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Abstract—This paper presents a novel method for validation of
nonrigid medical image registration. This method is based on the
simulation of physically plausible, biomechanical tissue deforma-
tions using finite-element methods. Applying a range of displace-
ments to finite-element models of different patient anatomies gen-
erates model solutions which simulate gold standard deformations.
From these solutions, deformed images are generated with a range
of deformations typical of those likely to occurin vivo. The regis-
tration accuracy with respect to the finite-element simulations is
quantified by co-registering the deformed images with the orig-
inal images and comparing the recovered voxel displacements with
the biomechanically simulated ones. The functionality of the val-
idation method is demonstrated for a previously described non-
rigid image registration technique based on free-form deforma-
tions using B-splines and normalized mutual information as a voxel
similarity measure, with an application to contrast-enhanced mag-
netic resonance mammography image pairs. The exemplar non-
rigid registration technique is shown to be of subvoxel accuracy on
average for this particular application. The validation method pre-
sented here is an important step toward more generic simulations
of biomechanically plausible tissue deformations and quantifica-
tion of tissue motion recovery using nonrigid image registration.
It will provide a basis for improving and comparing different non-
rigid registration techniques for a diversity of medical applications,
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such as intrasubject tissue deformation or motion correction in the
brain, liver or heart.

Index Terms—Biomechanics, breast MR imaging, finite element
methods, image registration, validation.

I. INTRODUCTION

I MAGE registration describes the process of establishing
spatial correspondence between features in an image pair,

or a dynamic or temporal sequence of images, in order to relate
them for diagnosis, inspection of homologous positions, or
temporal monitoring. The images might be acquired using the
same or different imaging modalities, and can also be aligned to
a computer model, or to locations in physical space for image
guidance. Feature alignment is described by a transforma-
tion, which, for rigid-body registration, describes differences
in global patient positioning. For nonrigid registration, the
transformation explains additional deformations due to soft
tissue properties, surgical intervention, temporal changes due
to tumor growth or radiotherapy treatment, and morphological
differences between individuals. Also, nonrigid registration
can compensate for geometric image distortion caused by the
acquisition technique. There is a consensus in the literature that
registration is needed to compensate for patient positioning
and deformation. Various registration algorithms have been
proposed, surveys of which can be found in [1]–[5]. Prior
to clinical use, registration techniques need to be validated.
However, validation of registration performance suffers from
the lack of knowledge as to if, how much, and where patient
movement has occurred between and even during scanning
procedures, and whether such movement affects the clinical
usefulness of the data. To maintain clinical usefulness, and
inherently improve patient treatment and health care, it is,
therefore, mandatory to ensure that registration is successful.
How the success of medical image registration can be assessed
and failure can be detected is laid out in a recent survey by
Fitzpatrick [6], and will be discussed with an emphasis on
validation of nonrigid registration in the following.

As a first step, a registration method can be assessed in an
independent evaluation in the absence of aground truth. An ini-
tial visual inspectionallows for a qualitative assessment of reg-
istration performance, which can be complemented by quanti-
tative checks forrobustnessandconsistency. The former estab-
lishes themeasurement precisionby testing thebias sensitivity
when adding noise or choosing different starting estimates [7].
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The latter assesses the capability of a registration technique to
find circular transformations based on a registration circuit, but
can be sensitive to bias and may not be applicable to nonin-
vertible transformations generated by many nonrigid registra-
tion methods. Nonetheless, consistency checks have been suc-
cessfully used for intramodality rigid body registration applica-
tions, e.g., for serial magnetic resonance (MR) imaging of the
brain [8].

As a second step, the registration outcome can be judged and
ranked by expert observers usingvisual assessmenttechniques
in a large study. This can involve the inspection of subtraction
images, contour or segmentation overlays, alternate pixel dis-
plays, or viewing anatomical landmarks. These approaches have
been applied to rigid registration [9], and since they involve in-
spection of the entire volume domain of the image pair, can be
extended to nonrigid registration [10]. Visual assessment is an
important step toward clinical acceptance and routine use of a
registration method, but may be compromised for nonrigid reg-
istration by locally implausible deformations which may not be
readily picked up by observers [11].

As a third step, quantitative measures assessing theaccuracy
of a registration method can be performed. Accuracy, however,
can only be measured if a ground truth is available. Maintz
and Viergever [3] argue that if such ground truth techniques
existed, they should be used for the registration in the first
place. Nonetheless, registration accuracy can be studied while
keeping the error bounds in mind. The main approach for
estimating accuracy involves establishing agold standard.
For example, the retrospective registration evaluation project
[12] used skull-implanted markers in patients undergoing
brain surgery to derive a gold standard transformation for
multimodality rigid-body image registration of the head to
compare different established registration methods. For non-
rigid registration validation, extrinsic markers could be attached
to the skin surface or implanted into deformable tissue. Skin
markers have the advantage of not being invasive, but suffer
from movement related to skin mobility, and from being far
from more internal, relevant anatomical structure. Implanted
markers are highly invasive and, therefore, can only be used if
a patient is undergoing surgery. At any rate, such markers may
not provide a sufficiently dense displacement field for nonrigid
registration validation. This is also true for intrinsic markers
like anatomical landmarks, which are often too sparse and
too difficult to localize accurately. As an alternative, physical
phantoms or cadavers with densely distributed markers could
be used, but they cannot be easily deformed in a controlled
manner, nor are accuracy measures obtainedin vitro readily
transferable toin vivoapplications. As an alternative to markers,
a gold standard registration systemcan be used to simulate
“ground truth” transformations against which transformations
obtained from registration can be compared [6]. For nonrigid
motion simulation, the most common approach is to displace
a set of landmarks and interpolate a dense displacement map
using thin-plate splines or other interpolants (e.g., [13]). The
landmarks may be anatomical or geometric, or corresponding
to intersections of a regular grid superimposed on the image.
Such simulations commonly ignore the underlying tissue
properties, which may lead to physically and biomechanically
unrealistic deformation simulations. Moreover, in many cases
the same or a similar displacement interpolant is used in the

subsequent registration process, which could introduce a bias
of the validation toward the registration method.

Finally, there are more practical validation issues to con-
sider. For example, Maintz and Viergever [3] listresource
requirementsand algorithmic complexity, which refer to
preparations required for the registration (such as segmentation
of structures, or landmark extraction), and computational time
constraints for use in clinical practice, respectively. Automated
registration methods can help to fulfill such requirements, and,
with computing power improving, the run-time of registration
algorithms continues to decrease.

The validation steps described above highlight a number of
unresolved research issues for nonrigid registration validation.
In this paper, we address the simulation of gold standard defor-
mations to measure nonrigid registration accuracy. We present
a novel biomechanically motivated validation methodology
which is based on modeling tissue properties and simulating
tissue deformations using finite-element methods (FEMs).
Earlier work on this technique was presented by us in [14].
This simulation comprises a range of physically plausible
tissue deformations which are most likely to happen in clinical
practice and, hence, provides more insight into thereliability
of the registration, i.e., the behavior of the algorithm to be
expected in a real clinical setting for reasonable clinical input
[3]. The accuracyof the registration can be established via a
complete, dense map of simulated voxel displacements. We
apply this validation method to a previously described nonrigid
registration algorithm by Rueckertet al. [15] for contrast-en-
hanced (CE) MR mammography. Although the validation
method is applied here to a specific algorithm and clinical
application, it describes a generic methodology for validating
nonrigid registration algorithms. This methodology requires
FEM modeling of the target anatomy but may be applied to
a variety of registration tasks, e.g., motion or deformation
correction in the brain, liver or heart. The purpose of this paper
is to present the concept of the validation framework using an
exemplar registration technique and application. It is designed
for intrasubject registration tasks, where tissue deformation
with respect to a subject’s anatomy and an assumed material
model can be simulated using biomechanical modeling. Inter-
subject registration validation using deformation simulations
is an even more challenging task, as this would also require
a model of anatomical variability, which has so far only been
attempted using statistical models of variation [16], [17].

The remainder of this paper is organized as follows: Sec-
tion II briefly describes the exemplar nonrigid registration
method used, and Section III describes the breast tissue
modeling using FEMs. Section IV presents the simulation of
biomechanical deformations in breast tissue, and Section V
summarizes the registration accuracy measurements obtained.
Finally, Section VI summarizes the presented validation
methodology, outlines the potential for further improvement,
and concludes this paper.

II. NONRIGID REGISTRATION

In this paper, we use as an exemplar registration method a
nonrigid registration algorithm which was previously developed
by Rueckertet al.[15] for motion compensation in three-dimen-
sional (3-D) CE MR mammography. The algorithm is based
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on free-form deformations using B-splines, and uses normal-
ized mutual information as a voxel-similarity measure [18]. It
models global patient motion using an affine transformation,
followed by modeling local motion by manipulating an under-
lying mesh of B-spline control points. The combined global and
local motion model at each image point is ex-
pressed as

(1)

The flexibility and computational complexity of the local mo-
tion model is related to the choice of control point spacing. The
algorithm makes no assumption about the underlying material
properties of the different tissue types in the breast.

In a visual assessment study, the algorithm was shown to sig-
nificantly improve the image quality of the subtraction images
for a large MR mammography database [10]. For this applica-
tion, patient movement as well as tissue deformation often occur
during dynamic scanning due to patient reaction to contrast in-
jection, contraction and relaxation of the pectoral muscles, as
well as movement against the scanner radio-frequency (RF) coil.
As tumors are often only clearly seen on subtraction images, any
misalignment may render enhanced tumors indistinguishable
from surrounding bright motion artefacts. Recently, we have
found that this algorithm can cause volume changes in regions
of enhanced lesions in MR mammography [11]. These volume
changes may occur due to the similar intensity of fatty tissue
and CE fibroglandular tissue, but are physically unlikely given
the incompressibility of the breast tissue, and the short acqui-
sition time of the dynamic image sequence. There is, therefore,
a need to further investigate the behavior and accuracy of this
algorithm using simulations of patient motion in CE MR mam-
mography.

III. FINITE–ELEMENT MODELING OF THEBREAST

A. Background

The modeling of biomechanical tissue properties has gained
considerable interest in a range of clinical and research ap-
plications. FEMs can be used to model the interrelation of
different tissue types by applying displacements or forces.
This can help to predict mechanical or physical deformations
during surgical procedures, and to derive and quantify tissue
properties from observed deformations. For example, FEMs
for brain modeling have been investigated for model updating
of image guided surgery procedures [19]–[21], for integration
into physically based nonrigid registration methods [22], and
for simulation of brain shift in interventional MR imaging [23].
For mammography, FEMs have been explored for predicting
mechanical deformations during biopsy procedures [24], for
simulating compressions similar to X-ray mammography
in MR mammography [25], for improving and testing the
reconstruction of elastic properties in elastography [26]–[28],
and for modality-independent elastography with application to
breast imaging [29].

B. Materials

From a database of previously acquired dynamic sequences
of Gadolinium DTPA (Gd-DTPA)-enhanced MR mammog-
raphy volumes of 42 patients with histologically confirmed

Fig. 1. Two-dimensional example slices, subtractions, and maximum
intensity projections (MIPs) of subtraction volumes for three MR breast
volumes. (from left to right) Patient cases 1–3. (from top to bottom) Precontrast
image, postcontrast image, subtraction image, and MIP.

carcinoma, three patient cases were selected. All data were
acquired on a Philips 1.5-T Gyroscan ACS2 using a fast 3-D
gradient echo sequence with ms, ms, 35
flip angle, 350-mm field of view (FOV), and axial (transversal)
slice orientation. A dynamic sequence of one scan before, and
five scans after contrast injection of 0.2-mmol Gd-DTPA/kg
of body weight at temporal intervals of 1 min was acquired.
For the purpose of this paper, we have selected the precontrast
scan and the second postcontrast scan of the three patients.
The images have dimensions of 256256 25 voxels with an
in-plane voxel size of 1.37 mm 1.37 mm (cases 1 and 2) and
1.48 mm 1.48 mm (case 3), all with 4.2-mm slice thickness.
From each data set, we have extracted a volumetric cuboid
region of interest (ROI) containing one breast for each patient.
Both the anatomy and pathology of the selected cases are
substantially different, with the overall breast volume ranging
from 0.66 10 mm (case 1) to 1.2310 mm (case 3), with
tumor volumes between 235.52 mm(case 1) and 3061.75
mm (case 3).

The three cases were selected because unlike the great ma-
jority of cases, there was very little subject motion between ac-
quisitions. This was confirmed in the visual assessment study
[10], where nonrigid registration did not significantly improve
the subtraction images for cases 2 and 3, and only improved
it to a small degree for case 1 near the skin surface. Fig. 1

Authorized licensed use limited to: University College London. Downloaded on October 27, 2008 at 12:09 from IEEE Xplore.  Restrictions apply.



SCHNABEL et al.: VALIDATION OF NONRIGID IMAGE REGISTRATION USING FEMs 241

shows two-dimensional (2-D) example slices through the ROIs
of the image pairs and image subtractions, as well as maximum
intensity projections (MIPs) through the subtraction volumes.
From the subtraction images as well as the MIPs one can ap-
preciate the negligible amount of motion between precontrast
and postcontrast scans within the breast tissue, and motion arte-
facts due to breathing and cardiac motion at the chest wall. The
tumors and some enhanced blood vessels become clearly vis-
ible within the subtraction images and MIPs. Nonrigid registra-
tion confirmed almost no motion for the original image pairs:
mean tissue displacements within the breast tissue, excluding
the tumor region, were estimated to be within 1 mm (case 1),
0.36 mm (case 2), and 0.55 mm (case 3). Within the tumor re-
gions, mean tissue displacements of 0.45 mm (case 1), 0.68 mm
(case 2), and 0.40 mm (case 3) were found. Having selected
image pairs with only little motion enables us to simulate motion
between the original, uncorrected precontrast and postcontrast
scans.

C. Model Construction

For the construction of finite-element models for the three
cases, the first step is to obtain tissue segmentations. For this,
the ANALYZE software package [30] was used to segment fatty
and fibroglandular tissue in the CE images. The tumors were
segmented in the subtraction images, which was made possible
due to the negligible amount of motion between scans.

As the second step, we have constructed for the three cases
isotropic, linear, and nearly incompressible elastic models
incorporating skin surface, fat, fibroglandular, and tumorous
tissue. For this purpose, we have performed 3-D triangula-
tions of the tumors and the overall breast tissue (excluding
the tumorous tissue) using standard marching cubes and
decimation techniques provided by the Visualization Toolkit
[31], with minimal edge lengths of 4.2 mm (corresponding to
the slice thickness) for tumorous tissue and 8.4 mm for the
remaining tissues. Using the ANSYS FEM software package,1

the triangulations were meshed into isoparametric tetrahedral
structural solids (elements), having four cornerFEM nodes2

and an additionalFEM nodein the middle of each edge for
a quadratic displacement behavior. Each FEM element was
labeled corresponding to the underlying tissue type. Skin
was modeled by adding 1-mm-thick triangular shell elements
consisting of sixFEM nodesonto the surface of the fatty
tissue. The models contain 40 172 (case1), 117 436 (case 2),
and 118 278 (case 3)FEM nodes, arranged in 30 841 (case 1),
89 094 (case 2), and 89 944 (case 3) elements, including the
surface shells. EachFEM nodehas three associated degrees of
freedom which define translational displacement in the, ,
and directions.

As the third and final step in the model construction, material
properties for the different tissue types were chosen from the
literature. The Young’s moduli (stress–strain relations) of the
different tissues were set to 1 kPa for the fatty tissue, 10 kPa
for the fibroglandular tissue, and 16.5 kPa for the tumorous
carcinoma [32]. A Young’s modulus of 88 kPa was chosen for

1Available: http://www.ansys.com
2To avoid any confusion with anatomical tissue nodes in the pectoral breast

region, or the B-spline control points used in the registration, we will refer to
the nodes of the FEM elements asFEM nodesin the remainder of this paper.

Fig. 2. Breast segmentations and FEM model renderings for patient cases
shown in Fig. 1. (from top to bottom) Patient cases 1–3. (from left to right)
Example slices for segmentations into fat (dark grey), fibroglandular tissue
(light grey), and tumor (white); wire-frame cuts through FEM models with
material labels in the same color code; mesh surface renderings of FEM models.
The wire-frame cuts show the higher mesh resolution within tumor locations.

the skin, representing a linear approximation of the nonlinear
stress–strain curve for abdominal skin parallel to the cranio-
caudal median investigated by Park [33] for strains up to 30%.
For near-incompressibility of the tissue, the Poisson’s ratio was
set to 0.495.

The aim of this study is to obtain approximate breast models
which can produce physically plausible deformations, rather
than to build optimal, patient-specific models. This allows
the generation of a generic image class for registration val-
idation. For more realistic breast modeling, patient-specific
model parameters would need to be determined fromin vivo
elastographic measurements. However, the models described
above can be varied further with respect to material properties,
nonlinear or even anisotropic tissue characteristics, in order to
simulate different patient characteristics. Fig. 2 shows example
slices through the tissue segmentations, material-labeled wire-
frame renderings as well as surface renderings of the three
breast models.

IV. SIMULATION OF GOLD STANDARD BREASTDEFORMATIONS

A. Finite-Element Model Solutions

In a previous study involving radiologists, it was found that
due to the confinement of the breast within the scanner RF coil,
tissue motion of up to 15 mm in extreme cases was observed be-
tween the acquisition of precontrast and postcontrast image vol-
umes [10], but for the great majority of the cases deformations
were found to be 10 mm or less. Consequently, FEM boundary
conditions using initial surface displacements of approximately
10 mm were applied to the three models presented above. The
models were subsequently solved using a preconditioned con-
jugate gradient solver of the ANSYS FEM package. To each
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Fig. 3. Surface and wire-frame renderings of example solutions for models
shown in Fig. 2. (from top to bottom) Patient cases 1–3, for point puncture
(case 1), regional displacement (case 2), and two-sided contact (case 3). (left)
Surface renderings of deformed meshes. (right) Wire-frame cuts through
deformed meshes. Deformation magnitudes are mapped using rainbow color
coding, with dark blue corresponding to 0 mm, and dark red corresponding to
10-mm deformation magnitude.

breast model, the following four deformation types character-
istic for real patient acquisitions were applied.

• Regional displacementsimulates a uniform surface dis-
placement by translating a set of surfaceFEM nodes.

• Point puncturedisplaces a single surfaceFEM nodewhich
simulates a very localized displacement, e.g., as occurring
during a biopsy without any breast fixation.

• One-sided contactdisplaces surfaceFEM nodeson one
side onto a plane, which simulates the deformation of the
breast when moving against the scanner RF coil, assuming
no sliding on the plane itself.

• Two-sided contactanalogously models the deformation
when the breast is fixed at both sides, by displacing sur-
faceFEM nodesonto a plane on each side.

Thus, we have obtained 12 deformation simulations (three
breast models with four deformation simulations each). For
more exhaustive deformation simulations, additional simula-
tions can be performed by varying the type, magnitude, and
locality of the boundary conditions. In all simulations, theFEM
nodesadjacent to the deep pectoral fascia have been fixed,
assuming no movement of the pectoral muscle and pectoral
fascia. Fig. 3 shows surface renderings of and wire-frame cuts
through the patient models for example FEM solutions, with
local deformation magnitudes mapped in rainbow color coding.

B. FEM Displacements

Each FEM solution yields a displacement vector
at eachFEM nodewithin the model. The average

displacement of the whole breast volume and within individual
tissue compartments can be obtained by integrating over all
displacement vectors

(2)

where is the number ofFEM nodesin the model or of indi-
vidual tissue compartments.

For an image voxel (or subvoxel) location not
coinciding with aFEM nodelocation, but lying anywhere within
a FEM element, a numerically exact displacement can be in-
terpolated by weighting the element’s tenFEM nodedisplace-
ments by their quadratic shape function [34]

(3)

Hence, a dense displacement interpolation for all image voxels
can be obtained, and integrated over all voxel locations within

the breast volume or within individual tissue compartments to
find the average displacement

(4)

where is the number of voxels over which this measure is
computed.

Fig. 4 shows the average and maximum node and interpolated
voxel displacements for all patient solutions within the whole
breast volume as well as only within the tumorous tissue. The
maximum displacements are around 10 mm, mostly occurring
in fatty tissues close to the skin surface. A higher mean displace-
ment within the tumors occurs for cases 2 and 3, where the tu-
mors are located close to the initially displaced skin surface.

C. Interpolation of FEM Solutions

In order to simulate deformation in the images for registration
application, the images need to be transformed using the dense
displacement field obtained from each of the FEM solutions.
In earlier work [14], we have used a scattered data interpola-
tion technique by Leeet al. [35] based on a multilevel B-spline
hierarchy whose sum approaches the desired interpolation, and
which can be reformulated into one equivalent B-spline interpo-
lator. One advantage of using such an interpolator is that simu-
lated deformations within the finite-element mesh can be appro-
priately blended off at the mesh surface and, thus, discontinu-
ities in the deformation field can be reduced. This is particularly
important if the mesh surface, due to triangulation and decima-
tion, has relaxed and may not fully fit the original breast volume.
The major disadvantage of this approach, however, is that due
to the approximating nature of B-splines, a small residual error
at theFEM nodelocations may remain, and that a favorable
bias toward spline-based registration techniques could be intro-
duced.
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Fig. 4. Mean and maximumFEM nodeand interpolated voxel displacements of different FEM solutions for the three patient cases, computed within whole breast
tissue (left) and within tumorous tissue (right). (top)FEM nodedisplacements. (bottom) FEM shape-interpolated voxel displacements.

To avoid any simulation inconsistencies, we instead employ
the accurate FEM shape interpolation defined in (3). This inter-
polation removes any residual bias of the validation method to-
ward the motion model used by the registration method. Based
on the dense displacement fields within the breast tissue, the
image intensities are interpolated using a truncated sinc inter-
polation kernel [36]. It is important to note that since by defi-
nition no voxel displacements occur at locations outside of the
model, these locations need to be masked out in the deformed
images and excluded from any further processing and analysis.
For this reason, and to avoid any further intensity interpolation
of the simulated image volumes during registration, the FEM
deformed images become the reference (or target) image vol-
umes, and the original, undeformed and unmasked images are
the transform (or source) image volumes for the subsequent reg-
istration process. If an image volume is to be registered against
a FEM deformed version of itself, the noise field of the FEM
deformed image is changed by adding Rician distributed noise
with a standard deviation corresponding to the noise distribution
in the original image background.

The original postcontrast images of the three patient cases
were deformed with respect to the four FEM solutions and asso-
ciated dense displacement interpolations. Fig. 5 shows example
slices through the FEM deformed postcontrast images of the
three patients for the three example solutions shown in Fig. 3.

Fig. 5. Slices of example FEM deformation simulations of postcontrast image
volumes. (from left to right) Patient cases 1–3, for point puncture (case 1),
regional displacement (case 2), and two-sided contact (case 3). Compare with
original postcontrast image slices in Fig. 1.

V. EXPERIMENTS AND RESULTS

A. Experiments

To demonstrate the potential of the proposed validation
scheme, we have applied it to test the exemplar nonrigid
registration algorithm described in Section II with a control
point resolution of 10 mm as a sensible choice, given the
expected maximum displacements of 10 mm imposed by the
FEM boundary conditions. Another motivation for using this
particular resolution is that it was successfully used in the
visual assessment study on the same data [10].

We have chosen to deform only the postcontrast images in
order to first assess whether the deformation can be retrieved
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by registering the original postcontrast images to a deformed
version of themselves. A more realistic setting, where patient
motion or deformation has occurred between precontrast and
postcontrast scans, is then simulated by registering the original
precontrast images to the FEM deformed postcontrast images.
This approach is based on the reasonable assumption that for
the selected patient cases, actual motion between the original
precontrast and postcontrast images was negligible.

The registration accuracy can then be assessed either at the
FEM nodepositions [using of (2)], or over the entire in-
terpolated displacement field within the warped breast volumes
[using of (4)]. The latter is more consistent in the sense
that it provides a denser sampling of displacements for accuracy
measurements, in view of the scattered distribution of theFEM
nodes. The residual registration error for a given transformation

[as defined by (1)] is then defined for all tissue locations or
subsets thereof as

(5)

where is the number of voxels at which the error measure
is calculated.

B. Postcontrast-to-Postcontrast Image Registration Accuracy

Fig. 6 illustrates example 2-D slices for the three patient cases
through the subtracted images volumes before and after registra-
tion of the postcontrast images to the FEM deformed versions
of themselves, with the difference of artificially added Rician
distributed noise in the warped images. Before registration, a
considerable amount of deformation imposed by the FEM so-
lutions near to the skin surface, and to a lesser degree within
the breast tissues, can be observed. Ideally, after registration the
subtraction images should contain only the added noise. Fig. 6
shows that the deformations are mostly recovered within the
breast tissue after registration, with remaining localized misreg-
istrations only near the skin surface, and at the edge of the FOV.

The residual average and maximum registration errors ac-
cording to (5) for the postcontrast registration experiment are
shown in the top row of Fig. 9. The average registration error is
about 0.4 mm, with maximum errors between 2.4 mm and up to
10 mm. These maximum errors were found to be very localized
near the edge of the FOV and the displaced skin surface. When
investigating the registration accuracy within the tumorous tis-
sues separately, the average error for the postcontrast registra-
tion experiment is very low and lies around 0.17 mm, with only
a small maximum error of up to 0.45 mm.

C. Precontrast-to-Postcontrast Image Registration Accuracy

The clinically more realistic and relevant experiment of reg-
istering the original precontrast images to FEM deformed post-
contrast images investigates how well simulated patient motion
between precontrast and postcontrast acquisitions can be recov-
ered by registration. The subtraction slices in the top row of
Fig. 7 show that the tumors are barely visible before registration,
and cannot be clearly distinguished from the surrounding bright
motion artefacts. However, after registration, these motion arte-
facts have been mostly removed, apart from localized areas near
the skin surface (bottom row of Fig. 7). Fig. 8 shows additional

Fig. 6. Example subtraction slices of original postcontrast images from
example FEM deformation simulations before (top) and after (bottom)
registration. From left to right: Patient cases 1–3, for point puncture (case 1),
regional displacement (case 2), and two-sided contact (case 3).

Fig. 7. Example subtraction slices of original precontrast images from
example FEM deformation simulations before (top) and after (bottom)
registration. (from left to right) Patient cases 1–3, for point puncture (case 1),
regional displacement (case 2), and two-sided contact (case 3). Compare with
original subtraction slices in Fig. 1.

Fig. 8. MIPs through subtraction volumes of original precontrast images
from example FEM deformation simulations before (top) and after (bottom)
registration. (from left to right) Patient cases 1–3, for point puncture (case 1),
regional displacement (case 2), and two-sided contact (case 3). Compare with
original MIPs in Fig. 1.
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Fig. 9. Mean and maximum registration error for the registration of the original image pairs to FEM deformation simulations for the three patient cases, computed
as mean voxel displacements in the whole breast volume (left) and in tumorous tissue (right). (top) registration of original postcontrast images to FEM deformed
postcontrast images. (bottom) Registration of original precontrast images to FEM deformed postcontrast images.

MIPs through the subtraction volumes before and after registra-
tion. Although the registered subtraction images and MIPs are
not directly comparable to the original subtraction images and
MIPs in Fig. 1, as they are defined in the coordinate system of
the FEM deformed images rather than the original images, they
appear to be of a similar quality.

The bottom row of Fig. 9 shows the residual average and max-
imum registration errors for the precontrast image registration
according to (5). The average registration error is slightly higher
(0.85 mm) than for the postcontrast image registration described
in Section V-B, with maximum errors between 2.86 mm and
up to 10 mm, which were also found to be localized outliers
near the skin surface. Within the tumorous tissue, the average
error within the tumors is slightly higher than in the whole breast
tissue (0.97 mm), and the maximum errors are between 0.53 mm
and 2.93 mm, with the larger errors mainly occurring for patient
2 where the tumor lies close to the displaced skin surface. This
higher error in the tumor region may also be an indication for
the hypothesis that in CE image pairs, tumor volume is not suf-
ficiently preserved by the nonrigid registration algorithm [11].
This may result in a very localized misregistration which now
can be quantified with the presented validation methodology.

In summary, the registration accuracy for the registration
method investigated using FEM simulations is slightly higher
when registering the postcontrast image volumes to a FEM

deformed version of themselves, than for registration of the
precontrast to the FEM deformed postcontrast images. This is
not surprising as there may remain a small amount of patient
motion between the original, undeformed image pairs, which
should be recovered by the registration and, thus, is quantified
as a registration error. Both registration scenarios show very
localized maximum errors at the skin surface. This error may be
due to the masking of the FEM deformed breast images, leading
to a local, sharp discontinuity of the simulated deformation
field (in particular for the plate contact solutions). Smooth
deformation interpolants such as the B-spline interpolation in
the registration used in this paper may not compensate for this
at the chosen control point resolution.

VI. DISCUSSION

A. Summary

We have presented a novel and generic validation method-
ology for nonrigid medical image registration. This method-
ology is based on biomechanical tissue modeling using FEMs
and simulations of gold standard deformations of tissue likely
to occur during a real dynamic image acquisition. It assesses the
registration accuracy quantitatively by comparing motion recov-
ered by registration with the simulated tissue deformation at a
voxel by voxel level. When testing a registration method over a
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range of data, based on different patient anatomies and deforma-
tion simulations, the validation framework provides the means
to establish success or failure of a registration method for ex-
pected reasonable clinical input.

We have demonstrated the functionality of the presented
validation methodology for an exemplar application using
three CE MR mammographic image pairs, and a previously
described nonrigid registration algorithm developed for that
application [15]. The original image pairs were selected from
a large database as being those few cases with negligible
motion. This meant that patient motion during a dynamic image
acquisition could be simulated by deforming the CE images
only. The average accuracy of registering the original image
pairs to the deformed CE images was found to be subvoxel
using the exemplar registration method. Localized registration
failures with higher registration errors could also be quantified
by the validation method.

B. Outlook

The validation methodology presented here has scope for fur-
ther improvement and extension. For more exhaustive defor-
mation simulation and generation of data for nonrigid registra-
tion validation, the type, magnitude and locality of the FEM
boundary conditions could be further varied, along with the ma-
terial properties. For example, the models constructed in this
paper treat all breast tissue as linear, which only holds for strains
of less than 1% [28]. Instead, nonlinear elastic behavior of fi-
broglandular, ductile and cancerous tissue could be modeled
[37]. Incorporating other important structures like the fibrous
strands called Cooper’s ligaments and the dynamic flexion and
relaxation characteristics of the pectoral muscle is a challenging
task which to our knowledge has not been adequately solved.
Azar et al. [24] model the effect rather than the structure of
Cooper’s ligaments by nonlinearly increasing the stiffness of
the fatty tissue, but this does not take the anisotropic ligament
structure into account. In [38], they propose to model the pec-
toral muscle as the interface between breast and rib cage, al-
lowing the nodes which are part of the breast tissue in contact
with the rib cage to slide against the nodes representing the rib
cage.

The use of a model-based gold standard simulation system as
proposed in this paper may raise concern about the accuracy of
the model and simulations themselves. In this paper, a generic
image class for registration validation is simulated. More real-
istic, patient-specific modeling for predicting or emulatingin
vivo tissue deformations for a specific patient would require
accurate and complete knowledge of the true boundary con-
ditions and patient-specific tissue characteristics. Such knowl-
edge, however, is quite difficult to obtain, and may even require
the use of a registration method to establish correspondence.
We recently conducted a case study for the comparison of dif-
ferent breast models of volunteer data deformedin vivo [39],
including nonlinear models [24], [25], for a range of mesh reso-
lutions, FEM solvers, Young’s moduli and Poisson’s ratios. The
main conclusion from that work is that inaccurate assumptions
of boundary conditions appear to have a much larger impact on
the solutions than the chosen model parameters. Recently, Azar
et al.[38] investigated the choice of material properties amongst
other potential sources of error, and concluded that a model with

very simplified material properties would not significantly af-
fect the results for a given patient.

Finally, in on-going work [40], [41] we are applying the pre-
sented validation method to validate, compare and further im-
prove the nonrigid registration algorithm by Rueckertet al.[15]
and our recent extensions [42] with respect to local volume con-
servation and intrinsic registration parameters such as the choice
of the control point mesh resolution.

C. Conclusions

The validation framework presented in this paper presents
a generic approach for simulating tissue motion under the as-
sumption of a specific tissue model. This can be adapted to pa-
tient-specific anatomy, FEM material properties and boundary
conditions. The validation methodology we present here is a
generic tool for generating images encompassing a range of
physically plausible tissue deformations with which to test the
accuracy and reliability of nonrigid registration algorithms. The
methodology is not restricted to the exemplar nonrigid registra-
tion algorithm by Rueckertet al.[15] tested in this paper, but can
be readily used for other nonrigid registration methods. Further-
more, the validation methodology is applicable to a wider range
of intrasubject medical image registration problems where cor-
responding anatomy and tissue motion can be modeled using
FEMs, such as brain, liver or cardiac applications. Finally, the
validation methodology presented here could be used to help im-
prove any nonrigid registration algorithm, or to compare the reg-
istration performance of a set of nonrigid registration methods.
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