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Abstract

Background: Imputation involves the inference of untyped single nucleotide polymorphisms (SNPs) in genome-wide

association studies. The haplotypic reference of choice for imputation in Southeast Asian populations is unclear.

Moreover, the influence of SNP annotation on imputation results has not been examined.

Methods: This study was divided into two parts. In the first part, we applied imputation to genotyped SNPs from

Southeast Asian populations from the Pan-Asian SNP database. Five percent of the total SNPs were removed. The

remaining SNPs were applied to imputation with IMPUTE2. The imputed outcomes were verified with the removed

SNPs. We compared imputation references from Chinese and Japanese haplotypes from the HapMap phase II (HMII)

and the complete set of haplotypes from the 1000 Genomes Project (1000G). The second part was imputation

accuracy and yield in Thai patient dataset. Half of the autosomal SNPs was removed to create Set 1. Another

dataset, Set 2, was then created where we switched which half of the SNPs were removed. Both Set 1 and

Set 2 were imputed with HMII to create a complete imputed SNPs dataset. The dataset was used to validate

association testing, SNPs annotation and imputation outcome.

Results: The accuracy was highest for all populations when using the HMII reference, but at the cost of a

lower yield. Thai genotypes showed the highest accuracy over other populations in both HMII and 1000G

panels, although accuracy and yield varied across chromosomes. Imputation was tested in a clinical dataset

to compare accuracy in gene-related regions, and coding regions were found to have a higher accuracy and

yield.

Conclusions: This work provides the first evidence of imputation reference selection for Southeast Asian

studies and highlights the effects of SNP locations respective to genes on imputation outcome. Researchers

will need to consider the trade-off between accuracy and yield in future imputation studies.
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Background
Genome-wide association studies (GWAS) have been

widely used as a reliable method for identifying genetic

variants associated with a trait or complex disease. A high

density of SNPs increases the chance of finding either a

causal mutation for the trait or SNPs close enough to the

mutation to confidently suggest a gene or another sequence

feature underlying the trait. One way to overcome this

problem is using imputation, a process in which samples

are genotyped using a low-density SNP array and imputed

with information from a reference panel genotyped on a

high-density SNP array. This method will also recover

genotypes that are missing because of technical issues.

Imputation has successfully helped to identify genetic

susceptibilities to various diseases and phenotypes that were

not recognized in a genotyped panel [1, 2]. The method

relies on the number of SNPs being shared between the

two panels and the amount of linkage disequilibrium (LD)

between genotyped and non-genotyped SNPs [3]. A low

average LD will reduce the accuracy and might require

more typed SNPs. The quality of imputation also depends

on the choice of reference [1]. If the reference contains

genetic variants not present in the actual sample popula-

tion, it will increase the noise in the data and reduce the

usefulness of the imputation. One study of malaria resist-

ance in Gambian children only identified a previously

known hemoglobin S variant in the hemoglobin-β gene

when a Gambian-specific reference was used [1]. Although

this problem is more likely to occur in Africa, where there

is a considerably lower LD compared to Europe and Asia

[4], determining how to choose the best reference is

relevant for any study performing imputation with publicly

available reference sets.

Many studies have validated the accuracy and reliability

of imputation [5–7], but most of these studies focused on

populations of European descent [5, 7]. One study showed

that the accuracy of using a publicly available database

varied across human populations with Europeans having

the highest accuracy and Africans having the lowest [6].

Because Asian populations have some unique genetic

characteristics [8], it is not always possible to directly adapt

information about genetics or genomics from studies in

Caucasian populations [9].

Several types of software are currently available for

performing genotype imputation [10–13]. Similarly,

many publicly available genetics databases are accessible

for public use [14, 15]. One of these is the Pan-Asian

SNP genotyping database (PanSNPdb), which collects

SNPs and copy number variations from 1719 samples in

71 populations from China, India, Indonesia, Japan,

Malaysia, the Philippines, Singapore, South Korea,

Taiwan, and Thailand [16, 17]. The genotyping process

was performed using the Affymetrix GeneChip Human

Mapping 50 K Xba Array.

Most of the studies on imputation have looked at the

overall outcome of all SNPs [5, 18], and a few have focused

on a particular region within a gene, not the whole genome

[19, 20]. We proposed two objectives for the current study.

The first was to identify the most preferred reference for

imputation in Southeast Asian populations. Using two pub-

licly available haplotype databases, the International

HapMap Project (HMII) and the 1000 Genomes project

(1000G), we compared the accuracy and yield of imput-

ation in several Southeast Asian populations. Additionally,

we looked at imputed results using genotyped samples

from a study of a Thai genome cohort. The second object-

ive was to evaluate the imputation results of different

regions in the human genome using a real dataset from the

Thai dengue study as a model. This is the first extensive

study of imputation in Southeast Asian populations and the

first illustration of imputation differences between SNPs in

different regions of the genome.

Methods

This study was divided into two parts. The first part aimed

at showing the difference in imputation accuracy by using

different criteria for selecting a reference database.

Additionally, using data from populations within the

Southeast Asian region illustrated the variation in accuracy

when going from one population to another. The second

part used real genotype data in all autosomes to classify

SNPs into different groups according to their location

within genes. Imputation accuracy, GWAS significance and

allele frequency were then correlated with the classification.

Sample datasets

We performed the first part of our analysis using data from

PanSNPdb [16]. To illustrate the imputation accuracy in

Southeast Asian populations, we selected all available

samples from Indonesia (ID, n = 288), Malaysia (MY, n =

217), the Philippines (PI, n = 125), Singapore (SG, n = 90),

and Thailand (TH, n = 245). Only SNPs that were poly-

morphic in all populations were used in this study (n =

52,160).

The second part was imputation accuracy and yield in

a patient dataset in which we had access to phenotypes

because the phenotypes allowed us to observe the effect

of imputation on subsequent association tests. The sub-

jects were 609 Thai dengue patients who were 1–

15 years-old from Siriraj, Ramathibodi, and Khon Kaen

hospitals. A total of 468,987 SNPs from Illumina Human

Hap610 array (Illumina Inc., San Diego, CA) passed the

quality control requirements (QC). The accuracy of

imputation was tested for each SNP from the dengue

dataset by first randomly choosing half of the SNPs from

the genotyping panel to create a mutually exclusive set

of SNPs: Set 1 and Set 2. Then, Set 1 SNPs were used to

impute Set 2 to create a complete SNP panel. Set 2 was
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also used to impute Set 1 to create a complete SNP

panel. Based on our results in the previous section,

HMII data were used as a reference for imputing the

SNPs from the dengue dataset. The total number of

SNPs after imputation was 1,417,081. Post-imputation

QC reduced these numbers to 858,480.

Quality control and multidimensional scaling

For all of the sample datasets, QC was performed in

PLINK v1.07 [12] using standard procedures for GWAS

[21]. We included all markers with a call rate > 0.95, a

minor allele frequency (MAF) > 0.01, and a Hardy–

Weinberg equilibrium (HWE) > 10− 7. Samples with call

rates < 0.95 were excluded from the analysis along with

samples that had first-degree relationship agreement, as

evaluated by expected IBD sharing in PLINK v1.07.

Multidimensional scaling (MDS) of Southeast Asian

populations from PanSNPdb was performed in PLINK

v1.07. This method allowed for visualization of principle

components in the admixed population. Plotting of the

MDS was conducted in R version 3.0.2 (http://www.r-

project.org/).

Imputation procedure

In the first part of the study, each population from

PanSNPdb was analyzed independently. Five percent of

SNPs were randomly selected and removed. The same

SNPs set of the removed SNPs were applied to all popula-

tions. SHAPEIT version 2 software was used to pre-phase

the SNPs [22]. Imputation was accomplished with IM-

PUTE2 to recover the removed SNPs [23]. Each population

was phased and imputed using both references in turn.

According to guidelines from IMPUTE2, we imputed each

chromosome separately and used windows of 5 Mb with an

additional 250 kb buffer region on both sides of the analysis

interval. The options used in the program were -buffer

1000, −iter 30, −burnin 10, and -k 80. The processes for

random removal, phasing, and imputation were repeated

five times.

The second part of our study used all the autosomal

SNPs from the dengue dataset. Half of the autosomal SNPs

from Thai dengue patients were removed by every second

SNP (Set 1). Another dataset (Set 2) was then created in

which the other half of the SNPs (Set 1) were removed. In

this way, all SNPs were imputed once. Imputation was

performed with HMII as described above. After imputation,

SNPs were filtered using a QC process similar to the initial

filtering of raw genotypes. Post-imputation QC excluded

SNPs with MAF < 0.01, call rate < 0.95, and HWE < 5 × 10−

7. These datasets were used in the GWAS analyses. We

then selected only the imputed SNPs from the two datasets

and merged them into a single dataset in which all SNPs

had been imputed. This dataset was used to compare

imputation accuracies of SNPs according to their location

relative to known genes.

References used for the imputation were downloaded

prior to the imputation process from the Impute website

(http://mathgen.stats.ox.ac.uk/impute/impute.html). The

references were labeled on the website as International

HapMap project phase II release #22 (HMII) and 1000G

phase I. A total of 1,417,081 SNPs from 90 Chinese and

Japanese samples were used from HMII with an additional

39,343,900 SNPs from 1092 worldwide sample populations

in the combined reference from 1000G. PanSNPdb shared

47,870 SNPs with the HapMap reference and 51,849 with

the 1000G reference. The Thai dengue dataset shared

493,846 SNPs with the HapMap reference and 565,912 with

the 1000G reference.

Imputation yield and accuracy

IMPUTE2 gives each imputed genotype a posterior

probability score (info score) between zero and one. A

higher threshold cut off for the probability score will

usually result in higher accuracy but a lower yield. In

this study, the posterior probability threshold was set to

0.9 to gain results with a high confidence of accuracy

[24]. Genotypes with posterior probabilities < 0.9 were

set to missing. Yield was reported as the percentage of

non-missing genotypes within the removed SNPs and

accuracy as the percentage of imputed, non-missing

genotypes that matched the original genotypes.

SNP selection and annotation

All SNPs from the dengue dataset were grouped based

on their location in genes. Gene annotation was

collected from Illumina sample sheets (Illumina Inc.,

San Diego, CA) and the NCBI database of genetic

variation [25]. Targeted gene regions included coding,

intergenic, intronic, and untranslated regions (UTR).

Some SNPs mapped to more than one location and were

marked as being in a complex region. There were 53,277

SNPs that were not in any of these 5 groups and were

subsequently discarded from further analysis.

The difference between imputed and genotyped data

in the dengue dataset was evaluated by looking at several

properties of the SNPs. Differences in accuracy and yield

for each gene region were measured by varying the

posterior probability threshold from 0.5 to 1.0. MAFs

and p-values from chi-square tests for each SNP were

compared between imputed and genotyped datasets.

Coefficients of determination (r2) were calculated for

each comparison to estimate the concordance of

imputed and genotyped SNPs. Pairwise LD, which is

measured as r-squared, was calculated within a region of

< 1 Mb around each SNP. The calculation was

performed in PLINK v1.07 using the option –r2 with

–ld-window-r2 0 and –ld-window-kb 1000. Average R-
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squared values for each region were calculated and plot-

ted in Microsoft Excel. R-squared values were also plot-

ted against distance and averaging over 1 kb bins using

R software (http://www.r-project.org/).

Results

Genotype imputation of Southeast Asian populations

The accuracy and variability of imputation for Southeast

Asian samples were assessed with five populations down-

loaded from PanSNPdb and two publicly available

references from the HapMap project and the 1000 genomes

project. All populations had an average imputation accur-

acy of more than 92% (Fig. 1), regardless of which reference

was used. Imputation with HMII as a reference gave an

average accuracy of 96.57%, while for 1000G, the accuracy

was 93.98% (Fig. 1a). The Thai (TH) population had the

highest accuracy for both reference panels followed by

Indonesia (ID), whereas the population from the

Philippines (PI) had the lowest accuracy. The yield for each

population was lower when imputation was performed with

the HMII reference (average = 59.03%) compared to the

1000G reference (average = 68.44%) (Fig. 1b). The yields for

all populations were similar when using the same reference.

The only exception was the TH population imputed with

the 1000G reference, which had a higher yield compared to

the other populations.

Next, we looked at the results from each chromo-

some separately to demonstrate the variability of accur-

acies and yields (Fig. 2). Most results of imputation

with HMII as a reference provided more than 95%

accuracy (Fig. 2a). The 1000G reference provided a

lower accuracy compared to HMII (Fig. 2b). The most

striking result was that there was a change in standard

deviation for imputation accuracy between the chromo-

somes. In particular, chromosomes 19 showed the low-

est accuracy and higher variation in accuracy. Plotting

the yield by population and chromosome showed no

significant differences (Fig. 2c, d). However, chromo-

somes 19 also showed lower yield and chromosome 22

exhibited the highest level of variability. Because the

imputation technique is, to a large extent, based on LD,

we wanted to see if the higher variance could be

correlated to any differences in the LD-pattern. We

calculated the LD for each SNP pair with a distance be-

tween 10 kb and 1 MB. The number of these pairs that

had an LD > 0.2 was recorded for each chromosome

(Additional file 1: Figure S1). Chromosome 19 and 22

had the lowest values.

Trying to explain the differences in imputation accur-

acy, we investigated the population diversity of the five

populations using MDS (Fig. 3). Whereas most samples

were grouped together, all populations except TH

showed large internal variation along the primary axis

(C1) (Fig. 3a). The secondary axis (C2) mainly de-

scribed the difference between 18 samples of the Thai

Mlabri ethnic group (from Nan Province, Thailand) to

the rest of the Thai samples. The third axis (C3) also

mainly described the variation within Thai samples,

whereas the fourth axis (C4) showed variation within

PI, ID and SG (Fig. 3b).

Fig. 1 Boxplot of accuracies and yields for imputation results across all populations. Five percent of randomly removed SNPs were imputed with IMPUTE2

using either the 1000 Genomes project phase I (1000G) or combined Chinese and Japanese haplotypes from the International HapMap project phase II

(HMII) as a reference. The imputed SNPs were tested for accuracy with the previously removed SNPs. The same set of the removed SNPs was applied to all

population dataset. The technique was repeated five times. a Boxplot of accuracy comparing populations and references. b Boxplot of yield comparing

populations and references. Abbreviations: Indonesia (ID), Malaysia (MY), the Philippines (PI), Singapore (SG), and Thailand (TH)
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Fig. 2 Imputation accuracy and yield by chromosome. The results derived from 5% randomly removed SNPs. Imputation with IMPUTE2 was

accomplished to recover the removed SNPs. The imputed SNPs were tested for accuracy with previously removed SNPs. The same set of the removed

SNPs was applied to all population dataset. This process was repeated five times. a Imputation accuracy by chromosome using HMII as a reference. b

Imputation accuracy by chromosome using 1000G as a reference. c Imputation yield by chromosome using HMII as a reference. d Imputation yield by

chromosome using 1000G as a reference. Abbreviations: Indonesia (ID), Malaysia (MY), the Philippines (PI), Singapore (SG), and Thailand (TH)
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Effects of SNP location in a gene on imputation

Using the dengue GWAS dataset to evaluate the effects of

SNP locations within a gene on the quality of imputation,

we found 415,710 SNPs located within genes

(Additional file 2: Table S1). As expected, intergenic

regions contained the most SNPs, while complex regions,

where SNPs have been associated with more than one

gene, had the fewest. Varying the threshold settings in

IMPUTE2 for accepting an imputed genotype showed that

increasing the threshold led to an increase in accuracy but

a decrease in yield (Additional file 1: Figure S2). Imput-

ation results for SNPs in coding regions showed the high-

est yield and accuracy. Intronic and intergenic regions led

to the second and third highest yield and accuracy, re-

spectively. At a threshold of 0.5, all regions showed a simi-

lar yield. However, with an increasing threshold, the yield

of coding regions increased compared to other locations.

The opposite effect was observed for accuracy, and all

locations approached the same level of accuracy when the

threshold approached 1.

We further compared the measured MAF from the

initial genotyped data to the MAF of the imputed data

(Additional file 1: Figures S3-S4). Then, any imputed

SNP that did not pass the quality-criteria (call rate >

0.95, MAF > 0.01, HWE > 10− 7) were removed

(Additional file 2: Table S1). The MAF of this reduced

set of SNPs were similarly compared to the same set of

SNPs from the initial genotyped data (Additional file 1:

Figure S4). The correlation for each region between the

MAF of the genotyped data and both the imputed data

and the imputed and post-imputation filtered data were

calculated (Table 1). Coding regions had the fewest

SNPs failing the QC, while complex regions had the

lowest correlation, followed by untranslated regions

(UTR), before filtering of the imputed data. After re-

moving low quality SNPs, all regions showed a high

Fig. 3 Multidimensional scaling plot of Southeast Asian populations from PanSNPdb. Genotype data of samples from Southeast Asian populations

were downloaded from PanSNPdb. After quality control, multidimensional scaling (MDS) was performed in PLINK v1.07. a Plotting of the first (C1) and

the second (C2) axes. b Plotting of the third (C3) and the fourth (C4) axes. Abbreviations: Indonesia (ID), Malaysia (MY), the Philippines (PI), Singapore

(SG), Thailand (TH), China (CHB) and Japan (JPT)

Table 1 Squared correlation of allele frequencies and chi-square P-values from SNPs in different regions

Region Squared correlation (r2) of minor allele frequency Squared correlation (r2) p-value from chi-square

Before post-imputation QC After post-imputation QC Before post-imputation QC After post-imputation QC

Coding region 0.868 0.997 0.387 0.813

Complex region 0.817 0.991 0.267 0.782

Intergenic region 0.864 0.996 0.328 0.789

Intron region 0.863 0.995 0.340 0.784

UTR region 0.830 0.991 0.303 0.756
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correlation in MAF between imputed and actual

genotypes. Looking at the direction of change in MAF

showed that SNPs with low initial MAF (MAF < 0.25)

predominantly (> 80%) had even lower MAFs after im-

putation. SNPs with an initial MAF close to 0.5 had an

equal distribution of SNPs that obtained higher and

lower post imputation MAF. Imputation also appeared

to systematically reduce the allele frequency of the ini-

tially low MAF for most imputed SNPs (Additional file 1:

Figure S5). The same analysis was repeated using p-

values from the binary association test instead of the

allele frequency for each SNP (Additional file 1: Figures

S6 and S7). All regions had a generally low correlation

for the p-values before removing low quality SNPs (r <

0.4). After post-imputation QC, all regions showed an

increase in correlation. Coding regions had the highest

correlation both before (r2 = 0.39) and after (r2 = 0.81)

removing low-quality SNPs. The lowest correlation for

the binary association was found in complex regions

before post-imputation QC (r2 = 0.27) and UTR regions

after the QC (r2 = 0.76).

To test whether coding regions had a stronger LD com-

pared to the other regions, PLINK v1.07 was used to calcu-

late pairwise LD between each SNP and any other SNP

within 1 Mb. LD values, presented as r-squared, are shown

as averages for each region (Additional file 1: Figure S8)

and as LD vs. distance plot (Additional file 1: Figure S9).

SNPs within coding regions had the highest average LD to

neighboring SNPs (r2= 0.253), followed by SNPs in intronic

regions (r2 = 0.232).

Discussion

Imputation of genotyped datasets is a common practice

when performing genome-wide association studies. This

technique is used to fill in missing genotypes and to in-

crease the density by adding information from SNPs that

are not present in the original dataset [5, 26]. Imputation

of SNPs that are not available in the dataset serves several

purposes. First, if available SNP arrays are designed based

on a specific population, such as Europeans, the SNPs

may not cover the areas of interest for another population.

SNPs important to populations from Southeast Asia might

therefore be underrepresented or missing from these ar-

rays. This situation has been reported for populations

from Africa [27] and Mexico [28]. Second, if data are

collected independently between groups of case and con-

trol populations, the datasets might have been genotyped

on different SNP sets. Third, GWAS usually requires a

high number of SNPs to increase chance to detect associ-

ation signals. Although current genotyping arrays could

contain more than a million markers, imputation still adds

more SNPs for denser full genome coverage.

The choice of reference panels can affect the accuracy

of imputation through the genetic variation of the samples

and the genetic relationship between the samples in the

reference panel and the imputed references [6, 27]. We

studied these effects in five populations from Southeast

Asia. The 1000G reference provided the highest yield,

while the HMII reference had the highest accuracy. These

results were the same for all Southeast Asian populations.

IMPUTE2 software provides the posterior probability

score for each imputed genotype. There was increasing ac-

curacy with a decreasing yield when the probability

threshold increased (Additional file 1: Figure S2). At the

threshold 1.0, the result showed a large drop in yield but

only a limited increase in accuracy. At the threshold 0.9,

the slope of the yield and accuracy were significantly

changed. This threshold might be a good starting point

for using IMPUTE2 for Southeast Asian populations.

Genotype imputation of the Thai population had the

highest accuracy in the current study. Previous work has

shown that in the PanSNPdb database, the Thai population

had the highest relationship to the Chinese and Japanese

populations out of the other four study populations [16].

The increased accuracy can therefore be explained by this

closer relationship. To determine if population diversity in-

fluenced the average imputation accuracy, classical MDS

was used to display the variation within Southeast Asian

populations. The main variation in the MDS plot (C1) was

related to the sub-populations in 4 of the 5 main popula-

tions, and the only exception was the Thai population

(Fig. 3). The Thai samples form a more homogenous group

compared to other populations, and this outcome can help

explain why they had the most accurate results. Eighteen

individuals from the Thai Mlabri group, which is a hunter-

gatherer group in Northern Thailand, clustered away from

other Thai samples, which is consistent with the findings of

previous studies [17, 29]. Nevertheless, further investigation

is necessary to understand the effects of population stratifi-

cation on imputation results.

Plotting the imputation accuracy and yield for each

chromosome revealed that the variation within populations

was the highest for the smaller chromosomes, especially

chromosomes 19 and 22. The same results were also ob-

served for yield. In particular, the population from the

Philippines showed a large increase in variability for these

chromosomes when using the 1000G reference. This result

might indicate a specific issue with the SNP selection for

these chromosomes, such as the LD structure being differ-

ent or the relationship to the reference being lower in these

regions. One possible reason for the increased variability

was found by looking at the long distance LD in each

chromosome. Chromosome 19 and 22 was shown to have

the fewest SNPs connected by LD above 0.2 when compar-

ing inter-SNP distances above 10 kb (Additional file 1:

Figure S1). The accuracy of resulting imputation for these

two chromosomes will therefore be more dependent on

which SNPs are removed and will show more variance
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between replications with randomly selected SNPs. The re-

sults also clearly show that only taking the average numbers

for accuracy or yield into account will result in overlooking

potentially important information.

Coding sequences have been the favored area to search

for functional mutations because these sequences are

more informative and easier to interpret due to the

direct link to a protein and the possibility of functional

changes [30–32]. This approach made it useful to com-

pare the imputation results between coding and other

SNP regions. Our results show that a higher percentage

of SNPs in coding regions passed the post-imputation

QC than in other regions. SNPs in coding regions also

had the highest accuracy. This outcome correlates well

with the results showing coding regions to have the

highest LD with the surrounding SNPs (Additional file 1:

Figure S8). This is an important factor to consider when

discussing significant results because imputed SNPs in

coding regions will have a higher accuracy compared to

SNPs in less conserved areas. This trend does not mean

that we can omit non-coding SNPs because they have

been shown to be associated with phenotypes in more

than one-third of GWAS [33–35].

Our study also compared GWAS results from a dataset

from Thai dengue fever patients to see how imputation

affected the reported results. Imputation appeared to

systematically reduce the allele frequency of the initially

minor allele for most imputed SNPs (Additional file 1:

Figure S5). This effect was more pronounced for SNPs

with an initial low MAF and will make imputing low

frequency alleles difficult. Our results demonstrated that

imputation tended to increase the common allele. This

outcome was especially problematic if the genotypes are

very rare variants [26]. Even if the most significant SNPs

had higher significance in the imputed dataset, this trend

was not seen when comparing p-values from GWAS be-

fore and after imputation.

The imputed genotypes were also subjected to QC-

filtering, which is similar to the QC being performed on

the raw genotype data. It was previously shown that

post-imputation QC did not influence the imputation

outcome [36]. However, we observed an improvement in

the correlation between measured MAF and p-values

from imputed data and genotyped data. Without the

SNPs failing the QC, the correlation between imputed

data and genotyped data was close to one for allele fre-

quency and had improved p-values. Even if over half the

SNPs were removed in this step, the remaining data had

higher quality and were more trustworthy. This differ-

ence in post-QC improvement could be due to the initial

imputation accuracy. Post-imputation QC might be

more important if the initial imputation results are less

accurate. This result is also supported by a previous ex-

periment that similarly demonstrated Hardy–Weinberg

disequilibrium is a crucial step for post-imputation filter-

ing [37].

This study demonstrates that the expected accuracy and

yield of imputation in various Southeast Asian populations

varies between populations. Our reference comparison of

HMII and 1000G in imputation in Thai GWAS showed

that using a larger reference provided a higher yield but

caused a reduction in accuracy compared to a smaller but

more related reference. We also extensively showed the im-

putation results with respect to SNP localization near genes

using Thai genome-wide genotypes as a model. This study

provides crucial information for investigators undertaking

imputation, especially in Southeast Asian populations.

Conclusions

This work provides the first evidence of imputation ref-

erence selection for Southeast Asian studies and high-

lights the effects of SNP locations respective to genes on

imputation outcome. Researchers will need to consider

the trade-off between accuracy and yield in future im-

putation studies.
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