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ABSTRACT

Six satellite-based rainfall estimates (SRFE)—namely, Climate Prediction Center (CPC) morphing technique

(CMORPH), the Rainfall Estimation Algorithm, version 2 (RFE2.0), Tropical Rainfall Measuring Mission

(TRMM) 3B42, Goddard profiling algorithm, version 6 (GPROF 6.0), Precipitation Estimation from Remotely

Sensed Information using Artificial Neural Networks (PERSIANN), Global Satellite Mapping of Precipitation

moving vector with Kalman filter (GSMapMVK), and one reanalysis product [the interimECMWFRe-Analysis

(ERA-Interim)]—were validated against 205 rain gauge stations over four African river basins (Zambezi, Volta,

Juba–Shabelle, and Baro–Akobo). Validation focused on rainfall characteristics relevant to hydrological appli-

cations, such as annual catchment totals, spatial distribution patterns, seasonality, number of rainy days per year,

and timing and volume of heavy rainfall events. Validationwas done at three spatially aggregated levels: point-to-

pixel, subcatchment, and river basin for the period 2003–06. Performance of satellite-based rainfall estimation

(SRFE) was assessed using standard statistical methods and visual inspection. SRFE showed 1) accuracy in

reproducing precipitation on amonthly basis during the dry season, 2) an ability to replicate bimodal precipitation

patterns, 3) superior performance over the tropical wet and dry zone than over semiarid or mountainous regions,

4) increasing uncertainty in the estimation of higher-end percentiles of daily precipitation, 5) low accuracy in

detecting heavy rainfall events over semiarid areas, 6) general underestimation of heavy rainfall events, and

7) overestimation of number of rainy days in the tropics. In respect to SRFE performance, GPROF 6.0 and

GSMaP-MKVwere the least accurate, andRFE2.0 andTRMM3B42were themost accurate. These results allow

discrimination between the available products and the reduction of potential errors caused by selecting a product

that is not suitable for particular morphoclimatic conditions. For hydrometeorological applications, results sup-

port the use of a performance-based merged product that combines the strength of multiple SRFEs.
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1. Introduction

Precipitation is a key steering factor for many socio-

economic activities in Africa (Dinku et al. 2007). Its

variability has an enormous impact throughout the

continent, with those countries relying on rain-fed

agriculture being particularly prone to adverse eco-

nomic effects. At the same time, precipitation extremes

can lead to flooding and droughts, which may result in

the loss of human life by drowning or starvation (Dinku

et al. 2007). Reliable precipitation information is there-

fore of utmost importance to be able to correctly assess

water resource availability or potential water-related

risks within the African continent.

Large efforts have been made in the development of

modeling tools that facilitate, inter alia, water resource

management through optimization, planning, preven-

tion, protection, and mitigation measures, which aim

to reduce both socioeconomic and human losses. The

successful application of these models, however, relies

heavily upon the accuracy of one of their main inputs: the

precipitation data (Behrangi et al. 2011; Hughes 2006).

The ground-based precipitation observation network in

Africa is, however, steadily deteriorating mainly because

of inadequate funding arising from more pressing eco-

nomic issues (Hughes 2006). In many cases, ground mea-

surements are not suitable to be used as input data for

many applications (e.g., hydrologicalmodeling) because of

an insufficient number of ground measurement stations,

a large proportion of missing values, unreliability of the

records, reporting time delays, and limited accessibility to

available data (Dinku et al. 2007; Hughes 2006). An al-

ternative to overcome these shortcomings may lie in the

field of remote sensing, which provides SRFE (Grimes and

Diop 2003; Hughes 2006) that can potentially be used for

hydrological applications. (Note that all acronyms used in

this paper are expanded in the glossary in the appendix.)

SRFEs are becoming increasingly available and ac-

cessible in near–real time with almost global coverage.

Temporal and spatial resolution, as well as measure-

ment accuracy, are continuously improving owing to

steady advances in sensor technology and new methods

for merging various data sources (e.g., geostationary

thermal IR, PMW, radar, and information from the

GTS) (Kidd et al. 2009; Stisen and Sandholt 2010). To

date, several high-resolution SRFE products are at an

operational stage, with a rapidly growing scientific com-

munity using these data to supplement or even replace

rain gauge observations (Dinku et al. 2007).

The quality of the SRFE data largely determines the

performance of any potential hydrological application

(Yilmaz et al. 2005). Limitations in the algorithms that

form the basis of the SRFE, as well as systematic biases

(Smith et al. 2006), can cause serious discrepancies be-

tween SRFE and ground observations. These discrep-

ancies will introduce unwanted uncertainties in the results

of hydrological applications that, in the worst case, may

lead to the wrong conclusions and hence poor manage-

ment decisions, which can subsequently result in dev-

astating consequences in the case of flood nowcasting.

Notwithstanding the fact that large efforts have been

made to reduce discrepancies between SRFE and ground

observations (Tian et al. 2010), SRFE products still re-

quire in-depth validation against ground observations to

increase the understanding of their quality and to quan-

tify the appropriate level of confidence in their use in

different applications (Dinku et al. 2007; Hong et al.

2006). Despite this need for validation, most of the ex-

isting SRFE validation work carried out in Africa 1)

has focused on a specific region (Asadullah et al. 2008;

Dinku et al. 2010b; Diro et al. 2009; Laurent et al. 1998;

Stisen and Sandholt 2010), 2) has assessed single or few

SRFEs (Hughes 2006; McCollum et al. 2000; Nicholson

et al. 2003; Symeonakis et al. 2009; Thorne et al. 2001),

or 3) has performed large-scale analyses considering only

low spatial (2.58) and temporal (monthly) resolution

products (Adler et al. 2003; Ali et al. 2005; Xie and Arkin

1995). A validation study covering several regions across

Africa and employing an ensemble of finer spatiotem-

poral resolution SRFE is therefore of utmost importance

for the current status, which has been explicitly stressed

by Symeonakis et al. (2009) and Hughes (2006).

The aim of this work is to present an intercomparable

validation study of several SRFEs over different topo-

graphic and climatic zones (in the following referred to as

‘‘morphoclimatic zones’’) in Africa and, therefore, the

study considers various hydrological regimes. It should

be noted that the validation focuses, besides the general

ability of the SRFEs to replicate daily and monthly

rainfall, on characteristics such as annual catchment to-

tals, spatial distribution patterns, seasonality, number

of rainy days per year, and timing and volume of heavy

rainfall events. We believe these characteristics form the

basis of certain hydrological applications such as drought

and flood monitoring, or large-scale water balance esti-

mations, which are of particular interest in Africa. With

this work we aim, firstly, to identify the strengths and

limitations of SRFEproducts for differentmorphoclimatic

regions and, secondly, to determine the SRFE product(s)

that show the best overall performance for conditions re-

flecting the current data availability in Africa.

For validation purposes we used six SRFE and

one reanalysis product—namely, CMORPH, RFE 2.0,

TRMM 3B42 v6, GPROF 6.0, PERSIANN, GSMaP-

MVK, and ERA-Interim (see Table 2 for details). These

products were selected because of their spatial and
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temporal resolution, which makes them particularly

suitable for hydrological applications. The performance

of the SRFEs was assessed over four African river ba-

sins—namely, the Zambezi, Volta, Juba–Shabelle, and

Baro–Akobo. Considering the temporal and spatial

variability of rainfall characteristics and the conven-

tional hydrological working units, the validations were

carried out on a point-to-pixel, subcatchment, and river

basin scale. To maximize the use of information, ground

observations were interpolated using KED (Goovaerts

2000), where high-resolution terrain elevation data were

used as the external drift to improve spatial interpo-

lation of precipitation. The performance of the SRFE was

assessed using statistical measures of performance (e.g.,

pBIAS, r, and NSeff) and visual comparison methods.

In section 2, we present details on the study area, rain

gauge data used for validation, and SRFE. Methodology

and results are presented in sections 3 and 4, respectively,

and a more comprehensive discussion including conclu-

sions and recommendations can be found in section 5.

Finally, a glossary of commonly used abbreviations is

presented in the appendix.

2. Study area and datasets

a. Study area

Four African river basins were selected for valida-

tion of the SRFE—namely, the Zambezi, Volta, Juba–

Shabelle, and Baro–Akobo (see Fig. 1).

The Zambezi River basin is located in southern

Africa and is one of the largest transboundary river

basins in Africa, comprising eight countries (Angola,

Botswana, Malawi, Mozambique, Namibia, Tanzania,

Zambia, and Zimbabwe) (see Fig. 1a). It has a drainage

FIG. 1. Overview of the geographical location of the study areas: (a) terrain elevation, (b) rain gauge stations, and (c) subcatchment

delineation. Dark blue dots show rain gauge stations used for the point-to-pixel analysis, while (light and dark) blue dots show stations

used for the large-scale analysis (spatial interpolation with KED).
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area of approximately 1.35 3 106 km2, ranging in height

from 1524 mMSL to sea level, with three distinct climatic

seasons: cool and dry (April–August), warm and dry

(September–October), and warm and wet (November–

March), resulting in an unimodal pluviometric regime.

The annual precipitation varies between 700 mm for the

southern and southwestern areas and 1200 mm for the

northern areas, with an average of 990 mm (Shahin 2002).

The Volta River basin is shared by Benin, Burkina

Faso, Ghana, the Ivory Coast, Mali, and Togo (see

Fig. 1b), covering an area of circa 394 000 km2. Notwith-

standing the regular topography, the basin’s climate

shows a distinct north–south gradient due to the move-

ment of the ITCZ, which creates a steadily increasing

precipitation gradient from the dry Sahelian north (300–

500 mm yr21) to the oceanic south (1200–1500 mm yr21)

(Shahin 2002). Along this gradient the pluviometric re-

gime also changes from a short unimodal pattern for the

inland areas to a longer, slightly bimodal pattern for the

coastal zones.

The Juba–Shabelle Rivers basin covers an area of

circa 783 000 km2 and is shared by Ethiopia, Somalia,

and Kenya (see Fig. 1c). Few distinctive climatic regimes

are associated with the basin’s highly complex topo-

graphy. These regimes are mostly determined by the

northward and southward movement of the ITCZ re-

sulting in subhumid and semiarid conditions with two

distinctive rain seasons (April–June and October–

November). Except for in the limited coastal zones, an-

nual precipitation mostly follows a bimodal pattern. The

average annual precipitation of the basin is 500 mm, with

considerable spatial variability between the Ethiopian

highlands (1300 mm), the lowlands between Somalia

and Ethiopia (200 mm), and the coastal zone (500 mm)

(Artan et al. 2007).

The smallest basin analyzed corresponds to the Baro–

Akobo River, which is part of the Nile River basin (see

Fig. 1c). This basin is located in southwest Ethiopia

covering an area of circa 76 000 km2 with an altitude

ranging between 400 and 3100 m MSL. Annual pre-

cipitation varies from 1800 to over 2200 mm, with one

rainy season from April to October.

b. Datasets

1) RAIN GAUGE DATA

The dataset used for validation comprised 205 gauge

stations distributed over the four river basins (see Fig. 1).

The varying number of daily ground observations for

each river basin between 2000 and 2010 is depicted in

Fig. 2. Table 1 provides, for each river basin, details re-

garding number of rain gauge stations, data source, and

data coverage, as well as gauge density.

This dataset is considered to be the most represen-

tative for a validation study of this kind. First, this

dataset complements the publicly available GTS data

frequently used for bias correction of SRFE (e.g., RFE

FIG. 2. Temporal coverage of SRFE and ground measurements

between 2000 and 2010. Vertical red lines show, the delimitation of

the validation period (2003–06) used in this work.

TABLE 1. Summary of rain gauge data used in this work. GLOWAstands forGlobal Change in theHydrological Cycle (http://www.glowa-

volta.de/), and SWALIM stands for Somalia Water and Land Information Management.

Target area

No. of

stations Provider

Data coverage between 2003 and 2006

(No. of stations) Gauge density

(km2 station21),25% 25%–50% 50%–75% .75%

Zambezi 96 Zambia Meteorological Department 5 3 23 23 22 900

WMO GTS stations 43 7 4 0

Volta 68 GLOWA Volta project 3 1 2 22 8800

WMO GTS stations 20 13 4 3

Juba–Shabelle 26 Ethiopian National Meteorological

Department/SWALIM project

5 2 0 4 52 000

WMO GTS stations 12 0 2 1

Baro–Akobo 15 Ethiopian National Meteorological

Department

3 0 1 11 12 700
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2.0, TRMM-3B42, and ERA-Interim) with data from

national meteorological services that are not publicly

available. Approximately 79% of the data used here

are not publicly available and hence are only used rarely

in validation studies. Secondly, all data providers claim

to perform quality control procedures to reduce poten-

tial errors. Therefore, and in spite of the highly varying

data coverage and the uneven spatial distribution (i.e.,

high density at lower elevations and just few stations at

higher altitude), we consider this dataset to be repre-

sentative as it is the most complete and accurate, given

the general data availability for each river basin.

2) SRFE

This section provides a brief overview of the SRFE

products (see Table 2 for details) and the main findings

of previous validation studies. From Fig. 2 we observe

that, for almost all of the SRFE products, there are

concurrent data periods between the years 2003 and

2006, which coincide with the maximum number of

available daily rainfall records taken from the rain gauge

stations in the four river basins. Based on this, we se-

lected the SRFE products described below.

(i) CMORPH

The main inputs for the NOAA–CPC CMORPH are

geostationary IR data from theU.S.GOES-8 and -10, the

European Meteosat-5 and -7, and the Japanese GMS-5,

PMW-derived precipitation data from the TMI, the SSM/

I, and the AMSU. CMORPHmerges IR and PMW data

in two steps: 1) atmospheric motion vectors from two

successive IR images are generated at 30-min intervals,

and 2) the derived motion field is used to propagate the

precipitation estimates derived from the different PMW

sources. Hence, quantitatively, the precipitation esti-

mates are based solely on PMW data (Joyce et al. 2004)

and the IR imagery is not used to estimate precipitation

but rather to interpolate between two PMW-derived

rainfall intensity fields. CMORPH has been reported to

outperform other SRFE products over the Australian

tropics (Ebert et al. 2007; Joyce et al. 2004), centralUnited

States (Behrangi et al. 2011), and Europe, whereas it

performed similarly to other SRFE products over the

Ethiopian highlands (Dinku et al. 2007) and poorly over

western tropical Africa (Jobard et al. 2011). In respect of

quantitative rainfall estimation, CMORPH tends to over-

estimate the amount of precipitation during wet periods,

which is a common characteristic for SRFE products that

do not rely on rainfall gauge data (Behrangi et al. 2011).

(ii) RFE 2.0

The NOAA African Precipitation Estimation Algo-

rithm (RFE 2.0) is based on IR (Meteosat-5) and PMW

(SSM/I and AMSU) data as well as on GTS rain gauge

station data. Estimates are generated in two steps: 1)

satellite data sources are linearly combined through an

ML estimation method (Arkin and Meisner 1987) to

eliminate data gaps and to decrease random errors and

systematic bias, and 2) a bias correction method is im-

plemented on a grid-to-grid basis using the GTS rain

gauge stations to correct for quantitative deviations

(The NOAAClimate Prediction Center 2002; Xie and

Arkin 1996). The performance of RFE 2.0 is strongly

dependent on the observational network density with de-

viations increasing in mountainous and deserted areas

(Symeonakis et al. 2009). In addition, orographic rainfall

effects are not included in RFE 2.0, resulting in con-

siderable underestimation of precipitation over moun-

tainous regions (Dinku et al. 2007). Over the Sahelian

region in western Africa, RFE 2.0 estimates provided a

superior match over other SRFE products in terms of

spatial pattern and bias (Jobard et al. 2011).

TABLE 2. Summary of SRFEs used in this work. EORC stands for Earth Observation Research Center (http://www.eorc.jaxa.jp/

en/index.php).

Product Provider Spatial coverage

Temporal

coverage

Spatial

resolution

Temporal

resolution References

CMORPH NOAA-CPC 608N–608S, globally Since 6 Dec 2002 0.258 3 h (Joyce et al. 2004)

RFE 2.0 NOAA-CPC 408N–408S, 208W–558E Since 1 Jan 2001 0.18 24 h (The NOAA Climate

Prediction Center 2002)

TRMM 3B42 v6 NASA 508N–508S, globally Since 1 Jan 1998 0.258 3 h (Huffman et al. 2010, 2007)

GPROF 6.0 NASA globally Since 1 Jan 1998 0.258 24 h (Kummerow et al. 2001;

Olson et al. 2007)

PERSIANN University of

Arizona

608N–608S, globally Since 1 Mar 2000 0.258 6 h (Hsu et al. 1997)

GSMaP-MVK JAXA/EORC 608N–608S, globally 1 Jan 2003–31

Dec 2008

0.18 1 h (Ushio and Kachi 2010)

ERA-Interim ECMWF Global 1 Jan 1989–31

Dec 2009

;79 km 6 h (Dee et al. 2011)
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(iii) TRMM 3B42 v6

The main input sources for the Tropical Precipitation

Measuring Mission TRMM 3B42 v6 are IR data from

geostationary satellites, PMW data from TMI, SSM/I,

AMSU, and the AMSR-E. The 3B42 algorithm is exe-

cuted in four steps: 1) PMW precipitation estimates are

calibrated and combined; 2) IR precipitation estimates are

generated using the calibrated PMW data; 3) both IR and

PMW data are then combined; and 4) rescaled on

a monthly basis using rain gauge data (Huffman et al.

2010). TRMM 3B42 v6 performed well compared with

other SRFE products, highlighting a good match for the

frequency of the rainy events and a weaker match for the

amount of precipitation (Huffman et al. 2010). These

findings have been confirmed over Uganda by Asadullah

et al. (2008).

(iv) GPROF 6.0

The GPROF 6.0 precipitation estimates are based

on the SSM/I brightness temperature data only. The

basis of this algorithm is a large supporting database of

observed multichannel microwave radiances and simu-

lated radiance profiles, together with the corresponding

precipitation rate generated from a numerical model.

The actual precipitation estimate is then retrieved in two

steps: 1) the observed microwave radiances are uploa-

ded into the database and a (pseudo)-radiative filtering

is performed, and 2) the precipitation rate is then gen-

erated by fitting the observed radiance profile with the

reference profiles in the database (Kummerow et al.

2001; Olson et al. 2007). Compared with other products,

validation studies of GPROF 6.0 were limited, reporting

a positive bias (17%–20%) when compared with the

GPCC rain gauge network (Kummerow et al. 2001).

(v) PERSIANN

The PERSIANN method utilizes an ANN model to

estimate precipitation using IR; accuracy is improved by

adaptive adjustment of the network parameters using

rainfall estimates from the TMI. At the pixel level, the

algorithm fits the mean and standard deviation of the

brightness temperature of a pixel and the adjacent

pixel’s temperature texture to the calculated pre-

cipitation rate (Hong et al. 2004; Hsu et al. 1997).

PERSIANN has been reported to be less consistent

with rain gauge data over a number of areas such as

Uganda (Asadullah et al. 2008), India (Brown 2006),

Colombia (Dinku et al. 2010b), Asia (Sorooshian et al.

2000), and the Ethiopian highlands (Dinku et al.

2007). These studies show large errors for higher pre-

cipitation amounts, which can be explained by the lack of

rain gauge adjustment, although high correlations with

gauge data have been reported for a number of South

African river basins (Hughes 2006).

(vi) GSMaP-MVK

The main data sources for the GSMaP-MVK are

PMW (TMI, AMSR-E, AMSR, and SSM/I) and IR

(GOES-8 and -10, Meteosat-5 and -7, and GMS) radi-

ometer data. The algorithm follows three main steps: 1)

retrieval of precipitation rate from PMW data using

a Kalman filter approach (Ushio et al. 2009), 2) propa-

gation of the estimated precipitation rate using the

same procedure as CMORPH, and 3) refinement of

precipitation data based on the relationship between

the IR brightness temperature and surface precipita-

tion rates. Previous validation studies showed under-

estimation of precipitation amounts and a very low

probability of precipitation detection over Colombia

(Dinku et al. 2010b) and the West African monsoon

region (Jobard et al. 2011), whereas its performance

was reported to be comparatively better than TRMM

3B42 over arid and semiarid areas in Africa (Dinku

et al. 2010a).

(vii) ERA-Interim

As a reanalysis product, ERA-Interim is a result of

available observations but it is not equivalent to obser-

vations. Precipitation is estimated by the numerical

model based on temperature and humidity information

derived from assimilated observations originating from

PMW and in situ measurements (Dee et al. 2011). In-

tercomparison studies between ERA-Interim and the

previously mentioned products, as well as validation

against ground measurements, are limited. ERA-Interim

was outperformed by ERA-40 and RFE 2.0 over Uganda

(Maidment et al. 2010).

3. Methodology

Validation

The prerequisite for the choice of validation period

was a common time period between all SRFE and rain

gauge data. The varying number of ground observations

for each river basin and the different starting dates of the

individual SRFEs are shown in Fig. 2, which shows that

the best available time period is from 2003 to 2006.

The ability of the SRFEs to replicate specific rainfall

characteristics was assessed. The rainfall features validated

in this work include volume and timing of heavy rainfall

events, number of rainy days per year, annual catchment

totals, spatial distribution patterns, seasonality, and

average daily and monthly rainfall values. Considering

the temporal and spatial variability of these characteristics,
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as well as conventional hydrological working units, the

SRFE validation was carried out on three spatially ag-

gregated levels: point-to-pixel, subcatchment, and river

basin scale.

1) POINT-TO-PIXEL ANALYSIS

The volume and timing of heavy rainfall events and

the number of rainy days per year are largely subject to

small-scale variability and, thus, can only be validated

at the smallest possible spatial scale. Hence, a point-to-

pixel analysis was applied in order to compare time se-

ries rainfall data observed at selected gauge stations

(dark blue points in Fig. 1) with the respective SRFE

grid cell. For this analysis, all SRFE products with a

larger spatial resolution than 0.18 were downscaled to a

unified grid of 0.18 resolution, thus eliminating uncer-

tainties arising from incongruent SRFE grid resolutions.

For each of the selected meteorological stations, only

years with 100% data coverage were considered for the

comparison (called analytical years, n).

The replication of volume and timing of heavy rainfall

events was assessed by considering only the highest

observed rainfall event for each analytical year (n), as

shown in Fig. 3. For the timing of the event, the lag time

between the maximum precipitation value observed and

estimated (SRFE) was calculated using a reference pe-

riod of one week around the highest observed value (t0),

with 3 days before (t23) and 3 days after (t13) the highest

observed value (t0). If the SRFE do not exceed 10 mm on

any of the days within this reference period, an NP class

was assigned, which represents a failure of the SRFE to

capture the signal of the highest observed rainfall event

within the period (t23, t13). The number of NPs therefore

reflect the ability of the different SRFE products to cap-

ture the rainfall events. A low number of NPs indicate that

the SRFE product is capable of capturing the signal of the

observed rainfall event, whereas a high number of NPs

indicate that the signals of the events were not captured.

For rainfall volume during the highest events, and

given that the maximum SRFE precipitation might be

shifted with respect to its observed counterpart, the ac-

cumulated precipitation for the whole week (t23, t13)

was assessed. To facilitate comparison, rainfall totals of

the highest events were normalized using

Pamount5
1

n
�
n

i51

PSRFE
i

Pobs
i

, (1)

where Pamount is the normalized amount of precipi-

tation, and PSRFE and Pobs are the SRFE and observed

amount of precipitation per rainfall event, respectively.

The assessment of the number of rainy days per

year was also normalized by comparing the number

of observed rainy days (i.e., days with precipitation

totals . 1 mm) for each analytical year (dobsi) and the

corresponding SRFE estimation (dSRFEi
) as follows:

F5
1

n
�
n

i51

dSRFE
i

dobs
i

, (2)

whereF is the normalized number of rainy days per year.

2) LARGE-SCALE ANALYSIS

Precipitation characteristics such as annual catchment

totals, spatial patterns, and seasonality were validated

on a subcatchment or river basin scale (for delineation of

subcatchments, see Fig. 1). These spatial units are par-

ticularly relevant for these rainfall characteristics as they

represent the conventional working units for hydrolog-

ical applications. At the same time, and as suggested by

Xie and Arkin (1995), aggregation on a larger scale

enhances the stability of the precipitation validation

exercise. The large-scale validation analysis was per-

formed by comparing spatially aggregated SRFE cells

belonging to each subcatchment or river basin against

a corresponding interpolated rainfall field derived from

ground observations.

As described by Goovaerts (2000), areal interpolation

of precipitation can be enhanced if the kriging family

of algorithms is employed. Kriging algorithms for spa-

tial interpolation have been widely used and docu-

mented in the literature and, thus, they will not be

discussed here. Instead we refer the reader to the works

of Journel and Huijbregts (1978), Isaaks and Srivastava

(1989), Goovaerts (1997), Burrough and McDonnell

(1998), and Ly et al. (2011) for excellent reviews. In this

study, we interpolate daily precipitation data available

from the 205 gauge stations (see section 3) by using

KED (Goovaerts 2000). KED takes advantage of one

(or more) auxiliary variables to improve the spatial

interpolation, which is particularly important in our

validation study given the sparse data coverage in the

study areas. As auxiliary variable to supplement daily

rainfall records, we used high-resolution terrain eleva-

tion data provided by the NASA SRTM as the external

drift in KED.

The spatial interpolation with KEDwas calculated on

a daily time step for the 4-yr period (2003–06) and also

for each spatial scale analyzed [i.e., pixel (0.18 3 0.18),

subcatchment, and river basin]. To automate the in-

terpolation process we used the hydroTSM R package

(http://CRAN.R-project.org/package5hydroTSM),

which provides wrapper functions to different Kriging

algorithms implemented in the automap (http://cran.

r-project.org/web/packages/automap/automap.pdf) and
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FIG. 3. Point-to-pixel analysis for each river basin (rows) for the different SRFE. (left) The percentage of the highest annual events with

a lag timewithin (t23, t13) and the number of NPs. A positive lag timemeans that the event was estimated later by the SRFE and vice versa

for negative lag times. (middle) The normalized amount of rainfall for the highest rainfall events within (t23, t13) [see Eq. (1)]. (right) The

normalized number of rainy days per year (precipitation intensity . 1 mm) [see Eq. (2)].
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the gstat (Pebesma and Wesseling 1998) R packages

(http://www.R-project.org). KED interpolation was cal-

culated with the following conditions: 1) a maximum

distance of 500 km for spatial dependency; 2) automatic

selection of the best variogram for each day, which was

limited to the following theoretical models: spherical,

exponential, Gaussian, and Matern Stein’s parameteri-

zation; and 3) for the large-scale analysis the interpolated

values in each cell are aggregated up to subcatchment and

river basin scale.

(i) Subcatchment

Precipitation characteristics assessed at subcatchment

scale are daily and monthly precipitation data, as well as

seasonality. The performance of the different SRFE

products was assessed through a series of statistical mea-

sures (see Table 3). These statistical measures summarize

the strength of the relationship between daily SRFE

values and their corresponding ground observations. Pro-

bability distributions, seasonality, and monthly character-

istics (for wet and dry periods) are evaluated graphically

using Q–Q plots, average monthly precipitation graphs,

and monthly boxplots, respectively (see Figs. 4–6 ).

(ii) Basin-scale analysis

Advanced hydrological applications increasingly

rely on distributed models for which a correct spatial

distribution of precipitation is essential. To assess the

skills and accuracy of the SRFE products, the average

annual precipitation was calculated for each grid cell

as shown in Figs. 7 to 10 . The basin-scale analysis was

completed by calculating the average annual catchment

totals, standard deviation, and the distribution of annual

bias.

4. Results

a. Point-to-pixel analysis

Results for the point-to-pixel comparison for each river

basin are shown in Fig. 3. The plots for the Zambezi,

Volta, and Baro–Akobo (see left-hand column of Fig. 3)

show that most of the SRFE products captured most of

the highest annual rainfall events with a lag time of 0 or

11 day, while for Juba–Shabelle most events were cap-

tured with a delay of 1 or 2 days. The number of NPs is

notably lower in the Zambezi compared with the other

basins, in particular against the Juba–Shabelle, which

might be explained by morphoclimatic differences (it

should be noted that, in order to allow a visual compar-

ison, the relative sizes of the pie charts are proportional to

the number of NPs). In the Zambezi basin, for example,

precipitation falls over a large, flat (tropical wet) basin,

and over relatively long time periods, thus explaining the

low number of NPs and the increased number of fits (up

to 1 day of lag time). By comparison, rainfall in the

semiarid area of the Juba–Shabelle is less frequent and is

strongly influenced by the winds of the ITCZ, which can

present a problem for the SRFE algorithms.

Whencomparing theproducts,GPROF6.0,PERSIANN,

GSMaP-MKV, and, to a certain extent, ERA-Interim

showed a very large number of NPs. In contrast, RFE

TABLE 3. Statistical measures of performance used for analysis on a subcatchment scale.

Statistical measure Equation Optimum Description/further information

pBIAS (Yapo et al. 1996) pBIAS5 1003

�
N

i5 1

(SRFEi 2GOi)

�
N

i5 1

GOi

0 d Measures the average tendency of the satellite

estimates (SRFE) to be larger or smaller than

the average ground observations (GO).
d Positive or negative values indicate

overestimation or underestimation of the

observations, respectively.

r r5

�
N

i5 1

(GOi 2GO)(SRFEi 2SRFE)

N3sGO 3sSRFE
1 d Measures the linear association between

ground observation and satellite estimation

while it is insensitive to bias.

NSeff (Nash and

Sutcliffe 1970)

NSeff 5 12

�
N

i5 1

(SRFEi 2GOi)
2

�
N

i5 1

(GOi 2GO)2
1 d Determines the relative magnitude of the

residual variance compared to the variance of

the ground observations. Hence, it indicates

howwell the plot of observed vs estimated data

fits the bisector line.
d Since this skill score is a composition of both

linear association and bias, it is a better score

than any of the above-mentioned individual

scores (Jobard et al. 2011).
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FIG. 4. Q–Q plots of quantiles of subcatchment interpolated rainfall (x axis) vs SRFE quantiles

(y axis) for each subcatchment analyzed. Any deviation from the bisector line indicates a distributional

difference between both datasets. For the delineation of subcatchments see Fig. 1. Please note that the

y axes of panels labelled Z-8 and V-1 to V-4 are truncated at 100 mm to allow direct visual comparison.
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FIG. 5. Interannual variation of mean monthly precipitation for each subcatchment. In gray, the dry periods; in white, the wet periods

according to Andah and Gichuki (2005), Artan et al. (2007), and Cohen Liechti et al. (2011).
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FIG. 6. Box-plot diagrams of monthly precipitation for each subcatchment. Note the different vertical axis scale for wet and dry periods.

Wet and dry periods defined according to Andah and Gichuki (2005), Artan et al. (2007), and Cohen Liechti et al. (2011).
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2.0, followed by CMORPH and TRMM 3B42, showed

both good timing for capturing the extreme precipita-

tion events and a low number of NPs.

Results also show that all SRFE products under-

estimated the amount of precipitation during the heavy

rainfall events regardless of the study area, withCMORPH

slightly outperforming the other products (see middle

column of Fig. 3). At the same time, most SRFE prod-

ucts overestimated the number of rainy days over trop-

ical wet and dry zones (the Zambezi and Volta), while a

mixed pattern was observed for semiarid or mountainous

areas (Juba–Shabelle and Baro–Akobo) (see right-hand

column of Fig. 3). Both GPROF 6.0 and GSMaP-MVK

showed a persistent, basin-independent, underestima-

tion of the number of rainy days, whereas ERA-Interim

exhibited a persistent and significant overestimation.

CMORPH, RFE 2.0, and PERSIANN showed com-

parable, moderate-to-good performances whereas TRMM

3B42 showed the best performance for all basins. For

mountainous and semiarid areas, PERSIANN showed a

performance comparable to TRMM 3B42, where the esti-

mateddatawere in agreementwith theobserved rainydays.

b. Subcatchment-scale analysis

Table 4 shows the statistical measures of performance

between the daily SRFEs and observed precipitation

values for each subcatchment (note that all acronyms

are expanded in the appendix).

PBIAS shows a diverse picture for each river basin. A

significant variability among the SRFE and subcatchments

can be seen for the Zambezi basin whereas, for the Volta,

overestimation of daily precipitation ranged from120% to

171%formost products. For bothbasins,RFE2.0, TRMM

3B42, and ERA-Interim showed the lowest bias. For the

Juba–Shabelle, a persistent underestimation (between

211%and265%)was observed, whereas ERA-Interim

showed the smallest bias between 25% and 134%. For

the Baro–Akobo, most satellite products underestimated

daily rainfall by circa220%to230%,whileERA-Interim

showed a considerable overestimation of 144%.

The correlation coefficient (r) also exhibited product-

and basin-specific tendencies. The respective correlations

of CMORPH, RFE 2.0, TRMM 3B42 and ERA-Interim

were comparatively higher than those of the remaining

FIG. 7. Basin-scale analysis for the Zambezi. Maps show the mean annual precipitation supplemented with information about average

basin total and average standard deviation. (i) The histogram shows the percentage of the basin area showing over- or underestimation of

the average annual precipitation by a given amount.
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SRFEs. For GPROF 6.0, this might be explained by the

refilling of the time series using information from the

previous day, although for GSMaP-MKV it could be

a result of the inherent limitations of the product [see

section 2b(2)(vi)]. The Zambezi and Volta basins showed

higher correlations comparedwith the Juba–Shabelle and

Baro–Akobo basins, which might be caused by morpho-

climatic differences between both pairs of basins.

NSeff showed the accuracy of the SRFE products in

replicating observed (interpolated) precipitation. RFE

2.0, TRMM 3B42, and ERA-Interim were notably the

more accurate products for the Zambezi, as was RFE 2.0

for the Volta. GPROF 6.0, PERSIANN, and GSMaP-

MVK were no more accurate than the average in-

terpolated daily rainfall data (i.e., NSeff , 0). None of

the products showed a satisfactory NSeff for either Juba–

Shabelle or Baro–Akobo, which might be due to the

significant interpolation variances in these areas.

A comparison between the probability distributions of

the SRFE and the daily interpolated rainfall data is pre-

sented in Fig. 4. Four general trends can be seen: 1) good

agreement for the lower precipitation values (,15 mm);

2) significant dispersion for higher precipitation values,

indicating increased uncertainty in the estimation of

higher-end percentiles; 3) persistent overestimation of

precipitation by GPROF 6.0 compared to the other

products; and 4) tendency of GSMaP-MVK to underes-

timate observed values in the lower range while shifting

toward extreme overestimation for higher-range values.

Basinwide, RFE 2.0 and TRMM 3B42 showed good cor-

respondencewith the observed precipitation data, with the

largest spread amongst SRFE products observed for the

Volta and Baro–Akobo basins.

For the Volta, PERSIANN andCMORPH showed an

overestimation of heavy precipitation in northwestern

areas (V-1 toV-3) and good agreement for the coastal area

(V-4), whereas the opposite can be seen for TRMM 3B42

and RFE 2.0. A large overestimation is also observed for

GSMaP-MKV and GPROF 6.0 across the whole Volta

basin, particularly at higher quantiles. General under-

estimation for all products is evident in the Ethiopian

highlands (JS-1 to JS-2), while for coastal areas (JS-3 and

JS-4) CMORPH and PERSIANN replicated the ob-

served distribution relatively well.

Seasonal deviations of the SRFE are depicted in

Fig. 5. In general, results during the dry period were

FIG. 8. As in Fig. 7, but for the Volta.
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more accurate then results during the wet period.

CMORPH,GPROF6.0, PERSIANN, andGSMaP-MVK

most notably showed large, positive deviations whereas

TRMM3B42 and RFE 2.0 were themost accurate. Over

mountainous areas (BA-1, JS-1, and JS-2), RFE 2.0 and

ERA-Interim diverged from their prevailing tendencies

and showed underestimation and overestimation of ob-

served precipitation, respectively. All SRFE products

replicated the bimodal precipitation pattern over the

Juba–Shabelle with (expected) large deviations around

the monthly maximum. In turn, the slightly bimodal pre-

cipitation pattern observed over the oceanic-influenced

area south of the Volta (V-4) was closely replicated by

RFE 2.0, TRMM 3B42, and ERA-Interim, with the re-

maining SRFE products failing to produce such a pattern.

The statistics of monthly precipitation during wet and

dry periods are summarized graphically in Fig. 6. This

figure confirms the general tendencies shown in Fig. 5. In

particular, large variability is observed for the wet period

in theZambezi,withCMORPH,GPROF6.0, andGSMaP-

MKV overestimating rainfall and TRMM-3B42 slightly

underestimating rainfall in most of the subcatchments

(Z-1 to Z-4 and also Z-6). During the dry period, the

spread of monthly precipitation is largest in the west of

the Zambezi basin (Z-1 and Z-2) and at the river mouth

(Z-8). RFE 2.0, TRMM 3B42, PERSIANN, and ERA-

Interim closely replicated the observations in the west of

the basin, while the relative performances of the in-

dividual SRFE products were comparable for sub-

catchments Z-3 to Z-7. In the Volta basin, the dispersion

as well as the median was captured well by RFE 2.0 and

TRMM 3B42 during the wet period, whereas the re-

maining SRFEs showed significant deviations. There

was a noticeable difference in performance between the

central–northern subcatchments (V-1 to V-3) and the

southern subcatchment (V-4) during the dry period.

This indicates the ability of the SRFE products to esti-

mate precipitation under dry conditions on a monthly

scale. For V-4, however, the dry season is less distinct

owing to the oceanic influence, which produces a wider

variation in the observations.

In the Juba–Shabelle basin, most SRFE products

tended to underestimate monthly precipitation over

the Ethiopian highlands (JS-1 and JS-2) within the wet

FIG. 9. As in Fig. 7, but for Juba–Shabelle.
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season. Underestimation decreased in downstream

areas (JS-3 and JS-4), where the median was well cap-

tured although the spread was mostly overestimated.

The dry season shows amore homogeneous pattern over

the Juba–Shabelle basin, with only ERA-Interim closely

resembling the observations. All other SRFE products

underestimated the observations.

Results for the Baro–Akobo basin show a significant

overestimation of precipitation by ERA-Interim for

both wet and dry seasons, while the large underestimation

of RFE 2.0 (see Fig. 5) applies to the wet period only. A

similar pattern can be seen for TRMM 3B42 and GPROF

6.0. Finally, the previously noted overall superior perfor-

mance of CMORPH in Baro–Akobo (see, e.g., Table 4

and Figs. 4 and 5) is explained by its ability to correctly

estimate monthly precipitation during wet periods, as

the performance of CMORPH during dry periods is

similar to that of TRMM 3B42 and GPROF 6.0.

c. Basin-scale analysis

The spatial distribution of annual precipitation pat-

terns are shown for each basin and each product in

Figs. 7–10 and are analyzed individually for each basin

below.

1) ZAMBEZI RIVER BASIN

In the Zambezi basin, (interpolated) observed annual

precipitation (Fig. 7a) shows a decrease from both the

northwest and the northeast toward the central south,

varying from 1000 and 1400 mm in the wetter northern

areas to 600 mm in the drier southern areas. This is in

full agreement with the findings by Shahin (2002). RFE

2.0 (Fig. 7c) and TRMM 3B42 (Fig. 7d) closely repli-

cated the observed spatial pattern, showing a slight

underestimation of 211% and 219%, respectively. For

both products, precipitation ranged between 600

and 1400 mm. In turn, ERA-Interim (Fig. 7h) esti-

mated the spatial patterns reasonably well, ranging

between 200 and 1800 mm with a slight overestimation

over the western area and an underestimation over the

southern and eastern areas. Figure 7i showed that

underestimation of RFE 2.0, TRMM-3B42, and ERA-

Interim was mainly restricted to relatively small de-

viations (typically up to 300 mm yr21). In contrast,

FIG. 10. As in Fig. 7, but for Baro–Akobo.
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CMORPH, GPROF 6.0, and PERSIANN (Figs. 7b,e,g)

showed a significant overestimation that was mainly

concentrated in the western part of the basin, whereas

for GSMaP-MKV (Fig. 7f) over- and underestimations

compensate each other. These latter four SRFE products

showed the poorest agreement with the observations

with average annual precipitation being overestimated

by more than 500 mm yr21 in up to 30% of the basin’s

area.

2) VOLTA RIVER BASIN

Interpolated precipitation in the Volta basin (Fig. 8a)

showed an increasing gradient from the dry north

(600 mm) to the wet south (1600 mm), ending in an

abrupt reduction in precipitation (1000 mm) at the coastal

zone. This pattern fully agrees with the literature (Shahin

2002). Within this basin RFE 2.0 and TRMM 3B42

(Figs. 8c and 8d) corresponded well with the (in-

terpolated) observed precipitation, exhibiting a slight

underestimation of 214% and 211%, respectively.

ERA-Interim (Fig. 8h) showed a gradual increase of

precipitation from north to south, although it failed to

capture the decline in observed precipitation at the

coast. ERA-Interim showed an underestimation of

222% throughout the basin. CMORPH, GPROF 6.0,

GSMaP-MKV, and PERSIANN (Figs. 8b,e–g) all showed

significant precipitation overestimation, with up to 70%

of the basin overestimated by more than 500 mm yr21

(see Fig. 8i). RFE 2.0 and TRMM-3B42 showed the

lowest error with a difference of approximately 1100 to

2200 mm yr21 in ;80% of the area, compared to the

observed precipitation.

3) JUBA–SHABELLE RIVERS BASIN

The spatial rainfall pattern in the Juba–Shabelle basin

follows the orography (see Fig. 9a), with rainfall over the

lowlands (400–500 mm) steadily increasing toward the

Ethiopian highlands (up to 1800 mm). In Fig. 9h it can

be seen that ERA-Interim closely estimated the inter-

polated observations (Fig. 9a) in terms of precipitation

range, spatial pattern, and areal average. However, a

previous study suggests average annual precipitation

to be closer to 500 mm with a high spatial variability

between the Ethiopian highlands (1300 mm), the

lowlands (200 mm), and the coastal zone (500 mm)

(Artan et al. 2007), it seems reasonable to suggest that

RFE 2.0 (Fig. 9c) and TRMM 3B42 (Fig. 9d) more

closely estimated the observed pattern. Both products

captured the arid conditions over the lowlands (200–

400 mm) and the basin average well, showing a slight

underestimation over the Ethiopian highlands, which is

probably a result of the low number of observation

networks in this area. The remaining products (Figs. 9b,

e–g) showed a significant underestimation and poor

correspondence with the interpolated observations.

However, it should be noted that, for this basin, devia-

tions do not prevail in the extreme range (see Fig. 9i).

4) BARO–AKOBO RIVERS BASIN

For the Baro–Akobo basin, interpolated observed

rainfall data (Fig. 10a) showed aminimumprecipitation of

1400 mm in the west (river mouth), which increases to up

to 2200 and 2600 mm in the north and southeast areas,

respectively. This pattern agrees with the literature

(e.g., Romilly andGebremichael 2011). Figure 10 shows

that deviations from the observations vary between

products, with no single product outperforming the rest.

Considering average annual basin precipitation, un-

derestimation of the observed values varied between

56% (Fig. 10g) and 89% (Fig. 10b). In contrast, ERA-

Interim (Fig. 10h) showed a significant overestimation

of between 2200 and 3500 mm (32% of the observed

average value). The majority of the SRFE products

underestimated the observed values by more than

500 mm yr21 over large areas of the basin (see Fig. 10i)

although, in contrast, ERA-Interim overestimated the

observations. CMORPH produced no extreme de-

viations and, although it estimated the observed data only

moderately well (see Fig. 10b), it appeared to be the best

performing product overall.

5. Discussion and conclusions

a. General features

While each SRFE has its own strengths and limita-

tions according to the temporal and spatial scale as well

as the geographical location, eight general features,

discussed hereafter, were observed.

1) ABILITY TO ESTIMATE PRECIPITATION DURING

THE DRY SEASON ON A MONTHLY BASIS

Accurate estimation of the lower-range rainfall amounts

(see Fig. 4) and reduced variability between the SRFE

products (see Fig. 5) was observed during the dry season.

During the dry period rainfall occurrence is mostly re-

stricted to light rain, which might explain the accurate

agreement between products and observations for this

season. Accurate detection of light rainfall events by

different SRFE products was previously reported by

Symeonakis et al. (2009).

2) GENERAL UNDERESTIMATION OF HEAVY

RAINFALL EVENTS

Although the timing of heavy rainfall events was

properly captured by most SRFE products, the amount

of rainfall was underestimated (see Fig. 3). There may
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be a number of reasons for this fact, but the small extent

of the heavy precipitating cells, which is generally below

the detection limit of the PMW satellite sensors, is po-

tentially the most relevant. Another potential cause is

the unreliable calibration of the retrievals for extreme

values.

3) ABILITY TO REPLICATE BIMODAL ANNUAL

PRECIPITATION PATTERNS

Agood replication of bimodal patterns over the Juba–

Shabelle basin and the coastal zone of the Volta basin

was observed (see Fig. 5). In the Juba–Shabelle basin

a large variation for the wet seasons was observed,

whereas a noticeable variability was observed for the dry

season in the oceanic-influenced coastal zone of the

Volta basin (V-4).

4) SUPERIOR PERFORMANCE OVER THE

TROPICAL WET AND DRY ZONES (ZAMBEZI

AND VOLTA) THAN OVER SEMIARID AND

MOUNTAINOUS REGIONS (JUBA–SHABELLE

AND BARO–AKOBO)

The differences in overall performance of the SRFEs

over the different catchments are most likely explained

by morphoclimatic differences. The influence of orog-

raphy on precipitation itself is currently an important

research topic in atmospheric science, but no accurate

representation of rainfall structure in the study areas is

yet available. However, complex orography and sparse

ground observations from the Juba–Shabelle basin make

it difficult to compare interpolated KED fields with

SRFE data. Nevertheless, it should be noted that SRFEs

are, in general, more suited to estimating convectional

tropical rainfall patterns than isolated convection in

semiarid to arid areas which are more difficult to capture

owing to factors such as subcloud evaporation, rainfall

suppression by desert aerosols, and hot background sur-

faces (Dinku et al. 2010a).

5) INCREASING UNCERTAINTY IN THE

ESTIMATION OF HIGHER-END PERCENTILES

OF DAILY PRECIPITATION

While the discrimination between rain and no rain is

relatively reliable using satellite sensors, quantitative

estimation remains challenging (Dinku et al. 2010b).

The increase in uncertainty observed in this work could

be related to the fact that spatial scale usually decreases

with increasing amount of precipitation and hence pre-

cipitation might fall below the detection limit of the

satellite PMW sensors or it may be ascribed to the in-

formation content of IR data in general (Dinku et al.

2007; Xie and Arkin 1995).

6) LOW ACCURACY IN DETECTING HEAVY

RAINFALL EVENTS OVER SEMIARID AREAS

A higher number of NPs were found for the Juba–

Shabelle compared to the other basins (see Fig. 3). This

indicates a particular weakness in detecting the rainfall

signal in this basin. Since all the gauge stations used for

the point-to-pixel analysis were located in the semiarid

area and none in the Ethiopian highlands, such weak-

ness is likely linked to climatological rather than topo-

graphic features. This is supported byDinku et al. (2010a),

who reported a decreasing probability of detection with

increasing aridity.

7) OVERESTIMATION OF NUMBER OF RAINY DAYS

OVER TROPICAL WET AND DRY ZONES

(ZAMBEZI AND VOLTA)

A considerable overestimation was observed for all

products with the exception of GPROF 6.0 andGSMaP-

MKV. This overestimation can be partially explained by

differences in how the sensors and SRFEs interpret light

rainfall events—for example, not clearly discriminating

between ‘‘drizzly days’’ and ‘‘rainy days.’’

8) PERFORMANCE OVER SUBCATCHMENTS

INCLUDING THE RIVER MOUTH (V-4 AND Z-8)
IS SOMEWHAT WEAKER THAN THAT OF OTHER

SUBCATCHMENTS IN THE SAME BASIN

Current results do not allow for advancing any final

explanation of this finding, but it appears that the to-

pographical discontinuity at the coast may play a role in

determining changes in the precipitation regime that

influences the retrievals. Indeed, retrieval algorithms for

coastal areas normally divide into two versions: one for

the land and one for the sea (i.e., one using the scattering

and the other the emissions in the PMW), thereby cre-

ating potential problems in merging the two retrieval

types.

b. Product ranking

In general, GPROF 6.0 and GSMaP-MVK gave the

weakest performance in this study. Both products were

outperformed in most of the evaluation aspects, showing,

as the main weaknesses, a large underestimation of

number of rainy days per year and a significant over-

estimation of monthly (and annual) precipitation. This

suggests that daily rainfall variability is not estimatedwell

by these products, with a large number of rain-free days

and only a few days featuring extreme rainfall events.

Furthermore, the large number of ‘‘NPs’’ for both prod-

ucts indicates that the few days for whichGPROF 6.0 and

GSMaP-MVK show extreme precipitation do not con-

form temporally to the observations. Finally, GPROF 6.0
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shows an evident scattered spatial distribution of average

annual rainfall over all basins that, for most cases, do not

follow observed patterns. The large positive bias of

GPROF6.0 and the low detection probability ofGSMaP-

MVK have been reported in previous studies over Africa

(Dinku et al. 2010b; Jobard et al. 2011). The reason be-

hind these shortcomings might be due to the difficulty in

selecting the correct rainfall profile for the cloud, thus

resulting in a nonsatisfactory representation of the

physics involved in retrieval. This is a known limitation of

statistical–physical rainfall retrieval algorithms given that

an observed PMW brightness temperature profile can

be associated with several cloud profiles from the cloud-

radiation database. The new parametric algorithms for

the Global Precipitation Measurement Mission aim to

improve this problem using an onboard calibration with

the dual-frequency radar.

Results for PERSIANN show large quantitative de-

viations of monthly and annual values that confirmmost

previous studies. Depending on the morphoclimatic

zones analyzed, these deviations are either over- or

underestimations of the observations with no distinct

pattern. Overestimation is particularly evident over the

tropical wet and dry zones (Zambezi and Volta), with

extreme deviations (up to 1500 mm yr21) resulting from

overestimation of both rainy days per year and daily

precipitation (see Figs. 3 and 4). The intraseasonal

comparison showed that the bias is mostly confined to

the rainy season. Similar results were shown by other

authors over Uganda (Asadullah et al. 2008), India

(Brown 2006), Colombia (Dinku et al. 2010b), Australia,

and parts of Asia (Sorooshian et al. 2000), with the main

reason for the bias being the lack of calibration against

ground data. In contrast, underestimation of observed

precipitation is most notable over mountainous regions

with relatively warm clouds (Ethiopian highlands).

Romilly and Gebremichael (2011) suggested that this

underestimation could be linked to either poor detection

of light rain or underestimation of total precipitation at

high altitudes as a result of the thermal IR thresholds that

discriminate between raining and nonraining clouds

(Cattani et al. 2009). In this present work, the detect-

ability of rainfall does not seem to be the problem as the

number of rainy days is well captured for the Baro–

Akobo and Juba–Shabelle, while the ability to correctly

quantify precipitation is clearly limited because monthly

and event-based precipitation is mostly underestimated.

The ERA-Interim reanalysis product showed good

correspondence with observed values for intraseasonal

variability as well as for spatial distribution over the

tropical wet and dry zones. Over the mountainous areas

in Ethiopia a clear overestimation of observed pre-

cipitation was given, which is in full agreement with the

findings of Maidment et al. (2010). ERA-Interim showed

a persistent overestimation of light rainfall events but

an underestimation of heavy rainfall occurrences (see

Figs. 3 and 4). This indicates that precipitation is rep-

resented very smoothly, meaning many days with pre-

cipitation values below 10 mm and only a limited

number of days with heavier rainfall. This agrees with

the findings of Ailliot et al. (2011). Such precipitation

estimate behavior might be explained by the spatial

scale of the input data used by ERA-Interim. The

weather model uses information at a synoptic scale,

which does not capture small-scale and rapidly moving

variations (e.g., storm cells) and, thus, they might be

smoothed out (Ailliot et al. 2011). This feature is ex-

tremely important when daily hydrological applica-

tions, such as flood forecasting, are calculated as the

effect may propagate in time.

CMORPH showed a variable performance over the

study areas. In areas such as Volta and (partly) Zambezi,

a tendency to overestimate the amount of precipitation

during wet periods, as well as the number of rainy days

per year, was observed, which agrees with the findings of

Romilly and Gebremichael (2011). Both areas are

influenced by the ITCZ where a deep layer of convec-

tion leads to an increase in airborne ice particles, which

are perceived as precipitation by PMW sensors (Nesbitt

et al. 2008), and could, therefore, explain the over-

estimation of observed precipitation. Although calibra-

tion against ground observations might be able to

mitigate this effect, this is not part of the current al-

gorithm although it is expected for future versions (Xie

et al. 2011). Comparatively, CMORPH showed a su-

perior ability to replicate daily, monthly, and annual

precipitation over mountainous areas (BA-1), which is

in full agreement with the findings of Romilly and

Gebremichael (2011) and Dinku et al. (2007). The dis-

tribution of daily rainfall together with the intraseasonal

and spatial distribution patterns of observed precipitation

was remarkably well replicated. A possible explanation

for CMORPH’s ability to capture orographic enhanced

rainfall can be found in the structure of the algorithm,

which is essentially an interpolator of PMW-derived

rainfall fields. In other words, CMORPH with its propa-

gation of rainfall fields takes care of the temporal evo-

lution of orographic effects, although it does not contain

cloud evolution parameters.

The best performance results were obtained for

RFE 2.0 and TRMM 3B42. Unlike the other products,

both captured the intraseasonal variability well for most

study areas even during wet periods. The spatial distri-

bution pattern and the average annual precipitation

were generally in agreement with the observations and

notably outstanding for the tropical wet and dry zone.
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The timing of the highest annual precipitation events

were identified with a maximum discrepancy of61 day.

It is plausible that the accurate performance of these two

products is linked to their embedded bias correction that

relies on rain gauge network data. Deficiencies of these

products were mostly found over mountainous areas, in

which precipitation was generally underestimated, con-

firming results by Dinku et al. (2007). For RFE 2.0 this

can be explained by the lack of orographic enhanced

rainfall effects within the algorithm. The GPI data

(Arkin et al. 1994), on which RFE 2.0 relies to estimate

precipitation, are known to underestimate rainfall over

mountainous and coastal regions of Africa (Herman

et al. 1997). Over regions with a dense GTS network this

effect is mitigated through local calibration. In moun-

tainous areas, however, the station network density is

sparse resulting in increased deviations and stresses the

importance of local calibration (Stisen and Sandholt

2010).

We must stress, however, that this ranking is not ab-

solute as different intercomparison exercises may result

in a different rank according to the performance of the

respective products under different conditions (Adler

et al. 2001; Ebert et al. 1996; Smith et al. 1998). For

example, data availability and/or spatial scale may affect

the assessment of SRFE performance. However, con-

sidering the current data availability, these results pro-

vide a valuable insight for the hydrological and

meteorological community on the relative quality of

SRFE products over different African river basins.

These findings will contribute to 1) enhancing the con-

fidence and use of such products within hydrological

applications and 2) making more informed decisions

about a suitable SRFE for given morphoclimatic zones

in Africa.

c. Final conclusions and recommendations

It may be argued that the superior performance of

RFE 2.0 and TRMM 3B42 is due to the fact that they do

ingest gauge data for bias correction, whereas the

remaining SRFE products do not. However, it has to be

emphasized that 79% of the daily data used for valida-

tion are non-GTS station data that are not available for

the correction of these products. Consequently, we

could argue that a small amount of daily data used for

bias correction may significantly increase the perfor-

mance of these products compared to their noncorrected

counterparts.

Further, it can be argued that discrepancies between

SRFE and ground observations might be attributed to

shortcomings in the observational datasets and, thus, not

entirely attributable to the products themselves. Given

the nature of the ground observations used within this

study (i.e., multiple data sources—e.g., GTS and not

fully verifiable non-GTS), inconsistencies in the 24-h

reference period for measuring the rainfall may appear.

Therefore, results for lag times less than 1 day may

contain relevant uncertainties. However, it should be

noted that uncertainties arising from a shifting of the

24-h period are partially reduced by constraining the

analysis to a 7-day period as performed in this study.

Further, interpolated KED observations used as refer-

ences were compared with the current literature. In all

river basins except Juba–Shabelle, the interpolated

fields closely resembled the spatial patterns reported in

previous studies, thereby providing sound support for

our findings. The discrepancy for the Juba–Shabelle

basinmight be due to a combination of low gauge station

density and complex topography, which might hamper

the proper representation of spatial precipitation pat-

terns. Unfortunately, given the observational dataset

available for this work, it cannot be verified at this stage

whether the shortcomings in the SRFEs are due to

shortcomings in the observed data or not. This question

remains open for future research.

The ability of the SRFE products to accurately repli-

cate observed precipitation data will largely determine

the performance of any potential hydrological applica-

tion (Bitew and Gebremichael 2011; Hossain et al.

2004). This work has shown that some SRFE products

persistently performed better than others and that, for

some products, the performances varied considerably

depending on the morphoclimatic zone. For large-scale

hydrological applications covering different morphocli-

matic zones, the target is to achieve a stable perfor-

mance over the whole area, rather than peak

performances concentrated in particular zones. Three

potential strategies to improve the performance of

SRFE focusing on large-scale applications whose im-

plementation is beyond the scope of this article are,

however, worth mentioning. The first corresponds to

bias correction of the selected SRFE products to ensure

a correct replication of the observed precipitation data

for a given time period. The second strategy consists of

employing an ensemble of SRFE products. Considering

the individual limitations of each product, it is advisable

to use more than one product to account for uncertainty

in rainfall representation. The third strategy comprises

the creation of a performance-based merged SRFE

product combining the respective strengths of individual

products (see, e.g., Hossain and Anagnostou 2006).

Results of this work indicate that both RFE 2.0 and

TRMM 3B42 succeeded in replicating the intraseasonal

variability, the spatial distribution, and the timing of

rainfall events. At the same time, CMORPH showed

particular strength in replicating rainfall data over
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mountainous areas under sparse ground data conditions.

Therefore, considering the data limitations and the scale

of the study areas, it might be advisable to use these three

products either as an ensemble or as a performance-

based merged product.

Finally, future research will focus on the use of SRFE

products as input data for hydrometeorological applica-

tions, potentially implementing the previously discussed

strategies.
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APPENDIX

Glossary

AMSR-E Advanced Microwave Sounding

Radiometer for Earth Observing

System (EOS)

AMSU Advanced Microwave Sounding Unit

ANN Artificial neural network

CMORPH CPC morphing technique

CPC Climate Prediction Center

ECMWF European Centre for Medium-Range

Weather Forecasts

ERA-40 40-yr ECMWF Re-Analysis

ERA-Interim ECMWF Interim reanalysis

GMS Geostationary Meteorological Satellite

GOES Geostationary Operational

Environmental Satellite

GPCC Global Precipitation Climatology

Center

GPI GOES precipitation index

GPROF 6.0 Goddard profiling algorithm, version 6

GSMaP-MVK Global Satellite Mapping of

Precipitation moving vector

with Kalman filter

GTS Global Telecommunication System

IR Infrared

ITCZ Intertropical convergence zone

JAXA Japan Aerospace Exploration Agency

KED Kriging with external drift

MAE Mean absolute error

ML Maximum likelihood

MSL Above mean sea level

NASA National Aeronautics and Space

Administration

NOAA National Oceanic and Atmospheric

Administration

NP ‘‘No peak’’

NSeff Nash–Sutcliffe efficiency

pBIAS Percent bias

PERSIANN Precipitation Estimation from

Remotely Sensed Information

using Artificial Neural Networks

PMW Passive microwave

RFE Rainfall estimation algorithm

RMSE Root-mean-square error

SRFE Satellite-based rainfall estimation

SRTM Shuttle Radar Topographic Mission

SSM/I Special Sensor Microwave Imager

TMI TRMM Microwave Imager

TRMM Tropical Rainfall Measuring Mission

WMO World Meteorological Organization
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