
International Journal of Computer Applications (0975 – 8887)

Volume 61– No.2, January 2013

34

Validation of Software Architectural Tool for

Object-Orinted Testing using with the Facilitate

Quality Attributes

Lalji Prasad
Truba College of Engineering and Technology,

Department of Computer science and
Engineering (RGTU), Indore, INDIA

Sarita Singh Bhadauria
Madhav Institute of Technology and Science,

Department of Electronics Engineering (RGTU),
Gwalior, INDIA

ABSTRACT

In this research investigate, quality of software using

comprehend our architecture testing model [34], with the help of

object oriented characteristic relationship, using different

software metrics. The objective of ‘Design Architectural Testing

Tool’ is to facilitate a design that may contribute to the

comprehensiveness of the software testing tool. In this research

work first we try to draw an architecture of testing method

based on their attribute nature and shows their relationship next

phase will be applied testing (based on different software

metrics) on each component and after testing we apply different

statistical analysis for validation of our research work .

General Terms

Software Testing, Software Architecture.

Keywords

Comprehensiveness, Architectural Completeness, Architectural

Quality Attribute, Architectural Metrics

1. INTRODUCTION

Different researcher work on quality of software architecture

and testing for ensuring the quality of software, here discuss

only prominence few literature. Bass and et al. , articulated

importance of software architecture [12] .Soni and et al. “ Say ,

Software architectures describe how a system is decomposed

into components, how these components are interconnected, and

how they communicate and interact with each other’s” [14].

Perry and et al. Work on Software architecture is concerned with

the study of the structure of software, including its topology,

properties, constituent components and their relationships and

patterns of combination [21]. Gary Chastek and et al., enlighten

software architectural attributes and quality- related [1]. Huang

and et al., describe the basic rules for program testing, which

provide basic principle for testing [3,10,14,15,16,17]. Poston

[26], Williams [27], and Hareton [19] shows, Integration all the

data across tools and repositories, Integration of control across

the tools and Integration to provide a single graphical interface

into the test tool set. Limitation: emphasize only integration tool

(usability & portability). Rosenberg [4] provides, the approach

to software metric for object oriented based different from the

standard metric sets. Some metrics, such as, line of code &

cyclomatic complexity, have become accepted as standard for

traditional functional / procedural programs, but for an object

oriented scenario, there are many proposed object oriented

metrics in the literature. Limitation: this provides the only

conceptual framework for measurement .Agrawal and et al. [25]

cited in this paper the importance of software measurement is

increasing leading to the development of new measurement

techniques. Limitation: a) It does not provide any relationship

between requirement & testing attribute. b) It cannot evaluate

for large data sets. Anderson and et al. [5] Emphasized the

software industry has performed a significant amount of

research on improving software quality using software tools &

metrics will improve the software quality and reduce the overall

development time. Good quality code will also be easier to

write, understand, maintain and upgrade. Limitation a) it does

not provide any relationship between the required testing

attribute. b) Its not provide a full featured testing tool (only

Complexity & cohesion measure). c) It provides the only

conceptual framework for measurement. Briand and some other

researchers [9,11,28,29,30,31] demonstrate aims is that

empirically the relationships between most of the existing

coupling & Cohesion measures for object oriented (OO) system

& fault proneness of object oriented system classes can be

studied. Limitation: a) Only emphasis on cohesion & coupling

metric. Bitman [6] exhibit key problem in software development

of changing software- development complexity and the method

to reduce complexity. Limitation: a) It does provide only

complexity measurement techniques. Krauskopf &Juan [32] and

Harrison [8] demonstrate, Coupling is the degree of

interdependence between two modules. In a good design, they

are kept low. Coupling should be lower in large and complex

system. No coupling is highly is desirable but practically it is not

possible. The good & bad points of different types of coupling

are discussed. Limitation: a) Only emphasis on cohesion &

coupling metrics. Chidambaram [8] and Harrison [7]

emphasized the coupling between object (CBO) metric and

evaluated for five object oriented systems & compared with

alternative design metric called NAS which measure the number

of associations between class & its peers (Harrison R.S). NAS

metric is directly collectible from design documents such as the

object model. Limitation: a) it’s not providing any relationship

between requirement & testing attribute. b) They don't provide

some basic idea for size & effort estimation. c) Measuring

complexity of a class is subject to bias. Reiner R., Dumke and

Achim S., Show How to manage component based software and

identify related metrics. [18]

Comprehensive means that it includes all or nearly all features

(maintainability, reusability, flexibility and portability) and

relationships required for migrating from one testing class to

another. It is designed to overcome the limitation of existing

software tools by providing a final class level architecture

having relationships between various testing classes. Software

quality is another focus of our architecture. We wish to achieve

good maintainability, reusability, flexibility and portability in

the architecture of the software testing tool by validating the

architecture using testing algorithms and performing metrics

calculation on each relationship existing between the different

testing techniques [1, 2, 3].

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.2, January 2013

35

2. RESEARCH METHODOLOGY

 First establish a requirement specification using formal

review specification. Requirement gathering from different

literature (research papers, books and technical reports) for

the design of comprehensive architecture for a software

testing tool. [22,23,24]

 Create a software architecture testing tool architecture bases

on requirement for testing through different literature [33]

and identify attributes (data member and member function).

 Identify an attribute of the class’s architecture and find

relationships between different testing classes in the

architecture.

 Based attributes and the relationship between function and

component we identified different metrics which is

supporting our comprehensive architecture. Descriptive

Statistics Examine distribution and variance for each

measure.

 Validation of our architecture and determines the quality of

software products using empirical and comparative analysis

of the different case studies. Principal Component Analysis

PCA is the standard technique to identify the underlying

dimension (class property) that explains the relations

between the variation in the data set.

 Finally on the basis of the above study we determine

following goals: final architecture of software for testing,

determine the quality of software products and study both

(Procedural and Component Based) design.

 An architecture tool is complete if and only if it entirely

describes and specifies the system that exactly fulfills all

requirements and the model contains all necessary information

that is needed to implement that desired model. Increasing the

completeness of a requirements specification can decrease its

consistency and hence affect the correctness of the final product.

Conversely, improving the consistency of the requirements can

reduce the completeness, thereby again diminishing correctness

[20].Davis states that completeness is the most difficult of the

specification attributes to define and incompleteness of

specification is the most difficult violation to detect

[31].According to Boehm [22], to be considered complete, the

requirements document must exhibit three fundamental

characteristics: (1) No information is left unstated or “to be

determined”, (2) The information does not contain any

undefined objects or entities, (3) No information is missing from

this document. The first two properties imply a closure of the

existing information and are typically referred to as internal

completeness. The third property, however, concerns the

external completeness of the document [23]. External

completeness ensures that all of the information required for

problem definition is found within the specification. This

definition of external completeness clearly demonstrates why it

is impossible to define and measure the absolute completeness

of the specification because how could analysts know with

certainty what is missing from the specification when they do

not even know what it is that they are looking for in the first

place. Architectural Completeness is defined as an architecture

including all or nearly all features and relationships required for

migrating from one testing class to another.

3. SOFTWARE METRICS USE IN

REALIZATION FOR COMPREHENSIVE

ARCHITECTURAL TESTING TOOL

3.1 Identify Metrics

According above relationship among different testing

technique/strategies, we realize the architecture of testing tool

using some software metrics and finally determine software

quality of software. Chidamber, Agrawal and some other

researcher [4,5,10,12,13,14] proposed twenty two metrics but,

here used those metrics which are useful for my research work:

1. Size Metrics:

a) Number of Attributes per Class (NOA)

b) Number of Methods per Class (NOM)

c) Response For a Class (RFC)

d) Weighted Methods per Class (WMC)

2. Coupling and Cohesion Metrics:

a) Coupling Between Objects (CBO)

3. Inheritance Metrics:

a) Depth of Inheritance (DIT)

b) Number of Children (NOC)

All of above metrics used for deciding completeness of software

and provide help to measuring quality of software products.

4. RESULT ANALYSIS AND DISCUSSION

Here we summarize our work from above tables for realizing

this model through attribute relationship and determine quality

of the model using a different set of metrics , and finally most

of the values of our architectural model are following standard

values and decide the value quality of model and summarize .

WMC: -The Higher WMC values correlate with increased

development, testing and maintenance efforts. As a result of

inheritance, the testing and maintenance efforts for the derived

classes also increase as a result of higher WMC for a base class

(0-50). Above table shows for each component or relation values

in between 0 to 50.DIT: - Inheritance (generalization), is a key

concept in the object model. While the reuse potential goes up

with the number of ancestors, so does design complexity, due to

more methods and classes being involved. Studies have found

that higher DIT counts correspond to greater error density and

lower quality. A class situated too deeply in the inheritance tree

will be relatively complex to develop, test and maintain. It is

useful, therefore, to know and regulate this depth. A

compromise between the high performance power provided by

inheritance and the complexity which increases with the depth

must be found. A value of between 0 and 4 respects this

compromise. RFC: -Larger RFC counts correlate with increased

testing requirements .LCOM: - A higher LCOM indicates lower

cohesion. This correlates with weaker encapsulation, and is an

indicator that the class is a candidate for disaggregation into

subclasses. This metric measures the correlation between the

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.2, January 2013

36

methods and the local instance variables of a class. High

cohesion indicates good class subdivision. Lack of cohesion or

low cohesion increases complexity. LOCM range 0 to 1 with

zero representing perfect cohesion (each method accesses all

attributes), however we have noticed that some values exceed 1.

NOA: - A class with too many attributes may indicate the

presence of coincidental cohesion and require further

decomposition, in order to better manage the complexity of the

model. If there are no attributes, then serious attention must

be paid to the semantics of the class, if indeed there are any. A

high number of attributes (> 10) probably indicate poor design,

notably insufficient decomposition. A value of between 2 and 5

respects this compromise. NOC: -If Values of NOC are larger

than reuse of classes also increases, and by this reason increased

testing. A class from which several classes inherit is a sensitive

class, to which the user must pay great attention. It should,

therefore, be limited, notably for reasons of simplicity. A value

of between 1 and 4 respects this compromise. NOM: - this

would indicate that a class has operations, but not too many. A

value greater than 7 may indicate the need for further object-

oriented decomposition, or that the class does not have a

coherent purpose. This information is useful when identifying a

lack of primitiveness in class operations (inhibiting re-use), and

in classes which are little more than data types. A value of

between 3 and 7 respects this compromise. CBO: - Excessive

coupling limits the availability of a class for reuse, and also

results in greater testing and maintenance efforts. Use links

between classes define the detailed architecture of the

application, just as use links between packages define the high

level architecture. These use links play a determining role in

design quality, notably in the development and maintenance

facilities. Value of 0 indicates that a class has no relationship to

any other class in the system, and therefore should not be part of

the system. A value between 1 and 4 is good, since it indicates

that the class is loosely coupled. A number higher than this may

indicate that the class if too tightly coupled with other classes in

the model, which would complicate testing and modification,

and limit the possibilities of re-use.

Architecture Diagram Result Analysis: In this section the

results of PC analysis are presented. The PC analysis extraction

method and varimax rotation method are applied to different

class level metrics. PCA is one of the benchmarks for dimension

reduction technique here first principal components extract a

maximum of the variables and second they are interrelated .The

First one ensures that the minimum of total information will be

missed when looking at the first few principal components. The

second one ensures that the extracted information will be

organized in an optimal way. Numbers of dimensions captured

are quite less than the total number of metrics, implying that

many metrics are highly related .Here we used normalizes our

variable into three dimensions. In appendix section, we discuss

details result data analysis using different table and figure show

principal component and eigenvalues in the appendix along with

variance (standard deviation) .

5. CONCLUSION

In this research work, we identify implements a set of metrics

for measurement of architectural testing model, used to evaluate

the quality of the architectural models. Certain model

characteristics are measured against quality criteria determined

by users thereby allowing you to check that your models meet

these quality criteria and appraise the overall quality of a project

and find out development of different sub-systems is standard or

not .This research work used for developing industrial tools for

larger data set, and finally most of the values of our architectural

model are following standard values .Hence our architecture is

useful for any testing process.

6. Appendix

In below table shows each architectural component value (attribute, class, methods, coupling , cohesion and inheritance) , min range ,

maximum range, mean, median and standard deviation these all attribute are helping to decide statically calculation to determine the

quality of our architecture.

Metrics Min Max Mean Median Standard deviation

Relationship between fault and scenario based testing

WMC 3 4 3.5 3.5 0.7

NOA 0 1 0.5 0.5 0.7

NOM 3 4 3.5 3.5 0.7

RFC 0 4 2 2 2.82

Relationship between scenario and use case based testing

NOA 0 1 0.5 0.5 0.7

NOM 3 4 3.5 3.5 0.7

WMC 0 3 1.5 1.5 2.12

CBO 0 1 0.5 0.5 0.7

Relationship between thread based, cluster based, use based and integration testing

DIT 0 3 1.5 1.5 0.7

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.2, January 2013

37

NOC 0 3 1.5 1.5 2.12

NOA 0 1 0.5 0.5 0.7

NOM 3 4 3.5 3.5 0.7

WMC 3 4 3.5 3.5 0.7

Relationship between state based and category based testing

NOA 0 1 0.5 0.5 0.7

NOM 3 4 3.5 3.5 0.7

WMC 3 4 3.5 3.5 0.7

Relationship between thread based and cluster based testing

NOA 0 1 0.5 0.5 0.7

NOM 3 4 3.5 3.5 0.7

WMC 3 4 3.5 3.5 0.7

Relationship between state based and attribute based testing

NOA 0 1 0.5 0.5 0.7

NOM 0 3 1.5 1.5 2.12

WMC 0 3 1.5 1.5 2.12

Relationship between partition based, state based, attribute based and category based testing

DIT 0 3 1.5 1.5 2.12

NOC 0 3 1.5 1.5 2.12

NOA 0 1 0.5 0.5 0.7

NOM 2 4 3 3 1.42

WMC 2 4 3 3 1.42

Relationship between class based ,partition based, random based testing ,random based testing

DIT 0 2 1 1 1.41

NOC 0 2 1 1 1.41

NOA 1 2 1.5 1.5 0.7

NOM 2 4 3 3 1.42

WMC 2 4 3 3 1.42

Table: 1. Analysis of Architecture Testing tool Using Metrics Calculation and Descriptive Statics Analysis

PCA ANALYSIS: - In this section the results of PC analysis

are presented. The PC analysis extraction method and varimax

rotation method are applied to different class level metrics.

PCA is one of the benchmarks for dimension reduction

technique here first principal components extract a maximum

of the variables and second they are interrelated .The First one

ensures that the minimum of total information will be missed

when looking at the first few principal components. The

second one ensures that the extracted information will be

organized in an optimal way. Numbers of dimensions

captured are quite less than the total number of metrics,

implying that many metrics are highly related .Here we used

normalizes our variable into three dimensions.

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.2, January 2013

38

1. The relationship between fault and scenario based testing

Metrics Min Max. Mean Median S.dev. PCA_1_Axis_1 PCA_1_Axis_2 PCA_1_Axis_3

WMC 3 4 3.5 3.5 0.7 2.32472 -0.469386 -2.20E-08

NOA 0 1 0.5 0.5 0.7 -3.63037 -1.2021 7.76E-09

NOM 3 4 3.5 3.5 0.7 2.32472 -0.469386 -2.20E-08

RFC 0 4 2 2 2.82 -1.01907 2.14087 -5.31E-08

Table: 2: PCA (Relationship between fault and scenario based testing)

Fig: 1: Component and variance (Relationship between fault and scenario based testing)

Fig: 2: Eigenvalue with component (Relationship between fault and scenario based testing)

In the above table: 2, In first PCA the value of NOM value

higher than others metrics , then its uniquely determine the

characteristic, In second PCA axis RFC value higher than

others metrics , then its uniquely determine the characteristics

.In third PCA axis RFC value higher than others metrics ,

then its uniquely determine the characteristic . Fig.1 shows the

relationship of the component with variance and fig. 2

eigenvalue with the component.

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.2, January 2013

39

2. The relationship between scenario and use case based testing

Metrics Min Max. Mean Median S.dev. PCA_1_Axis_1 PCA_1_Axis_2 PCA_1_Axis_3

NOA 0 1 0.5 0.5 0.7 -2 0.501024 2.34E-09

NOM 3 4 3.5 3.5 0.7 4 0.501024 -7.67E-09

WMC 0 3 1.5 1.5 2.12 1.55E-16 -1.50307 -7.43E-10

CBO 0 1 0.5 0.5 0.7 -2 0.501024 2.34E-09

Table: 3: PCA (Relationship between scenario and use case based testing)

Fig: 3: Component and variance (Relationship between scenario and use case based testing)

Fig: 4: eigenvalue with component (Relationship between scenario and use case based testing)

In the above table: 3, In first PCA the NOM value higher

than others metrics , then its uniquely determine the

characteristic, In second PCA axis NOM, CBO, NOA all

have the same value that is higher than others metric's value ,

then its uniquely determine the characteristics .In third PCA

axis CBO, NOA same value that is higher than others metrics

, then its uniquely determine the characteristic and fig. 3

shows the relationship of the component with variance and

fig. 4, Eigenvalue with the component.

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.2, January 2013

40

3. The relationship between thread based, cluster based, is based and integration testing

Metrics Min Max. Mean Median. S.dev. PCA_1_Axis_1 PCA_1_Axis_2 PCA_1_Axis_3

DIT 0 3 1.5 1.5 0.7 -0.830130458 -0.409093738 0.748460114

NOC 0 3 1.5 1.5 2.1199999 -1.234251022 1.90587604 -0.104535602

NOA 0 1 0.5 0.5 0.7 -2.521803856 -1.13086307 -0.408913165

NOM 3 4 3.5 3.5 0.7 2.293092728 -0.182959586 -0.117505632

WMC 3 4 3.5 3.5 0.7 2.293092728 -0.182959586 -0.117505632

Table: 4: PCA (Relationship between thread based, cluster based, use based and integration testing)

Fig: 5: Component and variance (Relationship between thread based, cluster based, use based and integration testing)

Fig: 6: Eigen-value with component (Relationship between thread based, cluster based, use based and integration testing.

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.2, January 2013

41

In the above table: 4, In first PCA the value of NOM, WMC

values higher than others metrics , then its uniquely

determine the characteristic, In second PCA axis NOC value

higher than others metrics , then its uniquely determine the

characteristics .In third PCA axis DIT value higher than

others metrics , then its uniquely determine the characteristic .

Fig.5 shows the relationship of the component with variance

and fig. 6 eigenvalue with the component.

4. The relationship between partition based, state based, attribute based and category based testing

Metrics Min Max. Mean Median. S.dev. PCA_1_Axis_1 PCA_1_Axis_2 PCA_1_Axis_3

DIT 0 3 1.5 1.5 2.1199999 0.678727567 -1.295258522 -2.54E-09

NOC 0 3 1.5 1.5 2.1199999 0.678727567 -1.295258522 -2.54E-09

NOA 0 1 0.5 0.5 0.7 2.951234579 1.437471032 -6.77E-08

NOM 2 4 3 3 1.42 -2.154345036 0.576523006 -2.32E-08

WMC 2 4 3 3 1.42 -2.154345036 0.576523006 -2.32E-08

Table: 5: PCA (Relationship between partition based, state based, attribute based and category based testing)

Fig: 7: Component and variance (Relationship between partition based, state based, attribute based and category based

testing)

Fig: 8: eigenvalue with component (Relationship between partition based, state based, attribute based and category based

testing)

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.2, January 2013

42

In the above table: 5, In first PCA the value of NOA value

higher than others metrics , then its uniquely determine the

characteristic, In second PCA axis NOA value higher than

others metrics , then its uniquely determine the characteristics

.In third PCA axis NOM, WMC value higher than others

metrics , then its uniquely determine the characteristic . Fig.7

shows relationship of the component with variance and fig. 8

eigenvalue with the component.

5. The relationship between class based , partition based, random based testing , random based testing

Metrics Min Max. Mean Median. S.dev. PCA_1_Axis_1 PCA_1_Axis_2 PCA_1_Axis_3

DIT 0 2 1 1 1.41 1.85126543 -0.806734622 -1.60E-08

NOC 0 2 1 1 1.41 1.85126543 -0.806734622 -1.60E-08

NOA 1 2 1.5 1.5 0.7 1.144376278 1.933143616 1.81E-09

NOM 2 4 3 3 1.42 -2.423453569 -0.159837201 -2.22E-08

WMC 2 4 3 3 1.42 -2.423453569 -0.159837201 -2.22E-08

Table: 6: PCA (Relationship between class Based, partition based, random based Testing, random based testing)

Fig: 9: Component and variance (Relationship between class based, partition based, random based testing , random based

testing)

Fig: 10: eigenvalue with component (Relationship between class Based, partition based, random based testing , random based

testing)

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.2, January 2013

43

In the above table: 6, In first PCA the value of DIT, NOC

value higher than others metrics , then its uniquely determine

the characteristic, In second PCA axis NOA value higher

than others metrics , then its uniquely determine the

characteristics .In third PCA axis NOA value higher than

others metrics , then its uniquely determine the characteristic .

Fig.9 shows relationship of the component with variance and

fig. 10 eigenvalue with the component.

In our next paper we try to analysis of large data that are

cover maximum characteristics of any software products.

7. ACKNOWLEDGMENTS

We extend our thanks to Dr. Abhay Kothari Director of

Sanghvi Institute of Management and Science, Indore (India)

for their valuable support and discussion on the testing

classification of testing.

8. REFERENCES

[1] Gary Chastek and Robert Ferguson, "Toward Measures for

Software Architectures (Software Engineering

Measurement and Analysis)," Software Engineering

Institute, Carnegie Mellon University, CMU/SEI-2006-

TN-013, March 2006.

[2] Howden W. E., "Functional Testing and Design

Abstractions," System and Software (Elsevier), vol. 1, pp.

307-313, 1980.

[3] J. Huang C., "An Approach to Program Testing," ACM

Computing Surveys, pp. 113-128, September 1975.

[4] Rosenberg Linda H., "Applying & interpreting object

oriented Metrics," Software Assurance Technology Center

(SATC) and NASA Goddard Space Flight Center , Utah,

Software Technology Conference April 1998.

[5] Anderson John L. Jr., "How to Produce Better Quality Test

Software," IEEE Instrumentation & Measurement

Magazine , vol. 8, no. 3 ISSN : 1094-6969, August 2005.

[6] Bitman William R, Balancing software composition &

inheritance to improve reusability cost, and error rate.:

Johns Hopkins APL Technical Digest Vol. 18(4) , 485–

500., November 1997.

[7] Harrison R., Counsell S., and Nithi R., "Coupling metrics

for object oriented design," in Software metrics,

symposium, MD, USA, November 1998, pp. 150-157.

[8] Chidamber S. and Kemerer C., "A metrics suite for object

oriented design," IEEE Trans. Software Eng., vol. 20, pp.

476-493, 1994.

[9] Agarwal k. K., Sinha Y., Kaur A., and Malhotra R.,

"Exploring Relationships among coupling metrics in object

oriented systems," CSI, vol. 37 (1), March 2007.

[10] Glenford J. Myers, The Art of Software Testing, 2nd Ed.:

John Wiley & Sons, 2004.

[11] Dr. Linda Rosenberg, Ted Hammer, and Jack Shaw,

"Software Metrics and Reliability," Software Assurance

Technology Center (SATC), NASA, 1998.

[12] Bass L., Clements P., and Kazman R., Software

Architecture in Practice, 2nd Ed. Boston: MA: Addison-

Wesley, 2003.

[13] Nick Jenkins, "A Software Testing Primer," 2008.

[14] Soni D., Nord R., and Hofmeister C., "Software

Architecture in Industrial Applications," in Proceedings of

the 17th International Conference on Software

Engineering. Seattle NY: ACM Press, Washington, New

York, April 23-30, 1995.

[15] Hetzel William C., The Complete Guide to Software

Testing, 2nd Ed.: Wellesley, Mass.: ED Information

Sciences ISBN:0894352423. Physical description: ix, 280

p.: ill; 24cm, 1988.

[16] Jiantao Pan, Software Testing 18-849b Dependable

Embedded Systems Spring., 1999.

[17] Edward Miller, "Introduction to software testing

technology. In Tutorial: Software Testing & Validation

Techniques," IEEE Computer Society Press, pp. 4-16,

1981.

[18] Reiner R. Dumke and Achim S. Winkler, "Managing the

component- Based Software Engineering with Metrics," 0-

8186-7940-9/97 IEEE, 1997.

[19] Hareton K.N. Leung, "Test Tools for the Year 2000

Challenges,".

[20] Williams C. T, "The STCL test tools architecture," vol. 41,

no. 1

[21] Perry D. E. and Wolf A. L., "Foundations for the study of

software architecture," SIGSOFT Soft. Engg., 17 (4), 1992.

.

[22] Boehm BW, "Verifying and validating software

requirements and design specifications," IEEE Software,

vol. 1, no. 1, pp. 75-88, 1984.

[23] Cordes DW and Carver DL., "Evaluation methods for user

requirements documents," Information and system

Technology, vol. 31, no. 4, pp. 181-188, 1989.

[24] Davis AM, Software Requirements: Analysis and

Specification, 2nd Ed.: Prentice Hall, 1993.

[25]

K. K. Agarwal, Yogesh Sinha, Arvinder Kaur, Ruchika

Malhotra “ Exploring Relationships among coupling

metrics in object oriented systems. Journal of CSI vol. 37,

no. 1, January March 2007

[26] Robert M. Poston, “Testing tool combine best of new and

old,” IEEE Software. March 2005.

[27] Williams et. Al., “The STCL Test Tool Architecture,”

IBM Systems Journal, Vol 41, No.1, 2002.

[28] Lionel C. Briand, John W. Daly, and Jurgen Wust, “A

unified framework for coupling measurement in object-

oriented system”, IEEE transaction on software

engineering, 1996.

[29] Lionel C. Briand, John Daly “ A Comprehensive

Empirical Validation of Design Measures for Object-

Oriented Systems”, Fraunhfer IESE, 1999.

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.2, January 2013

44

[30] Lionel C. Briand, “Investigating Quality control in object

oriented design: an industrial case study” ACM-1999.

[31] Birand, W. Daly and J. Wust “Exploring the relationship

between design measures and software quality, .Journal

of systems and software, 5 (2000) 245-273.

[32] Juan Carlos Esteva, “Learning to Recognize”

(Krauskopf, 1990) Jan Krauskopf, “The cohesive highs

and the coupling lows of good software design”, IEEE,

1990.

[33] Sun Chong-ai ,Leu Chao, "Architecture Framework for

object-oriented Design," IEEE Transaction on Software

Engineering, 2004.

[34] Lalji Prasad and Sarita Singh Bhadauria, A full featured

component based architecture testing tool, International

Journals of Computer Science Issues, Vol. 8, Issue 4,

2011.

