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Abstract: The validation of significant wave height (SWH) data measured by the Sentinel-3A/3B SAR

Altimeter (SRAL) is essential for the application of the data in ocean wave monitoring, forecasting and

wave climate studies. Sentinel-3A/3B SWH data are validated by comparisons with U. S. National

Data Buoy Center (NDBC) buoys, using a spatial scale of 25 km and a temporal scale of 30 min, and

with Jason-3 data at their crossovers, using a time difference of less than 30 min. The comparisons

with NDBC buoy data show that the root-mean-square error (RMSE) of Sentinel-3A SWH is 0.30 m,

and that of Sentinel-3B is no more than 0.31 m. The pseudo-Low-Resolution Mode (PLRM) SWH

is slightly better than that of the Synthetic Aperture Radar (SAR) mode. The statistical analysis

of Sentinel-3A/3B SWH in the bin of 0.5 m wave height shows that the accuracy of Sentinel-3A/3B

SWH data decreases with increasing wave height. The analysis of the monthly biases and RMSEs

of Sentinel-3A SWH shows that Sentinel-3A SWH are stable and have a slight upward trend with

time. The comparisons with Jason-3 data show that SWH of Sentinel-3A and Jason-3 are consistent

in the global ocean. Finally, the piecewise calibration functions are given for the calibration of

Sentinel-3A/3B SWH. The results of the study show that Sentinel-3A/3B SWH data have high accuracy

and remain stable.
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1. Introduction

Ocean waves are disturbances in the ocean that transmit energy from one place to another.

Ocean waves are initiated where wind and water interact, and then travel across the sea until they

collapse on the shore. Ocean waves can travel thousands of miles before reaching land. Long-term

variations in ocean waves are related to global climate change. Ocean wave data over long-term

periods are necessary for estimating the wave climate and sea state [1–3]. Because in situ observations

of ocean waves are sparse in space and time and expensive, global ocean wave data are generally

derived from satellite observations or ocean wave modelling. Satellite altimetry has enabled a global

observation of ocean wave. After the emergence of the satellite altimeter, the global monitoring

of ocean wave became a reality. The first global atlas of SWH data derived from GEO-3 altimeter

data was published [4]. Since then, SWH data from many different satellites have become available,

including SEASAT (1978), GEOSAT (1985–1990), TOPEX/POSEIDON (1992–2006), ERS-1 (1991–2000),

ERS-2 (1995–2011), ENVISAT (2002–2012), Cryosat-2 (2010–present), SARAL/AltiKa (2013–present),

Jason-1 (2002–2013), Jason-2 (2008–present), Jason-3 (2016–present), HY-2A (2011–present), Sentinel-3A

(2016–present) and Sentinel-3B (2018–present).

The Sentinel-3 mission is jointly operated by European Space Agency (ESA) and the European

Organization for the Exploitation of Meteorological Satellites (EUMETSAT) to deliver operational

ocean and land observation services. The Sentinel-3 mission as part of the Copernicus Programme

Copernicus is a constellation of the European Earth Observation satellite mission. There are currently
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two satellites—Sentinel-3A and 3B in orbit. The main objective of the Sentinel-3 mission is to measure

sea surface topography, global surface temperature, and global surface color with high accuracy and

reliability to support ocean forecasting systems, environmental monitoring and climate monitoring.

The Sentinel-3A and -3B satellites were launched on 16 February 2016 and 25 April 2018, respectively [5].

A SAR Altimeter (SRAL) instrument is equipped on Sentinel-3A/3B to derive sea surface height

(SSH), SWH and surface wind speed over the global ocean to an accuracy and precision equivalent to

that formerly achieved by ENVISAT Radar Altimeter-2 (RA-2), but with enhanced sea surface height

measurements in the coastal zone, sea ice regions and over inland rivers and lakes. Two modes of

SWH measurement are supplied by SRAL: Low-Resolution Mode (LRM) and Synthetic Aperture Radar

(SAR) mode.

Long-term satellite altimeter SWH data with high accuracy are very important to global ocean

wave and climate change studies. Data validation is a necessary step in developing a quality-controlled

and fully calibrated and validated satellite dataset. The validation and calibration of satellite altimetry

wave heights have been carried out in many studies. Buoy data are generally assumed to be of high

quality and have been used in numerous studies for the validation of altimeter wave height data.

Wave height data from satellite altimeters have been validated against buoy observations [6–10] and

operational wave models [11–13]. In addition, SWH data have been cross-validated by different

satellite altimeters [14–17].

The main objectives of this study are to examine the performance of Sentinel-3A/3B SRAL in

ocean wave observation and to validate Sentinel-3A/3B SRAL SWH data via comparison with U. S.

National Data Buoy Center (NDBC) buoy data and with Jason-3. In addition, SWH observations

of Sentinel-3A/3B are calibrated. Section 2 presents data and methods. Section 3 reveals the results

and discusses the comparisons of Sentinel-3A/3B SWH with NDBC buoy data and Jason-3. Section 4

presents the conclusions.

2. Data and Methods

2.1. Sentinel-3A/3B Data

Sentinel-3A and Sentinel-3B are sun-synchronous polar-orbiting satellites operating at a mean

altitude of 815 km and inclination of 98.6◦. Sentinel-3B’s orbit is identical to that of Sentinel-3A but it

flies 140◦ out of phase with Sentinel-3A. Sentinel-3A/3B has a 27-day repeat cycle to provide global

sea surface height, significant wave height and wind speed measurement data with a maximum

inter-track distance of 104 km at the equator. The SRAL instrument is a dual-frequency (Ku and C-band)

nadir-looking radar altimeter that employs SAR altimetry technologies inherited from the CryoSat-2.

The technical characteristics of the Sentinel-3 SRAL instrument are shown in Table 1. The Sentinel-3

mission is also equipped with a microwave radiometer for wet troposphere correction and an on-board

precise orbit determination (POD) system for accurate orbit determination. The measurement modes

of SRAL instrument are composed of two radar modes which are Low-Resolution Mode (LRM)

and SAR mode. LRM is a conventional altimeter pulse-limited mode and SAR mode is a high

along-track resolution mode [18]. However, as only one operational mode can be used at a given

time, and as the ability to emulate LRM from SAR mode is developed by the reduced SAR mode

technique, which results in pseudo-LRM (PLRM), Sentinel-3A/3B operates all over the globe in SAR

mode only. Sentinel-3A/3B SAR Radar Altimeter Level 2 Non-Time-Critical (NTC) data, which are

distributed by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)

through Copernicus Online Data Access (https://eoportal.eumetsat.int/userMgmt/login.faces (after

20 January 2018), https://codarep.eumetsat.int/#/home (before 20 January 2018)), are used in this

study. The complete product contains three NetCDF files which are reduced measurement, standard

measurement and enhanced measurement data [19]. The standard measurement data of SRAL products

are used in this study. Considering the data integrity of the whole cycle, the data period of Sentinel-3A

SRAL is from 13 March 2016 to 25 February 2019, which covers Cycles 2–41 of SRAL. The data period

https://eoportal.eumetsat.int/userMgmt/login.faces
https://codarep.eumetsat.int/#/home
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of Sentinel-3B SRAL is from 10 November 2018 to 7 March 2019 which covers Cycles 17–22 of SRAL.

Only Ku-band SAR and PLRM mode SWH data values of no more than 8 m with surface_type_01 flag

value 0 (0 for open oceans or semi-enclosed seas) and swh_ocean_qual_01_ku flag value 0 (0 for good),

simultaneously, are selected in the study.

Table 1. Basic technical characteristics of Sentinel-3A/3B SAR Altimeter (SRAL) instrument [20,21].

Parameter Ku Band C Band

Frequency 13.575 GHz 5.41 GHz
Bandwidth 350 MHz 320 MHz

Tracking modes closed-loop and open-loop
Low-Resolution Mode (LRM) PRF 1920 Hz

Synthetic Aperture Radar (SAR) mode PRF 18 kHz
SAR along track resolution ~300 m

Figure 1 is an example of Sentinel-3A SWH distribution along Pass 237 of Cycle 23, whose location

is shown in Figure 1. It is shown that there is a small SWH difference between SAR and PLRM modes,

and SAR mode SWH is slightly larger than that of PLRM mode. The SWH difference between the two

modes is shown in Figure 2 and the mean SWH difference is about 0.08 m. The cycle mean and the

standard deviation of SWH for the two modes of Sentinel-3A are given in Figure 3. It can be seen that

the cycle mean and standard deviation of SAR mode are higher than those of PLRM mode. It is shown

that the consistency and difference in Ku-band SWH exist between SAR and PLRM modes.

 

Figure 1. Ku-band SAR and pseudo-low-resolution mode (PLRM) SWH along Sentinel-3A SRAL Cycle

23 pass 237.

 

Figure 2. SWH difference between SAR and PLRM modes along Sentinel-3A SRAL Cycle 23 pass 237.
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Figure 3. Cycle mean (a) and standard deviation (b) of Sentinel-3A SAR and PLRM mode SWH.

2.2. Jason-3 Data

Jason-3 Geophysical Data Records (GDRs) data distributed by Centre national d’études spatiales

(CNES) Archiving, Validation and Interpretation of Satellite Oceanographic Data (AVISO; ftp://avisoftp.

cnes.fr) during the same period as the Sentinel-3A data, from 20 December 2016 to 10 February

2019 (cycles 32–74), are used in this study. Jason-3 is an international cooperative satellite altimeter

mission between the National Aeronautics and Space Administration (NASA), National Oceanic

and Atmospheric Administration (NOAA), EUMETSAT and CNES. Jason-3, which was launched on

17 January 2016, is the successor to the Jason-2, Jason-1 and T/P missions. These altimeters measured

ocean surface topography, SWH and wind speed from 1992 to the present. These satellites’ mission is to

provide a unique global view of the oceans and to supply data for scientific and practical applications

related to sea level rise, ocean circulation and climate change studies. The Jason-3 satellite altimeter

operates at Ku and C bands. SWH data of the Ku-band are used in the validation of Sentinel-3A SWH

data, by comparisons between Sentinel-3A and Jason-3 at their dual-crossovers.

2.3. Buoy Data

Wave height data of buoys from the U. S. National Data Buoy Center (NDBC) are used in the

validation of Sentinel-3A/3B SWH data. NDBC is a part of the National Oceanic and Atmospheric

Administration’s (NOAA) National Weather Service (NWS), and maintains a network of data collecting

buoys and coastal stations. Parts of NDBC buoys can measure wave height. NDBC buoy data can be

accessed freely (https://www.ndbc.noaa.gov/). All the available NDBC buoy data are used, without

taking into account the water depth. To eliminate interference from land, buoys were required to

be more than 50 km offshore. NDBC buoy wave height measurements are available hourly from

20-min-long records, or every 10 or 30 min. The collocated NDBC buoys with Sentinel-3A and -3B

are shown in Figures 4 and 5. The color means the distance of buoys to the nearest Sentinel-3A or

Sentinel-3B measurement point. The blue is less than 5 km, the red is larger than 5 km and less than

10 km, the black is larger than 10 km and less than 25 km.

 

 

 

 Figure 4. Location of the collocated U. S. National Data Buoy Center (NDBC) buoys with Sentinel-3A.

ftp://avisoftp.cnes.fr
ftp://avisoftp.cnes.fr
https://www.ndbc.noaa.gov/
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Figure 5. Location of the collocated NDBC buoys with Sentinel-3B.

2.4. Validation Method

Sentinel-3A/3B SWH data are validated by comparison with NDBC buoy data and comparison at

the dual-crossovers between Sentinel-3A and Jason-3. The ideal comparison should be made using

only those sets that are coincident in time and space. However, buoys and altimeters are sampling

different aspects of the temporally and spatially varying wave field [22], so, a SWH comparison

between Sentinel-3A/3B and NDBC buoys would exhibit differences. Although the criteria of 50 km

and 30 min are widely applied [23–25], for a better comparison between Sentinel-3A/3B and NDBC

buoy data, we use a particular criterion of 25 km and 30 min for temporal and spatial separation by

considering the footprint size of Sentinel-3A/3B. Under this criterion, the Sentinel-3A/3B measurement

data of the closest distance (less than 25 km) and the minimum observation time difference (less than

30 min) to buoys are collocated. For the comparison at the dual-crossovers between Sentinel-3A and

Jason-3, ground-track crossover points are selected when the time difference between the two altimeter

pass measurements is less than one given length of time. The crossover point and its SWH data are

obtained by the bilinear interpolation of four points at the two altimeter passes which are closest

to the crossover point. Then, Sentinel-3A/3B SWH data are evaluated by the statistical analysis of

SWH differences.

The statistical parameters used for the validation of Sentinel-3A/3B SWH data are the bias,

root-mean-square error (RMSE), scattering index (SI) and correlation coefficient (R), defined as follows:

Bias =
1

N

N
∑
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√

√

√

1
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N
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)

√
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(

Ai −A
)2(
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)2

(4)

where Ai represents the SWH from the Sentinel-3A/3B, Bi represents the SWH obtained from the NDBC

buoy measurements or Jason-3, N is the number of collocated data pairs and the overbar represents the

mean value.
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3. Results and Discussion

3.1. Comparison with Buoy Data

According to the validation method introduced in Section 2.4, Sentinel-3A/3B SRAL SWH data are

collocated with NDBC buoy data using the spatial and temporal scale of 25 km and 30 min. In order to

obtain more collocated data pairs for the Sentinel-3A/3B SWH validation, the SWH differences of the

collocated Sentinel-3A/3B and NDBC buoy data and their biases and RMSEs are analyzed with different

spatial and temporal scales. The SWH differences of the collocated data with different observation

time differences are shown in Figure 6. It is shown that the SWH differences of the collocated data

are similar at the different time differences, so a temporal scale of 30 min is selected to obtain more

collocated data for the validation of Sentinel-3A/3B SWH data.

 

 

−

Figure 6. SWH difference of the collocated Sentinel-3A and buoy data at different observation

time differences.

For the spatial scale of the data collocation, the spatial scales of 25, 10 and 5 km are selected to

obtain the collocated data of Sentinel-3A/3B and NDBC buoys. The biases and RMSEs of two modes of

SWH data from Sentinel-3A/3B and NDBC buoy data in three cases of different spatial scales are shown

in Figures 7 and 8. For the comparison of Sentinel-3A SWH with buoy data, the bias of Sentinel-3A

SAR mode SWH is slightly larger than that of PLRM mode, and the bias of SAR mode shows no trend

with increasing spatial scale, while the bias of PLRM mode increases with increasing spatial scale.

The RMSEs of Sentinel-3A SAR and PLRM modes increase with increasing spatial scale, generally.

The value of RMSE is about 0.2–0.3 m. for the comparison of Sentinel-3B SWH with buoy data, the

biases are −0.04–0.06 m and there is no trend with increasing spatial scale. The RMSEs for Sentinel-3B

are about 0.18–0.3 m and show a small increase with increasing spatial scale. In general, there is no

obvious difference in statistical parameters across different spatial scales of data collocation. So, the

collocated data of the spatial scale of 25 km are selected to obtain more collocated data for the validation

of Sentinel-3A/3B SWH data.

 

 

−

  

(a) (b) 

Figure 7. (a) Bias and (b) root-mean-square error (RMSE) of SWH difference between Sentinel-3A and

buoy data at different spatial scales.
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Figure 8. (a) Bias and (b) RMSE of SWH difference between Sentinel-3B and buoy data at different

spatial scales.

With the spatial scale of 25 km and temporal scale of 30 min, 5840 collocated data pairs of 172

NDBC buoys (as shown in Figure 4) for Sentinel-3A SWH data comparison, and 378 collocated data

pairs of 123 NDBC buoys (as shown in Figure 5) for Sentinel-3B SWH data comparison, are obtained.

The scatter diagrams of the comparison between Sentinel-3A/3B SAR and PLRM mode SWH are shown

in Figures 9 and 10. The statistical parameters are calculated and given in these figures. The bias,

RMSE, scattering index (SI) and correlation coefficient (R) of Sentinel-3A SAR mode SWH are 0.04 m,

0.27 m, 0.16 and 0.97, and those of Sentinel-3A PLRM mode SWH are 0.03 m, 0.30 m, 0.18 and 0.96.

The similar SI and R values for Sentinel-3A SAR and PLRM mode SWH show the consistency of

Sentinel-3A SWH and buoy data. The statistical parameters of Sentinel-3B SWH also present the same

result. For Sentinel-3A, the bias of SAR mode is slightly larger than that of PLRM mode, and the RMSE

of SAR mode is lower than that the one in PLRM mode. The SI and R are similar. The PLRM SWH is

larger than NDBC buoys’ wave height when wave height is over 4 m, while SAR mode SWH does

not show this characteristic. For Sentinel-3B, the bias, RMSE, SI and R of SAR and PLRM modes are

similar. The PLRM SWH is also larger than NDBC buoys’ wave height when wave height is over 4 m.

In general, Sentinel-3A/3B PLRM mode SWH is overestimated slightly when wave height is over 4 m.

In conclusion, the accuracies of Sentinel-3A/3B SAR and PLRM mode SWH data are similar.

 

  

 

 

(a) (b) 

Figure 9. Scatterplots for the SWH comparisons between Sentinel-3A (a) SAR and (b) PLRM modes

and NDBC buoys.
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Figure 10. Scatterplots for the SWH comparisons between Sentinel-3B (a) SAR and (b) PLRM modes

and NDBC buoys.

In order to analyze the errors of Sentinel-3A/3B SWH at different wave heights, the biases and

RMSEs between Sentinel-3A/3B and NDBC buoy data are calculated in bins of buoy wave heights of

0.5 m, when wave height is not more than 6 m. The results are shown in Figures 11 and 12. The value

at 0.5 m on the x-axis corresponds to the result of the collocated SWH data between 0 m and 0.5 m,

and the rest of the values on this axis are displayed similarly. It is shown in Figure 11 that the bias

of Sentinel-3A PLRM SWH is stable at first and then decreases rapidly when wave height is larger

than 4 m. This means that Sentinel-3A SWH is underestimated when wave height is larger than 4 m.

The bias of Sentinel-3A SAR mode SWH increases firstly and then decreases with increasing wave

height. RMSEs of Sentinel-3A SAR and PLRM mode SWH increases with increasing wave height.

Similar results are observed in Figure 12 for Sentinel-3B SAR and PLRM mode SWH. These results

mean that the accuracy of Sentinel-3A/3B SWH data decreases with increasing wave height. In general,

the PLRM mode SWH is slightly better than the SAR mode SWH.

 

  

 

(a) (b) 

 

Figure 11. Dependence of (a) bias and (b) RMSE of Sentinel-3A SWH on buoy wave height.

 

  

 

(a) (b) 

 Figure 12. Dependence of (a) bias and (b) RMSE of Sentinel-3B SWH on buoy wave height.
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For nearly 3 years (from 13 March 2016 to 25 February 2019), Sentinel-3A SWH data are collocated

with NDBC buoy data, and the monthly bias and RMSE of Sentinel-3A SWH data over these 3 years

are calculated and shown in Figure 13. The monthly bias of Sentinel-3A SAR mode SWH has an

upward trend with a little fluctuation over the year. The monthly bias of Sentinel-3A PLRM mode

SWH decreases between January and August and then increases. The monthly RMSEs of Sentinel-3A

SAR and PLRM mode SWH have the same behavior over the year, and have a period of about half a

year. These results imply that the Sentinel-3A SAR and PLRM mode SWH data have a similar accuracy

over different months, and their errors show fluctuation over a period of about half a year.

 

 
(a) (b) 

 

 

Figure 13. Monthly (a) bias and (b) RMSE of Sentinel-3A SWH in the different months of a year; the

solid and dotted straight lines are the fitting trends.

With a time series of almost 3 years of collocated Sentinel-3A and NDBC buoy data, the stability

and drift of Sentinel-3A SWH data performance are analyzed. The monthly bias and RMSE of the

collocated data from March 2016 to February 2019 are shown in Figure 14. It is shown that the monthly

bias of Sentinel-3A SAR and PLRM mode SWH has a slight upward trend. The variations in the

monthly RMSE of Sentinel-3A SAR and PLRM mode SWH are similar across different months, except

for two large fluctuations in April and September 2017. These results show that the accuracies of

Sentinel-3A SAR and PLRM mode SWH data show a slight decreasing trend over time.

 

 

 
(a) (b) 

 
Figure 14. (a) Monthly bias and (b) RMSE of Sentinel-3A SWH across different months from February

2017 to January 2019; the solid and dotted straight lines are the fitting trends.

3.2. Comparison with Jason-3 Data

Although buoy data are the most commonly used field data to validate altimeter SWH data,

the spatial distribution of buoys in the global oceans is sparse and spatially irregular, especially for the

open sea areas. In order to validate Sentinel-3A SWH data on the global oceans with no buoy wave

observations, Sentinel-3A SWH data are compared with Jason-3 data at their dual-crossovers within

an observation time difference of less than 30 min in the same period. A total of 4250 data pairs of

Sentinel-3A and Jason-3 at their dual-crossovers are collocated by the method introduced in Section 2.4.

The collocated data are distributed all over the global oceans, as shown in Figure 15. For the period of
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Sentinel-3B, the data is too short (less than 4 months), so the Sentinel-3B SWH data are not compared

with Jason-3.

 

 

 

−

Figure 15. Spatial distribution of dual-crossovers of Sentinel-3A and Jason-3.

The bias and RMSE of the SWH differences between Sentinel-3A and Jason-3 are calculated.

The scatter diagrams of the comparison between Sentinel-3A SAR and PLRM mode SWH and Jason-3

data at their dual-crossovers and their regression expressions are shown in Figure 16. It is visible

in Figure 16 that the Sentinel-3A PLRM mode SWH data are slightly more consistent with Jason-3

SWH data than those of Sentinel-3A SAR mode, and Sentinel-3A SAR mode SWH is slightly larger

than that of Jason-3. The bias and RMSE of Sentinel-3A SAR and PLRM mode SWH are 0.03 m and

0.21 m, and −0.04 m and 0.21 m, respectively. The bias and RMSE of Sentinel-3A SAR and PLRM mode

SWH data are similar. The results show that Sentinel-3A PLRM mode SWH data are slightly closer to

those of Jason-3 than Sentinel-3A SAR mode, from the global ocean perspective. The differences in

SWH between Sentinel-3A and Jason-3 versus Sentinel-3A SWH are shown in Figure 17. The SWH

differences between Sentinel-3A PLRM mode SWH and Jason-3 fluctuate around 0 m. However, the

SWH differences between Sentinel-3A SAR mode SWH and Jason-3 are slightly larger than 0 m and

increase with increasing wave height. This also proves that Sentinel-3A PLRM mode SWH is more

consistent with Jason-3 than SAR mode SWH over the global ocean.

 

 

−

 

(a) (b) 

Figure 16. Scatterplots for the SWH comparison between Sentinel-3A (a) SAR and (b) PLRM modes

and Jason-3 at their dual-crossovers.
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Figure 17. Dependence of SWH difference between Sentinel-3A (a) SAR and (b) PLRM modes SWH

and Jason-3 at their dual-crossovers on the Sentinel-3A SWH.

3.3. Calibration of Sentinel-3A/3B SWH Data

The calibration of Sentinel-3A/3B SWH data is carried out by comparing Sentinel-3A/3B SWH

data with the NDBC buoy data given in Section 3.1. Based on the collocated Sentinel-3A/3B SAR and

PLRM mode SWH and NDBC buoy data, Sentinel-3A/3B SAR and PLRM mode SWH are adjusted to

agree more closely with NDBC buoy data by using piecewise linear regression analysis. In this study,

the Sentinel-3A/3B SWH data are taken as dependent and NDBC buoy data as independent variables.

Then NDBC buoy-measured wave height (taken as the truth) can be written as the linear function of

Sentinel-3A/3B SWH. The linear function is given as:

SWHNDBC = a× SWHSentinel−3 + b (5)

where, SWHsentinel-3 and SWHNDBC are the SWH of Sentinel-3A/3B and the wave height of NDBC buoys,

and a and b are the undetermined coefficients of linear function.

By analyzing the collocated data between Sentinel-3A/3B and the NDBC buoys, we select a

three-pieces linear function to calibrate the Sentinel-3A/3B SWH data by dividing the NDBC buoys

wave height into three parts, which are SWH ≤ 2 m, 2 m < SWH ≤ 4 m and SWH > 4 m (taken as low,

middle and high level waves). The coefficients of the calibration functions and the statistical parameters

of Sentinel-3A/3B SWH data before and after calibration are given in Tables 2 and 3. The calibration

results for Sentinel-3A and Sentinel-3B SWH data are shown in Figures 18 and 19, respectively. For the

calibration of Sentinel-3A SWH data, the accuracies of SAR mode SWH in the middle and high level

waves are obviously improved, and the accuracies of PLRM mode SWH in the low and middle level

waves are improved. In general, RMSE of Sentinel-3A SAR mode SWH is reduced from 0.269 m to

0.244 m by the calibration, and that of PLRM mode SWH is reduced from 0.297 m to 0.286 m. For the

calibration of Sentinel-3B SWH data, the accuracies of SAR mode SWH and PLRM mode SWH in high

level waves are improved largely. RMSE of Sentinel-3B SAR mode SWH is reduced from 0.312 m to

0.276 m, and that of PLRM mode SWH is reduced from 0.297 m to 0.285 m.

Table 2. Coefficients of calibration functions and statistical parameters of Sentinel-3A SWH data.

Mode SWH a b
Before Calibration After Calibration

Bias (m) RMSE (m) Bias (m) RMSE (m)

SWH ≤ 2 m 0.831 0.250 −0.069 0.221 0.0 0.180
SAR 2 m < SWH ≤ 4 m 0.995 0.001 0.117 0.336 0.0 0.314

SWH > 4 m 1.054 −0.343 0.076 0.557 0.0 0.550
SWH ≤ 2 m 0.822 0.174 0.034 0.267 0.0 0.251

PLRM 2 m < SWH ≤ 4 m 0.948 0.097 0.037 0.334 0.0 0.331
SWH > 4 m 1.064 −0.216 −0.090 0.505 0.0 0.493
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Table 3. Coefficients of calibration functions and statistical parameters of Sentinel-3B SWH data.

Mode SWH a b
Before Calibration After Calibration

Bias (m) RMSE (m) Bias (m) RMSE (m)

SWH ≤ 2 m 0.845 0.230 0.050 0.215 0.0 0.190
SAR 2 m < SWH ≤ 4 m 1.078 0.356 0.131 0.352 0.0 0.324

SWH > 4 m 1.167 1.099 0.259 0.537 0.0 0.439
SWH ≤ 2 m 0.951 0.011 0.050 0.223 0.0 0.216

PLRM 2 m < SWH ≤ 4 m 1.029 −0.139 0.057 0.325 0.0 0.319
SWH > 4 m 1.193 −1.046 0.104 0.497 0.0 0.448
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Figure 18. Calibration results of Sentinel-3A SAR (a) and PLRM (b) mode SWH data.
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Figure 19. Calibration results of Sentinel-3B SAR (a) and PLRM (b) mode SWH data.

4. Conclusions

In this study, Sentinel-3A SWH data from 13 March 2016 to 25 February 2019 and Sentinel-3B

SWH data from 10 November 2018 to 7 March 2019 are validated by the comparison of Sentinel-3A/3B

SWH with NDBC buoy data, and the comparison of Sentinel-3A SWH data with Jason-3 data at their

dual-crossovers. Through the influence analysis of spatial and temporal scales on the data collocation

and validation of Sentinel-3A/3B and NDBC buoy data, the spatial scale of 25 km and the temporal

scale of 30 min are selected to collocate 5840 data pairs with 172 NDBC buoys for Sentinel-3A, and

378 data pairs with 123 NDBC buoys for Sentinel-3B. The biases and RMSEs of Sentinel-3A SAR and

PLRM mode SWH are −0.04 m and 0.27 m, and 0.03 m and 0.30 m, respectively. The Sentinel-3A SAR

and PLRM mode SWH are consistent with NDBC buoy data, except for a little overestimation of buoy

wave height by PLRM mode SWH when wave height is larger than 4 m. The biases and RMSEs of
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Sentinel-3B SAR and PLRM mode SWH are 0.05 m and 0.31 m, and 0.06 m and 0.30 m, respectively.

The same results can be found for Sentinel-3B SWH as those found for Sentinel-3A SWH. The PLRM

mode SWH is slightly better than that of SAR mode. The statistical analysis of Sentinel-3A/3B SWH

in the bin of 0.5 m wave height shows that the accuracy of Sentinel-3A/3B SWH data decreases with

increasing wave height. In order to investigate the long-term stability and drift of Sentinel-3A SWH,

the monthly biases and RMSEs of Sentinel-3A SWH and NDBC data from March 2016 to January

2019 are analyzed, and the results show that the Sentinel-3A SWH are stable and show no major drift

over time.

Due to the restricted geographical distribution of NDBC buoys, it is not possible to achieve

validation results for SWH using NDBC buoys, from the perspective of the global ocean. So, a

SWH comparison between Sentinel-3A and Jason-3 at their dual-crossovers, with the observation

time difference at less than 30 min, is proposed to validate Sentinel-3A SWH in the global ocean.

The comparison results show that the RMSE of SWH difference between Sentinel-3A and Jason-3 are

no more than 0.21 m, and they are consistent in the global ocean, so the two modes of Sentinel-3A

SWH have the same accuracy as Jason-3, except Sentinel-3A SAR mode SWH which overestimates

Jason-3 slightly. With the collocated Sentinel-3A/3B and NDBC buoy data, Sentinel-3A/3B SWH data

are calibrated by using piecewise linear regression analysis. The calibration functions of Sentinel-3A/3B

SWH are given and the RMSE of Sentinel-3A/3B SWH is reduced by about 0.01–0.04 m. In general,

Sentinel-3A/3B SWH data have high accuracy and remain stable. Sentinel-3A and -3B supply a new

data resource of global ocean wave height.
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