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Abstract In this work, wormholes, tunnel like structures
introduced by Morris and Thorne (Am J Phys 56:395, 1988),
are explored within the framework of f (R) gravity. Using
the shape function b(r) = r0

( r
r0

)γ , where 0 < γ < 1, and
the equation of state pr = ωρ, the f (R) function is derived
and the field equations are solved. Then null, weak, strong
and dominated energy conditions are analyzed and spherical
regions satisfying these energy conditions are determined.
Furthermore, we calculated the range of the radius of the
throat of the wormhole, where the energy conditions are sat-
isfied.

1 Introduction

The idea of traversable wormholes was initiated by Morris
and Thorne [1], they used the principle of general relativity to
study the possibility of time travel for humans. The general
theory of relativity envisages that the geometry and structure
of space-time in the presence of matter is not unbending but is
flexible and deformable. The denser the body is, the stronger
the curvature of space is, which basically indicates to the
notion of black holes. Nevertheless, in the latter case, the
stuff of space-time drops its meaning at the curvature singu-
larity. If somehow the creation of the singularity is avoided,
then it would be possible to travel through the throat, so that
there is no constraint to observer’s motion on the manifold.
After, finding of the general theory of relativity, the possi-
bility of such solution to the Einstein field equations was
first time investigated by Flamm [2]. Subsequently, it was
shown that his solution was unstable. However, the more
detailed solutions of the wormhole was studied by Einstein
and Rosen [3]. A wormhole is a topological feature of the
space-time, which has basically been considered as a short-
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cut for the joining of two distinct points in the space-time
or two distinct universe. The shape of the typical wormhole
is like tube, which is asymptotically flat from both sides of
the region. The radius of the throat of the wormhole is either
constant or variable depending on its structure and the worm-
hole is termed as static or non-static respectively. One of the
important essential condition to form a wormhole in gen-
eral relativity is: the existence of an exotic matter compo-
nent, which violates the energy conditions while the usual
matter content satisfies these conditions. Subsequently, the
general relativity predicts that the exotic form of matter com-
ponent must be present near the throat of the wormhole [1].
Afterwards, it has been studied that exotic matter, which is
threaded in the throat of wormhole, violates one of the energy
condition, i.e., null energy condition (NEC) [4,5]. Phantom
energy is one possible candidate, which explains the cosmic
accelerated expansion as well [6–8]. Moreover, the existence
of phantom energy is problematic and no other appropriate
exotic matter candidate is accessible, a substitute approach is
usually monitored: the modifications of laws of gravity, pro-
posed primarily for elucidation of accelerated expansion and
avoiding singularities, could support the wormhole geome-
tries. The presence of some form of energy-matter is neces-
sary to sustain a wormhole solutions, because the wormhole
is a non-vacuum solution of Einstein field equations. The
matter content is assumed to satisfy the energy conditions
near the throat of the wormhole, while the Lagrangian con-
tains the higher order curvature terms which are required to
sustain the wormhole solutions in modified gravity. Various
authors studied wormhole geometries in modified gravity in
different directions [9–21].

The general theory of relativity could be modified in vari-
ous directions and this modification received huge consider-
ation to explain accelerated expansion; wormhole structure;
explaining flat rotation curves of galaxies and other mysteri-
ous phenomenon near black holes [22–26].
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The f (R) modified gravity [27] attains ample considera-
tion for its capability to elucidate the accelerated expansion of
the universe. In the early 1980s, Starobinsky [28] discussed
f (R) model by taking f (R) = R +αR2, where α > 0, rep-
resenting inflationary scenario of the universe. Simple idea
on which this theory is: the f (R) theory of gravity replaces
the scalar curvature R in the Einstein gravitational action to
an arbitrary function f (R), with R being the leading order
contribution to f (R). Field equations obtained in this fash-
ion have higher degree of complexity, and admit richer set of
solutions than the standard general relativity. A simplification
of f (R) gravity suggested in [29] integrates an unambigu-
ous coupling between the matter Lagrangian and an arbitrary
function of the scalar curvature, which leads to an extra force
in the geodesic equation of a perfect fluid. Subsequently, it
is shown that this extra force may be justification for the
accelerated expansion of the universe [22,30]. The dynami-
cal behavior of the matter and dark energy effects have been
obtained within extended theories of gravity [31–34]. Fur-
thermore, many authors have studied the dynamics of cos-
mological models in f (R) gravity from various directions
[35–47].

Apart from this some reviews on wormhole modeling in
f (R) gravity are given as follows: Lobo and Oliveira [11]
constructed traversable wormhole models in modified f (R)

gravity and, they concluded that the higher order curvature
derivative terms are responsible for the violation of the null
energy condition and supporting the nonstandard wormhole
structures. They considered constant redshift function, some
specific shape functions and various equations of state to
find the exact solutions. Saiedi and Esfahani [48] consid-
ered shape and redshift functions as constant and scale fac-
tor as some positive power of cosmic time. They investigated
wormhole solutions in f (R) gravity and examined null and
weak energy conditions. Bouhmadi-López et al. [49] con-
sidered the sum of energy density and radial pressure to be
proportional to a constant less than the area of the wormhole
mouth. They inspected the solutions of spherically symmetric
wormhole and analyzed the stability regions. Najafi et al. [50]
took an extra space-like dimension and studied traversable
wormhole in FLRW model. They analyzed the effect of extra
dimension on energy density, scale factor and shape func-
tion. Bahamonde et al. [51] studied cosmological wormhole
in f (R) theory of gravity. They built a dynamical wormhole
asymptotically approaching towards the FLRW universe and
used the approximation of small wormholes for analysis. For
the wormholes they considered, it was found that the pres-
ence of exotic matter near the throat is not needed, however
it is always needed in case of general relativity. Rahaman
et al. [52] studied wormhole solutions in Finslerian struc-
ture of space-time. They presented a wide variety of solu-
tions and explored wormhole geometry by considering dif-
ferent choices of shape function and energy density. Zubair

et al. [53] investigated wormhole solutions in the context of
generalized f (R, φ) gravity for three types of fluids. They
explored energy conditions and obtained wormhole solutions
without need of exotic matter. Kuhfittig [54] considered non-
commutative geometry and discussed the existence of worm-
holes in f (R) gravity. He considered various shape functions
and obtained wormhole solutions satisfying general prop-
erties. He also considered f (R) = αR2 and determined
wormhole solutions. Novikov [55] reviewed wormholes and
categorized them into three classes. They determined the
properties of wormholes and described the relation between
black holes and wormholes. Sajadi and Riazi [56] obtained
static multi-polytropic wormhole solutions in the framework
of general relativity, and they examined gravitational lens-
ing by the wormhole, and calculated the deflection angle for
weak and strong field limits as well. Subsequently, various
authors have been studied wormholes in different contexts
[57–67]. Recently, Barros and Lobo [68] used three form
fields and studied static and spherically symmetric worm-
hole structures. They found various numerical and analyti-
cal solutions and showed that in the presence of three-form
fields the null and weak energy conditions are satisfied in
whole space-time. Godani and Samanta [18] and Samanta
et al. [19] investigated wormhole solutions by defining new
form function in f (R) gravity and they tried to show the
minimum requirement of exotic matter near the throat of the
wormhole.

The motivation of this paper is to study the wormhole
solutions in viable f (R) gravity by assuming some specific
form of shape function. Subsequently, we have derived f (R)

function from the wormhole equations, which should satisfy
the viability condition of f (R) gravity. Furthermore, we have
tried to avoid the presence of exotic matter near the throat by
defining the suitable range of wormhole throat, so that energy
condition could satisfy near the throat of the wormhole.

2 Traversable wormhole and equations

The static and spherically symmetric metric for wormhole
geometry is given by

ds2 = −e2�(r)dt2 + dr2

1 − b(r)/r
+ r2(dθ2 + sin2θdφ2),

(1)

where r is the radial coordinate varying from r0 �= 0 to
∞, �(r) is the redshift function and b(r) is the shape func-
tion. The wormhole has a throat at its center that joins two
asymptotically flat space-times. The function �(r) is respon-
sible for the determination of gravitational redshift, so we
call this �(r) as a redshift function. For a traversable worm-
hole, event horizon should be absent and the effect of tidal
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gravitational forces should be very small on a traveler. There-
fore, to avoid event horizon or non-traversable condition, we
required e2�(r) �= 0. We may have e2�(r) → 0 provided
�(r) → −∞, so to avoid this situation, we have to avoid
�(r) → −∞, so we required �(r) is every where finite.
Hence, accordingly, we will have to choose �(r) such a way
that e2�(r) �= 0. It is not necessary that, �(r) is only constant,
it could be variable as well. For asymptotically flat region ⇔
we required � → 0 and no horizon or singularity ⇒ � is
every where finite [1]. However, in this paper, for simplicity
we consider constant redshift function. The function b(r) is
responsible for the shape of wormhole that should satisfy the
following conditions: (i) b(r0) = r0, (ii) b(r)−b′(r)r

b(r)2 > 0, (iii)

b′(r0) − 1 ≤ 0, (iv) b(r)
r < 1 for r > r0 and (v) b(r)

r → 0 as
r → ∞.

The f (R) theory of gravity, a generalization of Einstein’s
theory of relativity, generalizes the action as

SG = 1

2k

∫
[ f (R) + Lm]√−gd4x, (2)

where k = 8πG, Lm and g stand for the matter Lagrangian
density and the determinant of the metric gμν respectively.
For simplicity, k is taken as unity.

Differentiating Eq. (2) with respect to the metric gμν , the
field equations are obtained as

FRμν − 1

2
f gμν − �μ�νF + �Fgμν = Tm

μν, (3)

where Rμν and R denote Ricci tensor and curvature scalar
respectively and F = d f

dR . The contraction of 3, gives

FR − 2 f + 3�F = T, (4)

where T = Tμ
μ is the trace of the stress energy tensor.

From Eqs. (3) and (4), the effective field equation is
obtained as

Gμν ≡ Rμν − 1

2
Rgμν = T ef f

μν , (5)

where T ef f
μν = T c

μν + Tm
μν/F and T c

μν = 1
F [�μ�νF −

1
4gμν(FR + �F + T )]. The energy momentum tensor for

the matter source of the wormholes is Tμν = ∂Lm
∂gμν , which is

defined as

Tμν = (ρ + pt )uμuν − pt gμν + (pr − pt )XμXν, (6)

such that

uμuμ = −1 and XμXμ = 1, (7)

where ρ, pt and pr stand for the energy density, tangential
pressure and radial pressure respectively.

The Ricci scalar R given by R = 2b′(r)
r2 and Einstein’s

field equations for the metric 1 in f (R) gravity are obtained

as:

ρ = Fb′(r)
r2 − H (8)

pr = −b(r)F

r3 −
(

1−b(r)

r

)[
F ′′+ F ′(rb′(r)−b(r))

2r2
(

1− b(r)
r

)
]
+H

(9)

pt = F(b(r) − rb′(r))
2r3 − F ′

r

(
1 − b(r)

r

)
+ H, (10)

where H = 1
4 (FR + �F + T ) and prime upon a function

denotes the derivative of that function with respect to radial
coordinate r .

The anisotropy parameter is defined as

� = pt − pr . (11)

The geometry is attractive or repulsive in nature according
as � is negative or positive. If � = 0, then the geometry has
an isotropic pressure.

3 Energy conditions

The important energy conditions are the null energy condi-
tion (NEC), weak energy condition (WEC), strong energy
condition (SEC) and dominant energy condition (DEC). For
any null vector, the null energy condition (NEC) is defined as
NEC ⇔ Tμνkμkν ≥ 0. Alternately, in terms of the principal
pressures NEC is defined as NEC ⇔ ∀i, ρ + pi ≥ 0. For a
timelike vector, the weak energy condition (WEC) is defined
as WEC ⇔ TμνVμV ν ≥ 0. In terms of the principal pres-
sures, it is defined as WEC ⇔ ρ ≥ 0; and ∀i, ρ + pi ≥ 0.
For a timelike vector, the strong energy condition (SEC) is
defined as SEC ⇔ (Tμν − T

2 gμν)VμV ν ≥ 0, where T is
the trace of the stress-energy tensor. In terms of the prin-
cipal pressures, SEC is defined as T = −ρ + ∑

j p j and
SEC ⇔ ∀ j, ρ + p j ≥ 0, ρ + ∑

j p j ≥ 0. For any time-
like vector, the dominant energy condition (DEC) is defined
as DEC ⇔ TμνVμV ν ≥ 0, and TμνVμ is not space like.
In terms of the principal pressures DEC ⇔ ρ ≥ 0; and
∀i, pi ∈ [−ρ, + ρ].

In this paper, these conditions are investigated in terms of
principal pressures which are as follows:

(I) ρ + pr ≥ 0, ρ + pt ≥ 0 (NEC)
(II) ρ ≥ 0, ρ + pr ≥ 0, ρ + pt ≥ 0 (WEC)

(III) ρ + pr ≥ 0, ρ + pt ≥ 0, ρ + pr + 2pt ≥ 0 (SEC)
(IV) ρ ≥ 0, ρ − |pr | ≥ 0, ρ − |pt | ≥ 0 (DEC)

A normal matter always satisfies these energy conditions
because it possesses positive pressure and positive energy
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density. The wormholes are non-vacuum solutions of Ein-
stein’s field equations and according to Einstein’s field the-
ory, they are filled with a matter which is different from the
normal matter and is known as exotic matter. This matter
does not validate the energy conditions.

4 Wormhole solutions and viable f (R) model

In this section, f (R) model is derived and field equations
mentioned in Sect. 2 are solved. Furthermore, the energy
density ρ, energy condition terms ρ+pr , ρ+pt , ρ+pr+2pt ,
ρ −|pr |, ρ −|pt | and anisotropy parameter � are computed.

Several authors have studied wormhole modelling by con-
sidering power-law shape function [8,11,54,56,69–71]. In
this paper, we use b(r) = r0(

r
r0

)γ , where 0 < γ < 1, the
equation of state pr = ωρ, where ω is equation of state
parameter and Eqs. (8) and (9), the function f (R) is obtained
as

f (R) = k((γ + 1)r(ω + 1) − (γ + 1)ω − 1)
γ 2−1
γ+1 , (12)

where k is constant of integration. For Simplicity, we have
taken k = 1. So, we have

f (R) = ((γ + 1)r(ω + 1) − (γ + 1)ω − 1)
γ 2−1
γ+1 , (13)

Using the Ricci scalar R = 2b
′
(r)

r2 and the form function
b(r) = r0(

r
r0

)γ , we can write

r =
(

rγ+1
0

2(γ + 1)

) 1
γ−2

R
1

γ−2 (14)

Now, the Eq. (13) becomes

f (R) =
[
(γ + 1)

3−γ
2−γ (ω + 1)r

γ+1
γ−2

0
1

2
R

1
γ−2 −(γ + 1)ω − 1

]γ−1

(15)

In the early 1980s, Starobinsky [28] showed that the model
f (R) = R + αR2, where α > 0 can be responsible for
inflationary phase of the early universe. The presence of
quadratic term αR2 was responsible for this fact and gave
rise to an asymptotically exact de Sitter solution. If the term
αR2 becomes smaller than the linear term R, then the infla-
tion will be stopped. Hence, this model is a suitable one to
discuss the inflationary stage of the early universe. How-
ever, this model is not a suitable candidate to discuss the
present cosmic accelerated expansion. Afterwards, the mod-
els f (R) = R− α

Rn (where α > 0 and n > 0) were proposed
as a candidate for dark energy to explain the late time cos-
mic accelerated expansion [72–75]. Moreover, because of
the instability associated with negative value of f,RR , these
models are do not satisfy local gravity conditions [76–80]. So

this makes it very crucial to make a set of conditions which
are viable for f (R) models in metric formalism. These con-
ditions as stated as follows [81]:

• To avoid anti-gravity, we required, f,R > 0 for R ≥
R0, where R0 is the Ricci scalar at present epoch and is
positive.

• To avoid complex valued function of f (R), we required
f (R) should be real valued function. For real valued
condition of our derived f (R) function, we required
ω > −1.4 and r > 1.

• f,RR > 0 for R ≥ R0. This is required for consistency
with local gravity tests [77,79,80,82], for the presence
of the matter-dominated epoch [83], and for the stability
of cosmological perturbations [84–87].

• f (R) → R − 2� for R � R0. This is required for
consistency with local gravity tests [87–91] and for the
presence of the matter-dominated epoch [83] .

• 0 <
R f,RR
f,R

< 1 at R f,R
f = 2. This is required for the

stability of the late-time de Sitter point [83,92,93].

In this paper, the f (R) model derived in Eq. (15) is found
to be satisfied all the above conditions. Therefore, we can say
that our derived f (R) function is a viable f (R) model. Now,
Using this viable f (R) model and Eqs. (8), (9) and (10), we
obtained the following terms:

ρ = 1

4

(
r

r0

)−γ

((γ + 1)r(ω + 1) − (γ + 1)ω − 1)γ−4

×
[
γ 4(−ω)(ω + 1)

(
r(ω + 1)

(
r

r0

)γ

+ ω

(
2 − 3

(
r

r0

)γ ))
+ γ 3

(
2r2(ω + 1)2

(
r

r0

)γ

− r
(

5ω2 + 6ω + 1
) (

r

r0

)γ

− 2ω
(

3ω2

×
((

r

r0

)γ

−1

)
−ω

((
r

r0

)γ

+1

)
−3

(
r

r0

)γ

+ 2

))

+ γ 2(ω + 1)

(
4r2(ω + 1)

(
r

r0

)γ

+ r
(

3ω2 − 4ω − 3
) (

r

r0

)γ

+ ω2
(

6 − 9

(
r

r0

)γ )

− 2ω

(
7

(
r

r0

)γ

− 8

)
+ 3

(
r

r0

)γ

− 2

)

+ 2γ (ω + 1)2
(
r2

(
r

r0

)γ

+ r(ω − 1)

(
r

r0

)γ

+ ω

(
6

(
r

r0

)γ

− 7

)
− 5

(
r

r0

)γ

+ 5

)

+ 12(ω + 1)3
((

r

r0

)γ

− 1

)]
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The energy density ρ is plotted in Fig. 1a with respect
to the radial coordinate r , and it is obtained that the energy
density is positive for 0.43 ≤ γ < 1, ω ≥ 0 and r ≥ 0.9.
From this computation, we realize, if we consider the size
of the throat of the wormhole is either r0 = 0.9 or may
be r0 > 0.9, then we do not observe any negative energy
density. That means, the throat of the wormhole is filled with
non-exotic matter.

pr = 1

4
ω

(
r

r0

)−γ

((γ + 1)r(ω + 1) − (γ + 1)ω − 1)γ−4

×
[
γ 4(−ω)(ω + 1)

(
r(ω + 1)

(
r

r0

)γ

+ ω

(
2 − 3

(
r

r0

)γ ))
+ γ 3

(
2r2(ω + 1)2

(
r

r0

)γ

−r
(

5ω2 + 6ω + 1
) (

r

r0

)γ

− 2ω
(

3ω2

×
((

r

r0

)γ

− 1

)
− ω

((
r

r0

)γ

+ 1

)

− 3

(
r

r0

)γ

+ 2

))
+ γ 2(ω + 1)

(
4r2(ω + 1)

(
r

r0

)γ

+ r
(

3ω2 − 4ω − 3
) (

r

r0

)γ

+ ω2
(

6 − 9

(
r

r0

)γ )

−2ω

(
7

(
r

r0

)γ

− 8

)
+ 3

(
r

r0

)γ

− 2

)

+ 2γ (ω + 1)2
(
r2

(
r

r0

)γ

+ r(ω − 1)

(
r

r0

)γ

+ ω

(
6

(
r

r0

)γ

− 7

)
− 5

(
r

r0

)γ

+ 5

)

+ 12(ω + 1)3
((

r

r0

)γ

− 1

)]

pt = 1

4

(
r

r0

)−γ

((γ + 1)r(ω + 1) − (γ + 1)ω − 1)γ−4

×
(

γ 4ω(ω + 1)

(
r(ω + 1)

(
r

r0

)γ

+ ω

(
2 − 3

(
r

r0

)γ ))
+ γ 3

(
r2(ω − 1)(ω + 1)2

×
(
r

r0

)γ

+ ω

(
ω2

(
5

(
r

r0

)γ

− 4

)

− 3ω

(
r

r0

)γ

− 6

(
r

r0

)γ

+ 4

)
+ r(ω + 1)

×
(

ω

(
5

(
r

r0

)γ

− 2

)
+

(
r

r0

)γ

− 2ω2
))

+ γ 2(ω + 1)

(
4r2ω(ω + 1)

(
r

r0

)γ

+ ω2
(

13

(
r

r0

)γ

− 6

)
− r

(
11ω2

(
r

r0

)γ

+ ω

(
4

(
r

r0

)γ

+ 52

)
− 3

(
r

r0

)γ

+ 2

)

+ 12ω

((
r

r0

)γ

− 1

)
− 3

(
r

r0

)γ

+ 2

)
cv

γ (ω + 1)2
(
r2(5ω + 3)

(
r

r0

)γ

− ω

((
r

r0

)γ

− 8

)

− 2r(3ω + 1)

(
3

(
r

r0

)γ

− 1

)

+ 9

(
r

r0

)γ

− 8

)
+ 2(ω + 1)3

(
r2

(
r

r0

)γ

− 3

(
r

r0

)γ

+ r

(
2 − 4

(
r

r0

)γ )
+ 4

))

ρ+pr = 1

4
(1+ω)

(
r

r0

)−γ

((γ+1)r(ω+1)−(γ+1)ω−1)γ−4

×
[
γ 4(−ω)(ω+1)

(
r(ω+1)

(
r

r0

)γ

+ ω

(
2−3

(
r

r0

)γ ))
+γ 3

(
2r2(ω+1)2

(
r

r0

)γ

− r
(

5ω2+6ω+1
) (

r

r0

)γ

−2ω
(

3ω2

×
((

r

r0

)γ

−1

)
−ω

((
r

r0

)γ

+1

)
−3

(
r

r0

)γ

+2

))

+ γ 2(ω+1)

(
4r2(ω+1)

(
r

r0

)γ

+ r
(

3ω2−4ω−3
) (

r

r0

)γ

+ω2
(

6−9

(
r

r0

)γ )

− 2ω

(
7

(
r

r0

)γ

−8

)
+3

(
r

r0

)γ

−2

)

+ 2γ (ω+1)2
(
r2

(
r

r0

)γ

+r(ω−1)

(
r

r0

)γ

+ ω

(
6

(
r

r0

)γ

−7

)
−5

(
r

r0

)γ

+5

)

+ 12(ω+1)3
((

r

r0

)γ

−1

)]
(16)

In Fig. 1b, the behavior of the term ρ + pr is plotted and
it is found that the term ρ + pr is positive for 0.43 ≤ γ < 1,
ω ≥ 0 and r ≥ 0.9.

ρ+pt = 1

4

(
r

r0

)−γ

((γ+1)r(ω+1) − (γ+1)ω − 1)γ−4

×
[
γ 4(−ω)(ω+1)

(
r(ω+1)

(
r

r0

)γ

+ ω

(
2 − 3

(
r

r0

)γ ))
+γ 3

(
2r2(ω+1)2

(
r

r0

)γ

− r
(

5ω2+6ω+1
)(

r

r0

)γ

− 2ω
(

3ω2

×
((

r

r0

)γ

− 1

)
− ω

((
r

r0

)γ

+1

)
− 3

(
r

r0

)γ

+2
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In Fig. 1c, the behavior of the term ρ + pt is plotted and
it is found that the term ρ + pt is positive for 0.43 ≤ γ < 1,
ω ≥ 0 and r ≥ 1.4.

ρ + pr + 2pt = 1
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The behavior of the term ρ + pr + 2pt is plotted in the
Fig. 1d with respect the radial coordinate r , and it is found
to be positive for 0.7 ≤ γ < 1, ω ≥ 0 and r ≥ 1.7.

ρ−|pr | = 1
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The nature of the dominate energy condition term ρ−|pr |
is plotted in Fig. 1e and it is found to be positive only for
0.2 ≤ γ < 1, 0 ≤ ω ≤ 0.9 and r ≥ 1.6.
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The nature of the second dominate energy condition term
ρ − |pt | is plotted in Fig. 1f and it is found to be positive
only for 0.2 ≤ γ < 1, 0 ≤ ω ≤ 0.9 and r ≥ 1.6.

5 Results and discussion

In literature, violation or non-violation of energy conditions
in the context of wormhole solutions is explored using the
framework of various theories of gravity. The f (R) the-
ory of gravity is one among these theories. In this work,
considering the shape function b(r) = r0

( r
r0

)γ , where
0 < γ < 1, the function f (R) is derived as f (R) =
k((γ + 1)r(ω + 1) − (γ + 1)ω − 1)

γ 2−1
γ+1 , where k is con-

stant and energy condition terms are computed in Sect. 4.
For simplicity, k = 1 is considered. This section is devoted
to the analysis of energy conditions which include null
energy condition (NEC), weak energy condition (WEC),
strong energy condition (SEC) and dominant energy con-
dition (DEC). The spherical regions are determined where
these energy conditions are valid. The results obtained are as
follows:

The energy density is examined and found to be positive
for 0.43 ≤ γ < 1, ω ≥ 0 and r ≥ 0.9. Otherwise, it is
found to be negative or imaginary. In Fig. 1a, the energy
density is plotted with respect to r and ω, taking γ = 0.5.
Hence, from the Fig. 1a, we confirm that the energy density
can not be negative, if we assume the size of the throat of the
wormhole is r0 > 0.9 and the range of the parameters γ and
ω are 0.43 ≤ γ < 1 and ω ≥ 0 respectively. Subsequently,

the null energy condition terms are examined. The first NEC
term ρ + pr is obtained to be positive for 0.43 ≤ γ < 1,
ω ≥ 0 and r ≥ 0.9, while second NEC term is found to be
positive for 0.43 ≤ γ < 1, ω ≥ 0 and r ≥ 1.4. Hence, to
satisfy NEC, the common region is 0.43 ≤ γ < 1, ω ≥ 0
and r ≥ 1.4. So, the NEC will be satisfied within this range
0.43 ≤ γ < 1, ω ≥ 0 and r ≥ 1.4. NEC terms are plotted
in Fig. 1b, c for γ = 0.5. Subsequently, from the Fig. 1a–
c, we observed that the WEC will be satisfied for the range
0.43 ≤ γ < 1, ω ≥ 0 and r ≥ 1.4. Further, the nature of
strong energy condition (SEC) term ρ+ pr +2pt is observed
and it is found to possess positive values for 0.7 ≤ γ < 1,
ω ≥ 0 and r ≥ 1.7. This SEC term is plotted in Fig. 1d
using γ = 0.8, so from the Fig. 1b–d, it is observed that the
SEC will be satisfied for the range 0.7 ≤ γ < 1, ω ≥ 0 and
r ≥ 1.7. Now, the dominant energy condition terms ρ −|pr |
and ρ − |pt | are analyzed and found to be positive only for
0.2 ≤ γ < 1, 0 ≤ ω ≤ 0.9 and r ≥ 1.6. These terms are
also plotted in Fig. 1e, using γ = 0.5.

Hence, from the above discussion we concluded, NEC,
WEC, SEC and DEC hold for 0.7 ≤ γ < 1, 0 ≤ ω ≤ 0.9
and r ≥ 1.7. Validation of all energy conditions indicates that
there is no exotic matter present in the region. Therefore, from
this study, we could say that the presence of exotic matter is
not a necessary condition to construct a traversable worm-
hole in modified f (R) gravity. That means the construction
of traversable wormhole could be possible without require-
ment of exotic matter in modified f (R) gravity. Finally, the
anisotropy parameter describing the nature of geometry of
wormhole is also investigated and found to be negative for
0.2 ≤ γ < 1, ω ≥ 0 and r ≥ 0.9. It is also plotted in
Fig. 1g. This depicts the attractive nature of geometry inside
the wormhole. Thus, for r ≥ 1.7, the wormholes are filled
with normal matter and possess attractive geometry. These
results are also summarized in Tables 1 and 2.

6 Conclusion

This work is focussed on the exploration of wormhole solu-
tions using the framework of f (R) gravity. The shape func-
tion b(r) = r0(

r
r0

)γ , where 0 < γ < 1, defining the shape of
wormhole is considered. Using this shape function and the
equation of state pr = ωρ, the function f (R) is computed

as f (R) = k

[
(γ + 1)

3−γ
2−γ (ω + 1)r

γ+1
γ−2

0
1
2 R

1
γ−2 − (γ + 1)ω −

1

]γ−1

, where k is constant, which satisfies the viability con-

ditions for f (R) models. In general relativity, the violation of
null energy condition (NEC) is necessary for the existence of
wormhole solutions [1]. However, in the present study NEC
is satisfied for r ∈ [1.4,∞). WEC, SEC and DEC all are sat-
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Fig. 1 a The energy density ρ

is positive for 0.43 ≤ γ < 1,
ω ≥ 0 and r ≥ 0.9. So in this
figure we plotted the energy
density with respect to r and ω

taking γ = 0.5. b The first NEC
term ρ + pr is obtained to be
positive for 0.43 ≤ γ < 1,
ω ≥ 0 and r ≥ 0.9, so in this
figure we plotted ρ + pr with
respect to r for γ = 0.5 and
ω > 0. c The second NEC term
is found to be positive for
0.43 ≤ γ < 1, ω ≥ 0 and
r ≥ 1.4, so, in this figure we
plotted ρ + pt with respect to r
for γ = 0.5 and ω ≥ 0. d The
term ρ + pr + 2pt is found to
be positive for 0.7 ≤ γ < 1,
ω ≥ 0 and r ≥ 1.7. So, this
figure is plotted for the term
ρ + pr + 2pt with respect to r
for γ = 0.8, ω ≥ 0 and r ≥ 1.7.
e This figure indicates that the
behavior of the dominant energy
condition term ρ − |pr | with
respect to r and it is found to be
positive for γ = 0.5. f This
figure indicates that the behavior
of the dominant energy
condition term ρ − |pt | with
respect to r and it is found to be
positive for γ = 0.5. g The
anisotropy parameter (�) is
found to be positive for r > 0.9
and ω > 0. In this figure, we
have plotted � with respect to
r > 0.9 and ω > 0, taking
γ = 0.5, which shows the
repulsive nature of geometry

ρ is positive for 0.43 ≤
γ < 1, ω ≥ 0 and r ≥ 0.9. So in this figure we
plotted the energy density with respect to r and
ω taking γ = 0.5.

ρ + pr is obtained to be
positive for 0.43 ≤ γ < 1, ω ≥ 0 and r ≥ 0.9, so
in this figure we plotted ρ+ pr with respect to r
for γ = 0.5 and ω > 0.

for 0.43 ≤ γ < 1, ω ≥ 0 and r ≥ 1.4, so, in
this figure we plotted ρ+ pt with respect to r for
γ = 0.5 and ω ≥ 0.

ρ+ pr +2pt is found to be positive
for 0.7 ≤ γ < 1, ω ≥ 0 and r ≥ 1.7. So, this
figure is plotted for the term ρ + pr + 2pt with
respect to r for γ = 0.8, ω ≥ 0 and r ≥ 1.7.

dominant energy condition term ρ − |pr| with
respect to r and it is found to be positive for
γ = 0.5.

(a) The energy density (b)The first NEC term

(c) The second NEC term is found to be positive (d)The term

(e) This figure indicates that the behavior of the (f) This figure indicates that the behavior of the
dominant energy condition term ρ − |pt| with
respect to r and it is found to be positive for
γ = 0.5.

(g)�
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Table 1 Summary of results

S. no. Terms Results

1 ρ > 0, for r ∈ [0.9,∞), γ ∈ [0.43, 1), ω ∈ [0,∞)

< 0 or imaginary, otherwise

2 ρ + pr > 0, for r ∈ [0.9,∞), γ ∈ [0.43, 1), ω ∈ [0,∞)

< 0 or imaginary, otherwise

3 ρ + pt > 0, for r ∈ [1.4,∞), γ ∈ [0.43, 1), ω ∈ [0,∞)

< 0 or imaginary, otherwise

4 ρ+pr+2pt > 0, for r ∈ [1.7,∞), γ ∈ [0.7, 1), ω ∈ [0,∞)

< 0 or imaginary, otherwise

5 ρ − |pr | > 0, for r ∈ [1.6,∞), γ ∈ [0.2, 1), ω ∈ [0, 0.9]
< 0 or imaginary, otherwise

6 ρ − |pt | > 0, for r ∈ [1.6,∞), γ ∈ [0.2, 1), ω ∈ [0, 0.9]
< 0 or imaginary, otherwise

7 � < 0, for r ∈ [0.9,∞), γ ∈ [0.2, 1), ω ∈ [0,∞)

> 0 or imaginary, otherwise

Table 2 Ranges for the satisfaction of energy conditions

S. no. Energy condition Results

1 NEC r ∈ [1.4,∞), γ ∈ [0.43, 1), ω ∈ [0,∞)

2 WEC r ∈ [1.4,∞), γ ∈ [0.43, 1), ω ∈ [0,∞)

3 SEC r ∈ [1.7,∞), γ ∈ [0.7, 1), ω ∈ [0,∞)

4 DEC r ∈ [1.6,∞), γ ∈ [0.2, 1), ω ∈ [0, 0.9]
5 All ECs r ∈ [1.7,∞), γ ∈ [0.7, 1), ω ∈ [0, 0.9]

isfied for r ∈ [1.7,∞). Thus, if we consider the size of the
throat r0 of the wormhole either r0 = 1.7 or r0 > 1.7, then all
the energy conditions are satisfied throughout the wormhole
geometry. Further, the wormholes possess repulsive gravita-
tional structure filled with non-exotic matter near the throat.
These observed properties of geometry, matter and energy
conditions ensure the existence of wormhole solutions with-
out violation of energy conditions away from the throat for
r ≥ 1.7 which depicts the significance of the work.
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