grid-cell for locations where bias was signifi-

cant and its absolute value exceeded 10 mm. Bias was

calculated as an average value between monthly means

of observed and ELPIS-generated precipitation. Large

precipitation biases are observed at the sites with large

altitude differences. This can be explained by the

CGMS interpolation method used for precipitation.

Daily precipitation for each 25 km grid-cell in CGMS

data set was copied from the site that has the lowest

site score SRsite (km), calculated as (van der Goot 1997):

SRsite = D + Walt∆alt + ∆coast + ∆barrier (1)

where D is the distance between the weather station

and the grid-cell centre (km); ∆alt is the absolute dif-

ference (m) between the site and grid-cell altitude;

walt = 0.5 is a weighting factor (km m−1); ∆coast is

5

Fig. 2. Differences in altitudes (light blue bars, maximum bar height corresponds to 1900 m) and biases for the sites where the

bias test showed significant results and bias exceeded a threshold for (A) precipitation (red bars) (10 mm threshold, maximum

bar height corresponds to 150 mm); (B) solar radiation (yellow bars) (1 MJ m−2 d−1 threshold, maximum bar height corresponds

to 5 MJ m−2 d—1); and (C) minimum (orange bars) and (D) maximum (dark blue bars) temperatures (0.6°C threshold, maximum 

bar heights corresponds to 10 and 12°C, respectively)
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the absolute difference in corrected distance to coast

(km); and ∆barrier is the climate barrier increment

(km). If a test ECA site is situated in a grid-cell with a

complex terrain, we can potentially expect larger

 differences in statistics between ECA-observed and

ELPIS-generated precipitation. To illustrate this, we

investigated 4 ECA sites where differences in alti-

tudes and precipitation bias were large: SID02006

in Germany, DU-E in the UK, SID00232 in Spain and

SID00243 in Switzerland. Table S1 (in the sup -

plement, www.int-res.com/articles/suppl/c057p001_

supp. pdf) shows site characteristics including differ-

ences in altitude and precipitation bias. In Fig. 3, the

location of the SID02006 site is shown in the back-

ground of the digital elevation map overlaid with the

ELPIS 25 km grid and the agricultural land mask. As

seen in this figure, SID02006 is situated in a grid with

relatively complex terrain and very little agricultural

land. The SID02006 site is almost at the highest point

in the grid-cell with a difference in altitude from the

CGMS grid-cell of 765 m, which adds, according to

Eq. (1), 382.5 km to its site score SRsite. Given the land

use characteristics, it is most unlikely that SID02006

could have been selected as representative of precip-

itation for this grid-cell. It is more likely that precipi-

tation for this grid-cell would be assigned from a site

situated within one of the neighbouring grid-cells

that are predominantly used as agricultural land

(Fig. 3). This could explain a precipitation bias of

91.5 mm between SID02006 and a corresponding

ELPIS grid-cell. Similar reasoning could explain

 precipitation biases for 3 other sites (see Table S1,

Fig. S5 in the supplement).

3.2.  Analysis of temperature

There is a well-known relationship between air tem -

perature and altitude, with an approximate 0.65°C

temperature decrease per 100 m increase in altitude

up to about 10 km, reflecting the moist adiabatic lapse

rate of the standard atmosphere (Wallace & Hobbs

2006). Consequently, we can expect that the differ-

ence in altitude between an ECA site and an ELPIS

grid-cell could result in a noticeable difference in

maximum and minimum temperatures. Fig. 2C,D

shows bias for minimum and maximum temper-

ature and altitude differences for those sites

where tests for temperature bias were signifi-

cant. Temperature bias was significant at 51%

of sites for maximum temperature and 58% for

minimum temperature. As expected, tempera-

ture biases were negatively cor related with alti-

tude difference, decreasing by 0.42 and 0.68°C

per 100 m for minimum and maximum tem -

perature, re spectively (Fig. 4C,D), Maximum

temperature bias was better correlated with

 altitude difference with R2 = 0.96 (R2 = 0.69

for minimum temperature bias). The KS-test

showed significant results only for those sites

where temperature bias was significant and

 exceeded 2−3°C (at approximately 8.8% of

sites with significant bias results). The t-test for

monthly mean temperatures was more sensitive:

50% of sites with significant temperature bias

for maximum temperature and 61% for mini-

mum temperature showed >3 significant t-test

results. Nevertheless, for the majority of these

sites t-test results can be explained by differ-

ences in altitude between a site and a grid-cell.

The number of sites with the exact number of sig -

nificant results for t-tests and values of tempera-

ture biases for maximum and minimum temper-

ature are shown in the supplement (Figs. S2 & S3,

respectively).

6

Fig. 3. Location of the SID02006 site (yellow circle) on the digital

 elevation map (darker grey shades correspond to higher altitudes)

overlaid with the ELPIS 25 km grid. Green areas represent agri -

cultural land. The difference in altitude between SID02006 and the

corresponding ELPIS grid is 765 m, and precipitation bias is 91.5 mm

http://www.int-res.com/articles/suppl/c057p001_supp.pdf
http://www.int-res.com/articles/suppl/c057p001_supp.pdf
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3.3.  Analysis of solar radiation

Daily solar radiation was estimated from sunshine

hours in CGMS using Supit’s equation (Supit & Van

Kappel 1998) and for ECA sites using the equation

from Rietveld (1978). Because of high variability of

solar radiation, only 4 sites showed more than 3 sig-

nificant results for the KS-test. Solar radiation bias

showed little correlation with altitude difference

(Fig. 4B), and only at 29 sites was the bias significant

and exceeding a threshold of 1 MJ m−2 d−1 (Table 1,

Fig. S4 in the supplement). However, the number of

sites where the t-test showed >3 significant results

was very high: 225 (90%). This could be explained by

the different methods used to estimate solar radiation

in the CGMS and ECA data sets. A quick comparison

of 2 methods to estimate solar  radiation at a single

site, SID00239 in Switzerland, showed that the Supit

& Van Kappel method slightly overestimates ob served

solar radiation, and the Rietveld method underesti-

mates observed solar radiation (Fig. S6 in the supple-

ment). Different methods in estimation of solar radia-

tion in the CGMS and ECA data sets could explain

why 30% of sites have significant results for the

solar radiation bias tests. However, the biases were

relatively small for the majority of sites and did not

exceed 1 MJ m−2 d−1 (Fig. S4 in the  Supplement).

There might be another factor contributing to a

large number of significant t-test results for solar

radiation. The number of sites where observed sun-

shine hours were available for interpolation in

CGMS was substantially less than the number of
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sites with observed temperature and precipitation.

According to the CGMS interpolation procedure,

several observed CGMS sites (up to 4) with the low-

est score (see Eq. 1) were averaged to estimate solar

radiation for a grid-cell. These sites could be far

apart, which could result in smoothing the annual

cycle for interpolated solar radiation, with slightly

decreased summer peaks and increased values of

solar radiation during winter compared with the

ECA-observed values. Fig. 5 presents 30-yr mean

values for daily solar radiation for the ECA site

(SID0416) and the corresponding ELPIS grid-cell.

The bias test for solar radiation at this site showed no

significant result, but the t-test for monthly means

showed 10 significant results. In ELPIS-generated

weather, solar radiation was higher during winter

and lower during summer compared with solar radi-

ation estimated for the SID0416 site (Fig. 5). The

t-test picked up these differences for individual

months, but the bias test for radiation showed no sig-

nificant differences because differences in monthly

mean solar radiation during summer have been com-

pensated for by differences during winter.

4.  CONCLUSIONS

Table 1 summarises the results of statistical tests

comparing ECA-observed and ELPIS-generated base -

line weather. Daily 25 km gridded climatic variables

in the CGMS dataset were interpolated from ob -

served site records using one (for precipitation) or

several (for temperature and solar radiation) sites that

have the minimum scores SRsite defined by Eq. (1).

During interpolation, heavy penalties were added to

the site score SRsite for the sites with large differences

between site and grid-cell altitudes. In CGMS, the

grid-cell altitude was selected to represent agricul-

tural land only, even when the proportion of agri -

cultural land in the grid-cell was relatively small. The

number of ECA sites where the altitude difference be-

tween a CGMS grid-cell and a corresponding ELPIS

grid-cell exceeded 50 m was 88 (33%). We were able

to explain the majority of significant statistical test re-

sults for precipitation and temperatures by these dif-

ferences in altitude. The number of sites where the

KS-test showed >3 significant results for precipitation

and wet and dry series was 0; for minimum and maxi-

mum temperature it was 17 and 19 sites, respectively,

and for solar radiation it was 4 (Table 1). The t-test

was much more sensitive in detecting significant re-

sults in monthly means. Temperature bias was well

correlated with altitude difference (Fig. 5), which

could ex plained the large number of sites with sig -

nificant results for the bias test when bias exceeded

the 0.6 C° threshold: 77 sites for minimum and 59 sites

for maximum temperature, respectively. Precipita-

tion bias was less correlated with altitude difference

(Fig. 4A), and only 65 site test results, where bias ex-

ceeded the 10 mm threshold, were significant. The

bias for solar radiation, which exceeded the 1 MJ m−2

d−1, was significant only at 29 sites, al though the num-

ber of sites with >3 significant t-test results was very

high. This can be ex plained by different equations

 being used to estimate solar radiation from sunshine

hours used in CGMS and for the ECA sites.

We can conclude that, for agricultural impact

assessments in Europe, ELPIS baseline sce narios

are suitable, considering the limitations de -

scribed above. However, we would recommend

running additional statistical tests to compare

impact indexes computed by impact models

using observed and ELPIS-generated daily

weather time series to ensure applicability of

ELPIS-generated climate scenarios for individ-

ual case studies. If ELPIS-based climate scenar-

ios are needed for locations outside of agricul-

tural land, then substantial differences can arise

compared with climate scenarios derived using

other downscaling techniques.
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