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Validation of Nonrigid Image Registration Using
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Abstract—This paper presents a novel method for validation of such as intrasubject tissue deformation or motion correction in the
nonrigid medical image registration. This method is based on the brain, liver or heart.
simulation of physically plausible, biomechanical tissue deforma- ) ) ) ) o
tions using finite-element methods. Applying a range of displace-  Index Terms—Biomechanics, breast MR imaging, finite element
ments to finite-element models of different patient anatomies gen- Methods, image registration, validation.
erates model solutions which simulate gold standard deformations.
From these solutions, deformed images are generated with a range

of deformations typical of those likely to occurin vivo. The regis- . INTRODUCTION
tration accuracy with respect to the finite-element simulations is . . . L
quantified by co-registering the deformed images with the orig- MAGE registration describes the process of establishing

inal images and comparing the recovered voxel displacements with | spatial correspondence between features in an image pair,
the biomechanically simulated ones. The functionality of the val- or a dynamic or temporal sequence of images, in order to relate
idation method is demonstrated for a previously described non- them for diagnosis, inspection of homologous positions, or
rigid image registration technique based on free-form deforma- temporal monitoring. The images might be acquired using the

tions using B-splines and normalized mutual information as a voxel diff i . daliti d IS0 be ali dt
similarity measure, with an application to contrast-enhanced mag- S@Me Or diiferentimaging modalities, and can also be aligned to

netic resonance mammography image pairs. The exemplar non- & computer model, or to locations in physical space for image
rigid registration technique is shown to be of subvoxel accuracy on guidance. Feature alignment is described by a transforma-
average for this particular application. The validation method pre-  tion, which, for rigid-body registration, describes differences
sented here is an important step toward more generic simulations jn global patient positioning. For nonrigid registration, the
of biomechanically plausible tissue deformations and quantifica- transformation explains additional deformations due to soft

tion of tissue motion recovery using nonrigid image registration. tissue properties. suraical intervention. temporal chandes due
It will provide a basis for improving and comparing different non- prop ’ g ’ P g

rigid registration techniques for a diversity of medical applications, 0 tumor growth or radiotherapy treatment, and morphological
differences between individuals. Also, nonrigid registration

can compensate for geometric image distortion caused by the
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The latter assesses the capability of a registration techniquestitnsequent registration process, which could introduce a bias
find circular transformations based on a registration circuit, bat the validation toward the registration method.
can be sensitive to bias and may not be applicable to noninFinally, there are more practical validation issues to con-
vertible transformations generated by many nonrigid registrsider. For example, Maintz and Viergever [3] lissource
tion methods. Nonetheless, consistency checks have been seguirementsand algorithmic complexity which refer to
cessfully used for intramodality rigid body registration applicgsreparations required for the registration (such as segmentation
tions, e.g., for serial magnetic resonance (MR) imaging of tloé structures, or landmark extraction), and computational time
brain [8]. constraints for use in clinical practice, respectively. Automated
As a second step, the registration outcome can be judged asgistration methods can help to fulfill such requirements, and,
ranked by expert observers usivigual assessmetechniques with computing power improving, the run-time of registration
in a large study. This can involve the inspection of subtractiaigorithms continues to decrease.
images, contour or segmentation overlays, alternate pixel dis-The validation steps described above highlight a number of
plays, or viewing anatomical landmarks. These approaches haweesolved research issues for nonrigid registration validation.
been applied to rigid registration [9], and since they involve irin this paper, we address the simulation of gold standard defor-
spection of the entire volume domain of the image pair, can b@ations to measure nonrigid registration accuracy. We present
extended to nonrigid registration [10]. Visual assessment is annovel biomechanically motivated validation methodology
important step toward clinical acceptance and routine use ofvatich is based on modeling tissue properties and simulating
registration method, but may be compromised for nonrigid retissue deformations using finite-element methods (FEMS).
istration by locally implausible deformations which may not b&arlier work on this technique was presented by us in [14].
readily picked up by observers [11]. This simulation comprises a range of physically plausible
As a third step, quantitative measures assessingdbaracy tissue deformations which are most likely to happen in clinical
of a registration method can be performed. Accuracy, howevpractice and, hence, provides more insight into risl@bility
can only be measured if a ground truth is available. Maint# the registration, i.e., the behavior of the algorithm to be
and Viergever [3] argue that if such ground truth techniquespected in a real clinical setting for reasonable clinical input
existed, they should be used for the registration in the firf8]. The accuracyof the registration can be established via a
place. Nonetheless, registration accuracy can be studied witikenplete, dense map of simulated voxel displacements. We
keeping the error bounds in mind. The main approach fapply this validation method to a previously described nonrigid
estimating accuracy involves establishinggald standard registration algorithm by Rueckeet al. [15] for contrast-en-
For example, the retrospective registration evaluation projéwnced (CE) MR mammography. Although the validation
[12] used skull-implanted markers in patients undergoingethod is applied here to a specific algorithm and clinical
brain surgery to derive a gold standard transformation fapplication, it describes a generic methodology for validating
multimodality rigid-body image registration of the head tmonrigid registration algorithms. This methodology requires
compare different established registration methods. For ndfEM modeling of the target anatomy but may be applied to
rigid registration validation, extrinsic markers could be attached variety of registration tasks, e.g., motion or deformation
to the skin surface or implanted into deformable tissue. Sk@orrection in the brain, liver or heart. The purpose of this paper
markers have the advantage of not being invasive, but suffeito present the concept of the validation framework using an
from movement related to skin mobility, and from being faexemplar registration technique and application. It is designed
from more internal, relevant anatomical structure. Implantddr intrasubject registration tasks, where tissue deformation
markers are highly invasive and, therefore, can only be usedhith respect to a subject's anatomy and an assumed material
a patient is undergoing surgery. At any rate, such markers mapdel can be simulated using biomechanical modeling. Inter-
not provide a sufficiently dense displacement field for nonrigigdubject registration validation using deformation simulations
registration validation. This is also true for intrinsic markeris an even more challenging task, as this would also require
like anatomical landmarks, which are often too sparse aadmodel of anatomical variability, which has so far only been
too difficult to localize accurately. As an alternative, physicadttempted using statistical models of variation [16], [17].
phantoms or cadavers with densely distributed markers couldThe remainder of this paper is organized as follows: Sec-
be used, but they cannot be easily deformed in a controllgdn 1l briefly describes the exemplar nonrigid registration
manner, nor are accuracy measures obtainedtro readily method used, and Section Il describes the breast tissue
transferable tin vivoapplications. As an alternative to markersmodeling using FEMs. Section IV presents the simulation of
a gold standard registration systegan be used to simulatebiomechanical deformations in breast tissue, and Section V
“ground truth” transformations against which transformatiorsummarizes the registration accuracy measurements obtained.
obtained from registration can be compared [6]. For nonrigkinally, Section VI summarizes the presented validation
motion simulation, the most common approach is to displaceethodology, outlines the potential for further improvement,
a set of landmarks and interpolate a dense displacement raag concludes this paper.
using thin-plate splines or other interpolants (e.g., [13]). The
landmarks may be anatomical or geometric, or corresponding
to intersections of a regular grid superimposed on the image.
Such simulations commonly ignore the underlying tissue In this paper, we use as an exemplar registration method a
properties, which may lead to physically and biomechanicalhonrigid registration algorithm which was previously developed
unrealistic deformation simulations. Moreover, in many caséy Rueckeret al.[15] for motion compensation in three-dimen-
the same or a similar displacement interpolant is used in thienal (3-D) CE MR mammography. The algorithm is based

II. NONRIGID REGISTRATION
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on free-form deformations using B-splines, and uses norm
ized mutual information as a voxel-similarity measure [18]. |
models global patient motion using an affine transformatio
followed by modeling local motion by manipulating an under
lying mesh of B-spline control points. The combined global ar
local motion model at each image powt= (z,y,z) iS ex-
pressed as

T(X) = Tglobal(x) + Tlocal(x)- Q)

The flexibility and computational complexity of the local mo-
tion model is related to the choice of control point spacing. Tt
algorithm makes no assumption about the underlying mater
properties of the different tissue types in the breast.

In a visual assessment study, the algorithm was shown to <
nificantly improve the image quality of the subtraction image
for a large MR mammography database [10]. For this applic
tion, patient movement as well as tissue deformation often oct
during dynamic scanning due to patient reaction to contrast
jection, contraction and relaxation of the pectoral muscles, &2
well as movement against the scanner radio-frequency (RF) ¢ -~
As tumors are often only clearly seen on subtraction images, ¢/
misalignment may render enhanced tumors indistinguishal
from surrounding bright motion artefacts. Recently, we ha\
found that this algorithm can cause volume changes in regic
of enhanced lesions in MR mammography [11]. These volur
changes may occur due to the similar intensity of fatty tisst
and CE fibroglandular tissue, but are physically unlikely give
the incompressibility of the breast tissue, and the short acq
sition time of the dynamic image sequence. There is, therefoh
a need to further investigate the behavior and accuracy of tpis . . . . .

. . . . . L Ig. 1. Two-dimensional example slices, subtractions, and maximum
algor'thm using simulations of patient motion in CE MR maml'ntensity projections (MIPs) of subtraction volumes for three MR breast
mography. volumes. (from left to right) Patient cases 1-3. (from top to bottom) Precontrast

image, postcontrast image, subtraction image, and MIP.

Ill. FINITE-ELEMENT MODELING OF THEBREAST

A. Background carcinoma, three patient cases were selected. All data were

, . , ) ) _acquired on a Philips 1.5-T Gyroscan ACS2 using a fast 3-D

The modeling of biomechanical tissue properties has gam&c&dient echo sequence WillR = 12 ms, TE = 5 ms, 3%

cqnsiderable interest in a range of clinical ar!d resear'ch b angle, 350-mm field of view (FOV), and axial (transversal)
plications. FEMs can be used to model the interrelation Qfice orientation. A dynamic sequence of one scan before, and
different tissue types by applying displacements or forcege gcans after contrast injection of 0.2-mmol Gd-DTPA/kg
This can help to predict mechanical or physical deformationg 1,44y weight at temporal intervals of 1 min was acquired.
during surgical procedures, and to derive and quantify UiSSHS, 1he nurpose of this paper, we have selected the precontrast
properties from observed deformations. For example, FEMS,n ang the second postcontrast scan of the three patients.
for brain modeling have been investigated for model updating,q images have dimensions of 26@56x 25 voxels with an

of image guided surgery procedures [19]-[21], for integratiqq_p|ane voxel size of 1.37 mm 1.37 mm (cases 1 and 2) and
into physically based nonrigid registration methods [22], anfd g mmx 1.48 mm (case 3), all with 4.2-mm slice thickness.

for simulation of brain shift in interventional MR imaging [23]. .rom each data set. we have extracted a volumetric cuboid

For mammography, FEMs have been explored for predictingyion of interest (ROI) containing one breast for each patient.
mechanical deformations during biopsy procedures [24], fafi the anatomy and pathology of the selected cases are
§|mulat|ng COMPressions 5|m|lar to )§-ray mamm,ographé/ubstantially different, with the overall breast volume ranging
in MR mammography [25], for improving and testing tthom 0.66-10° mm? (case 1) to 1.2310° mm? (case 3), with

reconstruction of elastic properties in elastography [26]-[28],,0r volumes between 235.52 mncase 1) and 3061.75
and for modality-independent elastography with application jq,p (case 3).

breast imaging [29]. The three cases were selected because unlike the great ma-

jority of cases, there was very little subject motion between ac-

quisitions. This was confirmed in the visual assessment study
From a database of previously acquired dynamic sequen¢8], where nonrigid registration did not significantly improve

of Gadolinium DTPA (Gd-DTPA)-enhanced MR mammogthe subtraction images for cases 2 and 3, and only improved

raphy volumes of 42 patients with histologically confirmedt to a small degree for case 1 near the skin surface. Fig. 1

B. Materials
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shows two-dimensional (2-D) example slices through the RC
of the image pairs and image subtractions, as well as maximi
intensity projections (MIPs) through the subtraction volume
From the subtraction images as well as the MIPs one can |
preciate the negligible amount of motion between precontr:
and postcontrast scans within the breast tissue, and motion a
facts due to breathing and cardiac motion at the chest wall. T,
tumors and some enhanced blood vessels become clearly
ible within the subtraction images and MIPs. Nonrigid registr:
tion confirmed almost no motion for the original image pairg
mean tissue displacements within the breast tissue, exclud
the tumor region, were estimated to be within 1 mm (case |
0.36 mm (case 2), and 0.55 mm (case 3). Within the tumor 1
gions, mean tissue displacements of 0.45 mm (case 1), 0.68 |
(case 2), and 0.40 mm (case 3) were found. Having selec|
image pairs with only little motion enables us to simulate motic
between the original, uncorrected precontrast and postconti
scans.

C. Model Construction

For the construction of finite-element models for the three
cases, the first step is to obtain tissue segmentations. For thig,2. Breast segmentations and FEM model renderings for patient cases
the ANALYZE software package [30] was used to segment fatgpown in Fig. 1. (from top to bottom) Patient cases 1-3. (from left to right)
and fbroglancar tssue n the CE mages. The tumors ey o, Pl s (o), eal s e
segmented in the subtraction images, which was made poss rial labels in the same color code; mesh surface renderings of FEM models.
due to the negligible amount of motion between scans. The wire-frame cuts show the higher mesh resolution within tumor locations.

As the second step, we have constructed for the three cases
isotropic, linear, and nearly incompressible elastic modelse skin, representing a linear approximation of the nonlinear
incorporating skin surface, fat, fibroglandular, and tumorowgress—strain curve for abdominal skin parallel to the cranio-
tissue. For this purpose, we have performed 3-D trianguleaudal median investigated by Park [33] for strains up to 30%.
tions of the tumors and the overall breast tissue (excludif@r near-incompressibility of the tissue, the Poisson’s ratio was
the tumorous tissue) using standard marching cubes @l to 0.495.
decimation techniques provided by the Visualization Toolkit The aim of this study is to obtain approximate breast models
[31], with minimal edge lengths of 4.2 mm (corresponding tahich can produce physically plausible deformations, rather
the slice thickness) for tumorous tissue and 8.4 mm for thlean to build optimal, patient-specific models. This allows
remaining tissues. Using the ANSYS FEM software packagéhe generation of a generic image class for registration val-
the triangulations were meshed into isoparametric tetrahedddtion. For more realistic breast modeling, patient-specific
structural solids (elements), having four cordeEM noded model parameters would need to be determined fiomivo
and an additionaFEM nodein the middle of each edge for elastographic measurements. However, the models described
a quadratic displacement behavior. Each FEM element waisove can be varied further with respect to material properties,
labeled corresponding to the underlying tissue type. Skionlinear or even anisotropic tissue characteristics, in order to
was modeled by adding 1-mm-thick triangular shell elemenggmulate different patient characteristics. Fig. 2 shows example
consisting of sixFEM nodesonto the surface of the fatty slices through the tissue segmentations, material-labeled wire-
tissue. The models contain 40172 (casel), 117 436 (casef@®me renderings as well as surface renderings of the three
and 118278 (case BEM nodesarranged in 30841 (case 1)breast models.

89094 (case 2), and 89944 (case 3) elements, including the

surface shells. EadREM nodehas three associated degrees d¥. SIMULATION OF GOLD STANDARD BREAST DEFORMATIONS
freedom which define translational displacement in they,
andz directions.

As the third and final step in the model construction, material In @ previous study involving radiologists, it was found that
properties for the different tissue types were chosen from tﬁée to the confinement of the breast within the scanner RF CO”,
literature. The Young's moduli (stress—strain relations) of tHiéssue motion of up to 15 mm in extreme cases was observed be-
different tissues were set to 1 kPa for the fatty tissue, 10 ki¥geen the acquisition of precontrast and postcontrast image vol-
for the fibroglandular tissue, and 16.5 kPa for the tumorougnes [10], but for the great majority of the cases deformations
carcinoma [32]. A Young’s modulus of 88 kPa was chosen favere found to be 10 mm or less. Consequently, FEM boundary

conditions using initial surface displacements of approximately

1 H . . )
Available: htp:/fwww.ansys.com _ 10 mm were applied to the three models presented above. The
2To avoid any confusion with anatomical tissue nodes in the pectoral breast

region, or the B-spline control points used in the registration, we will refer tch'OdelS were subsequently solved using a preconditioned con-
the nodes of the FEM elementsEEM nodesn the remainder of this paper.  jugate gradient solver of the ANSYS FEM package. To each

A. Finite-Element Model Solutions
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B. FEM Displacements

Each FEM solution yields a displacement vecior =
(dz, dy, dz) at eachFEM nodewithin the model. The average
displacement of the whole breast volume and within individual
tissue compartments can be obtained by integrating over all
displacement vectors

1 N
Enode = N ; (| 2

whereN is the number oFEM nodesn the model or of indi-
vidual tissue compartments.

For an image voxel (or subvoxel) locatiean= (x,y, z) not
coinciding with a~EM noddocation, but lying anywhere within
a FEM element, a numerically exact displacement can be in-
terpolated by weighting the element’s tEEM nodedisplace-
mentsu; by their quadratic shape functidiy(j) [34]

u(x) =Y S(u,. (3)

Hence, a dense displacement interpolation for all image voxels
x; can be obtained, and integrated over all voxel locations within
the breast volume or within individual tissue compartments to
find the average displacement

n
Fig. 3. Surface and wire-frame renderings of example solutions for models Eg — l Z ||u(x)|| (4)
shown in Fig. 2. (from top to bottom) Patient cases 1-3, for point puncture shape ¢

(case 1), regional displacement (case 2), and two-sided contact (case 3). (left) =1

Surface renderings of deformed meshes. (right) Wire-frame cuts throuﬂh is th b f | hich thi .
deformed meshes. Deformation magnitudes are mapped using rainbow c{Gter€” IS the number of voxels over which this measure Is
coding, with dark blue corresponding to 0 mm, and dark red corresponding(mmputed.

10-mm deformation magnitude. Fig. 4 shows the average and maximum node and interpolated
voxel displacements for all patient solutions within the whole
breast volume as well as only within the tumorous tissue. The

- . o : Shaximum displacements are around 10 mm, mostly occurring

istic for real patient acquisitions were applied. in fatty tissues close to the skin surface. A higher mean displace-

* Regional displacemersimulates a uniform surface dis-ment within the tumors occurs for cases 2 and 3, where the tu-

placement by translating a set of surf&&M nodes  mors are located close to the initially displaced skin surface.
« Point puncturalisplaces a single surfaE&M nodewhich

simulates a very localized displacement, e.g., as occurrigg Interpolation of FEM Solutions

durmg_a biopsy W'thOUt any breast fixation. In order to simulate deformation in the images for registration
* One-sided contaatiisplaces surfacBEM nodeson one ;i jication. the images need to be transformed using the dense
side onto a plane, which simulates the deformation of thgq 2 cement field obtained from each of the FEM solutions.
breast when moving against the scanner RF coil, assumiGe 5 ier work [14], we have used a scattered data interpola-
no sliding on the plane itself. _ tion technique by Leet al.[35] based on a multilevel B-spline
* Two-sided contacanalogously models the deformationierarchy whose sum approaches the desired interpolation, and
when the breast is fixed at both sides, by displacing SYfpich can be reformulated into one equivalent B-spline interpo-
faceFEM nodesonto a plane on each side. lator. One advantage of using such an interpolator is that simu-
Thus, we have obtained 12 deformation simulations (threged deformations within the finite-element mesh can be appro-
breast models with four deformation simulations each). Fefiately blended off at the mesh surface and, thus, discontinu-
more exhaustive deformation simulations, additional simul@ies in the deformation field can be reduced. This is particularly
tions can be performed by varying the type, magnitude, afflportant if the mesh surface, due to triangulation and decima-
locality of the boundary conditions. In all simulations, fEEM  tion, has relaxed and may not fully fit the original breast volume.
nodesadjacent to the deep pectoral fascia have been fixethe major disadvantage of this approach, however, is that due
assuming no movement of the pectoral muscle and pectamthe approximating nature of B-splines, a small residual error
fascia. Fig. 3 shows surface renderings of and wire-frame cuaiisthe FEM nodelocations may remain, and that a favorable
through the patient models for example FEM solutions, withias toward spline-based registration techniques could be intro-
local deformation magnitudes mapped in rainbow color codinduced.
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FEM node displacement magnitudes of FEM solutions FEM node displacement magnitudes of FEM solutions
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Fig. 4. Mean and maximufREM nodeand interpolated voxel displacements of different FEM solutions for the three patient cases, computed within whole breast
tissue (left) and within tumorous tissue (right). (tdffiM nodedisplacements. (bottom) FEM shape-interpolated voxel displacements.

To avoid any simulation inconsistencies, we instead empl;
the accurate FEM shape interpolation defined in (3). This intg
polation removes any residual bias of the validation method {
ward the motion model used by the registration method. Bag
on the dense displacement fields within the breast tissue, |
image intensities are interpolated using a truncated sinc int|
polation kernel [36]. It is important to note that since by defi
nition no voxel displacements occur at locations outside of the
model. these locations need to be masked out in the defornféy5- Slices of example FEM deformation simulations of postcontrast image
. ’ d luded f furth . d | volumes. (from left to right) Patient cases 1-3, for point puncture (case 1),
|mage_s and excluded from _any urther prpcessmg_an ana Y?éﬁ'ronal displacement (case 2), and two-sided contact (case 3). Compare with
For this reason, and to avoid any further intensity interpolati@figinal postcontrast image slices in Fig. 1.
of the simulated image volumes during registration, the FEM
deformed images become the reference (or target) image vol-
umes, and the original, undeformed and unmasked images are
the transform (or source) image volumes for the subsequent rég-Experiments

istration process. If an image volume is to be registered againstro demonstrate the potential of the proposed validation
a FEM deformed version of itself, the noise field of the FEMcheme, we have applied it to test the exemplar nonrigid
deformed image is changed by adding Rician distributed noiggjistration algorithm described in Section Il with a control
with a standard deviation corresponding to the noise distributiggint resolution of 10 mm as a sensible choice, given the
in the original image background. expected maximum displacements of 10 mm imposed by the
The original postcontrast images of the three patient cagesM boundary conditions. Another motivation for using this
were deformed with respect to the four FEM solutions and asgsarticular resolution is that it was successfully used in the
ciated dense displacement interpolations. Fig. 5 shows examyilual assessment study on the same data [10].
slices through the FEM deformed postcontrast images of theWe have chosen to deform only the postcontrast images in
three patients for the three example solutions shown in Fig. &rder to first assess whether the deformation can be retrieved

V. EXPERIMENTS AND RESULTS
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by registering the original postcontrast images to a deform
version of themselves. A more realistic setting, where patie
motion or deformation has occurred between precontrast ¢
postcontrast scans, is then simulated by registering the origi
precontrast images to the FEM deformed postcontrast imag
This approach is based on the reasonable assumption that
the selected patient cases, actual motion between the origi
precontrast and postcontrast images was negligible.

The registration accuracy can then be assessed either at
FEM nodepositions [usingu; of (2)], or over the entire in-
terpolated displacement field within the warped breast volum
[usingu(x;) of (4)]. The latter is more consistent in the sens
that it provides a denser sampling of displacements for accurg
measurements, in view of the scattered distribution oK
nodes The residual registration error for a given transformatio
T [as defined by (1)] is then defined for all tissue locations q!ig. 6. Example subtraction slices of original postcontrast images from

subsets thereof as example FEM deformation simulations before (top) and after (bottom)
registration. From left to right: Patient cases 1-3, for point puncture (case 1),
regional displacement (case 2), and two-sided contact (case 3).

en=23 I +ul) - T O

wheren is the number of voxelg; at which the error measure
is calculated.

B. Postcontrast-to-Postcontrast Image Registration Accurac!

Fig. 6 illustrates example 2-D slices for the three patient cas
through the subtracted images volumes before and after regis
tion of the postcontrast images to the FEM deformed versio
of themselves, with the difference of artificially added Ricial
distributed noise in the warped images. Before registration
considerable amount of deformation imposed by the FEM s
lutions near to the skin surface, and to a lesser degree wit|
the breast tissues, can be observed. Ideally, after registration
subtraction images should contain only the added noise. Fic
shows that the deformations are mostly recovered within the
breast tissue after registration, with remaining localized misrefgjg. 7. Example subtraction slices of original precontrast images from
istrations only near the skin surface, and at the edge of the F@gmple FEM deformation simulations before (top) and after (bottom)

. . . . registration. (from left to right) Patient cases 1-3, for point puncture (case 1),

The residual average and maximum registration errors &&gional displacement (case 2), and two-sided contact (case 3). Compare with
cording to (5) for the postcontrast registration experiment asgginal subtraction slices in Fig. 1.
shown in the top row of Fig. 9. The average registration error is
about 0.4 mm, with maximum errors between 2.4 mm and up§j
10 mm. These maximum errors were found to be very localiz:
near the edge of the FOV and the displaced skin surface. Wt
investigating the registration accuracy within the tumorous ti
sues separately, the average error for the postcontrast regis
tion experiment is very low and lies around 0.17 mm, with onl
a small maximum error of up to 0.45 mm.

C. Precontrast-to-Postcontrast Image Registration Accuracy

The clinically more realistic and relevant experiment of re¢
istering the original precontrast images to FEM deformed po:
contrast images investigates how well simulated patient moti
between precontrast and postcontrast acquisitions can be re
ered by registration. The subtraction slices in the top row
Fig. 7 show that the tumors are barely visible before registration,
and cannot be clearly distinguished from the surrounding brigfi¢. 8. MIPs through subtraction volumes of original precontrast images

motion artefacts. However, after registration, these motion arfe™ example FEM deformation simulations before (top) and after (bottom)
’ ’ registration. (from left to right) Patient cases 1-3, for point puncture (case 1),

facts h_aVe been mostly removed,_apart frpm localized areas Negbnal displacement (case 2), and two-sided contact (case 3). Compare with
the skin surface (bottom row of Fig. 7). Fig. 8 shows additionaliginal MIPs in Fig. 1.
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Fig. 9. Mean and maximum registration error for the registration of the original image pairs to FEM deformation simulations for the three pstieotgaged
as mean voxel displacements in the whole breast volume (left) and in tumorous tissue (right). (top) registration of original postcontrast iEMgkfamted
postcontrast images. (bottom) Registration of original precontrast images to FEM deformed postcontrast images.

MIPs through the subtraction volumes before and after registdeformed version of themselves, than for registration of the
tion. Although the registered subtraction images and MIPs greecontrast to the FEM deformed postcontrast images. This is
not directly comparable to the original subtraction images amat surprising as there may remain a small amount of patient
MIPs in Fig. 1, as they are defined in the coordinate system wiotion between the original, undeformed image pairs, which
the FEM deformed images rather than the original images, th&lyould be recovered by the registration and, thus, is quantified
appear to be of a similar quality. as a registration error. Both registration scenarios show very
The bottom row of Fig. 9 shows the residual average and mdgealized maximum errors at the skin surface. This error may be
imum registration errors for the precontrast image registratidine to the masking of the FEM deformed breast images, leading
according to (5). The average registration error is slightly hightor a local, sharp discontinuity of the simulated deformation
(0.85 mm) than for the postcontrastimage registration descrilfegld (in particular for the plate contact solutions). Smooth
in Section V-B, with maximum errors between 2.86 mm andeformation interpolants such as the B-spline interpolation in
up to 10 mm, which were also found to be localized outliethe registration used in this paper may not compensate for this
near the skin surface. Within the tumorous tissue, the averagdhe chosen control point resolution.
error within the tumors is slightly higher than in the whole breast
tissue (0.97 mm), and the maximum errors are between 0.53 mm VI. DISCUSSION
and 2.93 mm, with the larger errors mainly occurring for patient
2 where the tumor lies close to the displaced skin surface. This
higher error in the tumor region may also be an indication for We have presented a novel and generic validation method-
the hypothesis that in CE image pairs, tumor volume is not suflogy for nonrigid medical image registration. This method-
ficiently preserved by the nonrigid registration algorithm [11Jology is based on biomechanical tissue modeling using FEMs
This may result in a very localized misregistration which nownd simulations of gold standard deformations of tissue likely
can be quantified with the presented validation methodologyto occur during a real dynamic image acquisition. It assesses the
In summary, the registration accuracy for the registratioegistration accuracy quantitatively by comparing motion recov-
method investigated using FEM simulations is slightly highered by registration with the simulated tissue deformation at a
when registering the postcontrast image volumes to a FBEMxel by voxel level. When testing a registration method over a

Summary
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range of data, based on different patient anatomies and deforwery simplified material properties would not significantly af-

tion simulations, the validation framework provides the meaifisct the results for a given patient.

to establish success or failure of a registration method for ex-Finally, in on-going work [40], [41] we are applying the pre-

pected reasonable clinical input. sented validation method to validate, compare and further im-
We have demonstrated the functionality of the presentedove the nonrigid registration algorithm by Ruecledral.[15]

validation methodology for an exemplar application usingnd our recent extensions [42] with respect to local volume con-

three CE MR mammographic image pairs, and a previousigrvation and intrinsic registration parameters such as the choice

described nonrigid registration algorithm developed for thaf the control point mesh resolution.

application [15]. The original image pairs were selected from )

a large database as being those few cases with negligible Conclusions

motion. This meant that patient motion during a dynamic image The validation framework presented in this paper presents

acquisition could be simulated by deforming the CE imagesgeneric approach for simulating tissue motion under the as-

only. The average accuracy of registering the original imagamption of a specific tissue model. This can be adapted to pa-

pairs to the deformed CE images was found to be subvoxint-specific anatomy, FEM material properties and boundary

using the exemplar registration method. Localized registratiaonditions. The validation methodology we present here is a

failures with higher registration errors could also be quantifiegeneric tool for generating images encompassing a range of

by the validation method. physically plausible tissue deformations with which to test the
accuracy and reliability of nonrigid registration algorithms. The
B. Outlook methodology is not restricted to the exemplar nonrigid registra-

'P_n algorithm by Rueckesgt al.[15] tested in this paper, but can

The validation methodology presented here has scope for fgle_ readily used for other nonrigid registration methods. Further-

ther improvement and extension. For more exhaustive def th lidati thodol ) licable t id
mation simulation and generation of data for nonrigid registrglore’ € validation methodology IS applicable to a wider range

tion validation, the type, magnitude and locality of the FEI\}?f intrasgbject medical image registra}tion problems where cor-
boundary conditions could be further varied, along with the m esponding anatomy and tissue motion can be modeled using

terial properties. For example, the models constructed in t iE.MS’ such as brain, liver or cardiac applications. Finally, the

paper treat all breast tissue as linear, which only holds for stra?@;'daﬂon meth_odolog_y pre_sented h_ere could be used to helpim-
rove any nonrigid registration algorithm, or to compare the reg-

of less than 1% [28]. Instead, nonlinear elastic behavior of firove - : )
broglandular, ductile and cancerous tissue could be mode|§t(§at'on performance of a set of nonrigid registration methods.

[37]. Incorporating other important structures like the fibrous
strands called Cooper’s ligaments and the dynamic flexion and
relaxation characteristics of the pectoral muscle is a challengingrhe authors would like to thank Prof. F. A. Gerritsen and
task which to our knowledge has not been adequately solvedl. Quist from EasyVision Advanced Development, Medical
Azar et al. [24] model the effect rather than the structure ofimaging Information Technology (MIMIT), Philips Medical
Cooper’s ligaments by nonlinearly increasing the stiffness gystems, Best, The Netherlands, and Dr. D. Rueckert from
the fatty tissue, but this does not take the aniSOtrOpiC ||gamqmper|a| Co”ege London, United Kingdom' for useful discus-
structure into account. In [38], they propose to model the pegipns. They would also like to thank Dr. L. Sonoda from CISG,
toral muscle as the interface between breast and rib cage,§l- E. Denton, and Dr. S. Rankin from Guy’s Hospital for
lowing the nodes which are part of the breast tissue in contagl-ess to the image database. Finally, they would like to thank

with the rib cage to slide against the nodes representing the §p p, Batchelor from CISG and J. Penrose from the University

cage. _ _ of Sheffield for their help in the model construction.

The use of a model-based gold standard simulation system as
proposed in this paper may raise concern about the accuracy of
the model and simulations themselves. In this paper, a generi([:l] Lo B A i S -
; : : : ; : : _ . G. Brown, “A survey of image registration techniquesy
image cI._ass for re_g_|strat|0n _valldat|on is s!mulated. Mor__e real Comput. Surveysiol. 24, no. 4, pp. 325-376, 1992.
istic, patient-specific modeling for predicting or emulating  [2] p. A. Van den Eisen, E.-J. D. Pol, and M. A. Viergever, “Medical image
vivo tissue deformations for a specific patient would require  matching: A review with classification [EEE Eng. Med. Biol. Mag.

_vol. 12, pp. 26-39, 1993.

Z.C.Curate 3nd qomplete .IFnO\.Nledgehof the t.ru? boundﬁrlzl Corl1[3] J. B. A. Maintz and M. A. Viergever, “A survey of medical image regis-

itions an patu.ant—s'pec[lg tissue c gracterlstlcs. Suc NOWI-"" tration.” Med. Image Analvol. 2, no. 1, pp. 1-36, 1998.
edge, however, is quite difficult to obtain, and may even require[4] H. Lesterand S. R. Arridge, “A survey of hierarchical nonlinear medical
the use of a registration method to establish correspondence[.s] 'magelfeg'Stf;t'Or,"f’attt_eg‘ 5‘9':09”-‘10:535180-'4 1,Iv|PP- (}ZDgt]lj‘_'g' 1399-

. . ed. Image registratign. V. Hajnal, D. L. G. AIll, an . J. Hawkes,

We recently conducted a case study for the comparison of dif- Eds., CRC Press, 2001.
ferent breast models of volunteer data deforriredivo [39], [6] J. M. Fitzpatrick, “Detecting failure, assessing successMéd. Image
including nonlinear models [24], [25], for a range of mesh reso- gegistrgggnlllx II-Igjnal, Ii.ll;. (fé:i”' and D. J. E. Hawkes, Eds: CRC

: ) : : ) : ress, , ch. 1-6, pp. —139.
Iutlpns, FEM §0Ivers, young's quu“ ar,]d Poisson’s ratios. The [7] C. Studholme, D. L. G. Hill, and D. J. Hawkes, “Automated 3D regis-
main conclusion from that work is that inaccurate assumptions’ * tration of MR and PET brain images by multi-resolution optimization of
of boundary conditions appear to have a much larger impact on  voxel similarity measuresMed. Phys.vol. 24, pp. 25-35, 1999.
the solutions than the chosen model parameters. Recently, Azdf! M- Holden, D. L. G. Hill, E. R. E. Denton, J. M. Jarosz, T. C. S. Cox, T.

. . . . . Rohlfing, J. Goodey, and D. J. Hawkes, “Voxel similarity measures for

et al.[38] investigated the choice of material properties amongst  3.p serial MR brain image registrationEEE Trans. Med. Imagyvol.

other potential sources of error, and concluded that a model with 19, pp. 94-102, Feb. 2000.
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