Validation of Software for Bayesian Models
Using Posterior Quantiles

Samantha R. Cook, Andrew GELMAN, and Donald B. RUBIN

This article presents a simulation-based method designed to establish the computa-
tional correctness of software developed to fit a specific Bayesian model, capitalizing
on properties of Bayesian posterior distributions. We illustrate the validation technique
with two examples. The validation method is shown to find errors in software when
they exist and, moreover, the validation output can be informative about the nature and
location of such errors. We also compare our method with that of an earlier approach.
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1. INTRODUCTION

As modern computing environments become more advanced, statisticians are able to
fit more complicated models that address adequately complications such as missing data,
complex sampling schemes, and treatment noncompliance. Increasing model complexity,
however, implies increasing opportunity for errors in the software used to fit such mod-
els, particularly with the rapidly expanding use of Bayesian statistical models fitted using
iterative techniques, such as Markov chain Monte Carlo (MCMC) methods. Not only are
MCMC methods computationally intensive, but there is relatively limited software avail-
able to aid the fitting of such models. Implementing these methods therefore often requires
developing the necessary software “from scratch,” and such software is rarely tested to the
same extent as most publicly available software (e.g., R, S-Plus, SAS); of course, publicly
available software is not necessarily error-free either.

Although there is a rich literature on algorithms for fitting Bayesian models (e.g.,
Gelfand and Smith 1990; Gelman 1992; Smith and Roberts 1993; Gelman, Carlin, Stern,
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and Rubin 2003), there is only limited work related to investigating whether the software de-
veloped to implement these algorithms works properly. We are aware of only one published
article in this area (Geweke 2004). Standard approaches to software testing and debugging
from the engineering and computer science literature (e.g., Agans 2002) can sometimes
be helpful, but these tend to focus on fixing obvious errors and crashes, rather than on
determining whether software that runs and appears to work correctly actually does what
it claims to do. Here we outline a simulation-based method for testing the correctness of
software for fitting Bayesian models using posterior simulation. We begin in Section 2 by
describing the design of the validation simulation and the analysis of the simulation output.
Section 3 provides examples using two different pieces of software, and Section 4 presents
further discussion and conclusions.

2. METHODS FOR AUTOMATIC SOFTWARE VALIDATION
USING SIMULATED DATA

Software is often tested by applying it to datasets for which the “right answer” is
known or approximately known, and comparing the expected results to those obtained
from the software. Such a strategy becomes more complicated with software for Bayesian
analyses, whose results are inherently stochastic, but can be extended to develop statistical
assessments of the correctness of Bayesian model-fitting software. The basic idea is that
if we draw parameters from their prior distribution and draw data from their sampling
distribution given the drawn parameters, and then perform Bayesian inference correctly,
the resulting posterior inferences will be, on average, correct. For example, 50% and 95%
posterior intervals will contain the true parameter values with probability 0.5 and 0.95,
respectively. In this article, we develop a more powerful and systematic version of this
basic idea.

2.1 THEORETICAL FRAMEWORK

Consider the general Bayesian model p(y|©)p(©), where p(y|©) represents the sam-
pling distribution of the data, y, p(©) represents the proper prior distribution of the parameter
vector, O, and inferences are based on the posterior distribution, p(O|y). If a “true” param-
eter value ©(?) is generated according to p(©), and data y are then generated according
to p(y|©(®), then (y, ) represents a draw from the joint distribution p(y, ©), which
implies that ©(°) represents a draw from p(©|y), the posterior distribution of © with y
observed. The to-be-tested software is supposed to generate samples from p(©|y).

Now consider the posterior sample of size L, (), ©®) ... ©@)), generated from
the to-be-tested software. By sample we mean that each of the ©1) | ... , ©%) has the same
marginal distribution, not necessarily that they are independent or even jointly exchangeable.
If the software is written correctly, then (@), ©() ... ©()) are a sample from p(O|y),
meaning that the marginal distribution of ©(®) and each of @) ..., ©(L) is the same. This
is also true for any subvector of the components of ©. Figure 1 illustrates this process of
generating © and y.
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Figure 1.  Illustration of data and parameter generation for validation simulation. First draw o) from the prior
distribution; then draw y|®(0) [from the data model; then draw e, . .. el from the posterior distribution
given y using the to-be-tested software. If the software is written correctly, then (y, 9(0) should look like a draw
fromp(y,®), fort =01, ..., L.

Our proposed validation methods are based on the posterior quantiles of the true values
of scalar parameters. Let 6 represent a scalar component or function of ©; the true value 6(°)
and posterior sample (A, . .. (1)) are obtained from ©(?) and (@), @) ... ©L)),
respectively. Let ¢(A(?)) = Pr(#(?) > ), the posterior quantile of §(°), where 8 represents a
random draw from the distribution (1), ... , #(F)) generated by the to-be-tested software.
The estimated quantile, G(6©)) = Pr(8(® > 6), is equal to L Thoseo-

Theorem 1. If the software is written correctly, for continuous 0, the distribution of
G(0©) approaches Uniform(0, 1) as L — oc.

Proof: To prove this result, we need to show that Llim Pr(§(0®) < 2) = x for any
—00

x € [0,1]. Let Q. (f) represent the xth quantile of a distribution f, and Q;(z1, 22, ... , 2p)
the xth empirical quantile of (z1, 23, ... , z,). Then
Jim Pr(g(0©) <) = }mP%W”<@wmﬁ®,“ﬁmn

:P@@QM%WW%MWW

= Pr(09 < Q. (b))

= Jj’

because #(*) is drawn from p(6|y). For independently drawn (61 92 ... 9(F)), the third
line of the above expression follows from the convergence of the empirical distribution
function to the true distribution function. If the sample (0(1), 02 ... ,G(L)) comes from
a process such as MCMC that converges to the target distribution, the equation follows
from the assumed ergodicity of the simulation process (see, e.g., Tierney 1998, for MCMC
simulation). Thus, as the model-fitting algorithm converges, the distribution of Q(H(O))
approaches the uniform, assuming that the target distribution p(6|y) has zero probability at

any point. 0
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2.2 OUTLINE OF VALIDATION SIMULATION

The uniformity of the posterior quantiles motivates powerful diagnostics for assessing
whether Bayesian model-fitting software is written correctly. As outlined in Figures 1 and
2, simply generate and analyze data according to the same model, and calculate posterior
quantiles. Specifically, generate the parameter vector ©(?) from p(©). Then conditional
on O, generate the data y from p(y|® = O()). Next, analyze y using the model-
fitting software based on the same model as was used to simulate the data, thereby creating
the random sample of size L, (@), 03 ... ©)), from the posterior distribution of
O, p(6ly = y). Finally, for each component of ©(%), generically labeled 6(°), compute
its posterior quantile, G(#(?)), with respect to the posterior sample, (1), 6 ... (L)),
Imputed values of missing data and functions of ©, for example, ratios or cross products,
may be considered as well.

We refer to the generation and analysis of a single dataset under a fixed condition
as one replication. Figures 1 and 2 outline the steps of one replication. The simulation
conditions are specified by unmodeled data and unmodeled parameters, such as the sample
size (including number of groups and sample sizes within groups for a hierarchical data
structure); values of nonstochastic predictors (for a regression model); and parameters in
the prior distribution that are set to a priori fixed values rather than estimated from the data.
We refer to the number of replications performed under the same condition as the size of
the simulation for that condition. Finally, we refer to the software that generates ©(°) from
p(0) and y from p(y|O©)) as the data-generating software and the posterior simulation
software that samples (1), ©() ... ©) as the model-fitting software.

A key idea of the simulation method is the comparison of results from two computer
programs: the data-generating software and the model-fitting software, which both sample
from p(©|y), as explained in Section 2.1. Direct simulation—that is, the data-generating
software—is easier to program and is presumed to be programmed correctly; Geweke (2004)
also made this point and this assumption. It is possible, however, that an apparent error in
the model-fitting software could actually be the result of an error in the data-generating
software. If desired, the correctness of the data-generating software could be examined by
comparing its output with analytically derived quantities, for example, comparing sample
moments of the components of © or of the data y with their analytically derived expectations.

To perform the validation experiment, perform many replications, each drawing ©(°)
from p(©) and y from p(y|©®)), and then using the to-be-tested model-fitting software to
obtain a sample from p(©|y). The simulation output is a collection of estimated posterior
quantiles; from the quantiles we can calculate test statistics to quantify their deviation from
uniformity, and hence detect errors in the software.

There are three levels of potential subscripting here: replications, draws of © within
each replication, and components of ©. We never indicate components of © with subscripts;
instead, we use 6 to denote a generic scalar component of ©. We denote draws of © (or 8)
within a replication with superscripts: ©) represents the /th draw, with ¢ = 1,... , L. We
denote replications with subscripts: ¢ = 1,... , Nyep.
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One Replication of Software Validation Simulation

Data-Generating Software
Simulation
0 ~ p(©
Conditions p(©)
y ~ plyle™)
Y
Simulation Model-Fitting Software
Conditions W ~p@Oly) =12 .1
o) ... o)
Compute quantiles
(0
O( )4' q= Zle IH(U)>9(U

Figure 2.  Steps of one replication of validation simulation. Given the simulation conditions, first generate param-
eters ©(9) and data y using the data-generating software. Then, given the data vy, generate a sample from p(Bly)
using the model-fitting software. Finally, from the posterior sample and 0O calculate posterior quantiles.

2.3 ANALYZING SIMULATION OUTPUT

Let ¢; = %Zle 1 PIONPION the empirical quantile for the ith replication. For any
generic function h, we can determine the distribution of h(q) for correctly working soft-
ware. In particular, if the software works properly and therefore the posterior quantiles are
uniformly distributed, then h(q) = ®~!(q) should have a standard normal distribution,
where @ represents the standard normal CDF. One way to test the software is to test that the
mean of ®~1(q) equals 0. However, if an error caused the quantiles follow a nonuniform
distribution centered near 0.5, but with mass piled up near 0 and 1, ®~1(¢) could still appear
to have mean zero. Our investigations revealed that posterior quantiles do sometimes follow
such a U-shaped distribution when software has errors; simply testing that ® ~*(¢) has mean
equal to zero may therefore not find errors when they exist. Figure 3 shows a histogram
of such a distribution obtained from software with an error. Instead, for each scalar 6, we



680 S. R. Cook, A. GELMAN, AND D. B. RUBIN

=)
g - —
- _
8

3 -

c _

[9)

=

g o _|

o ©

IC
o |
«
o

T T T T T 1
00 02 04 06 08 1.0

Posterior Quantiles

Figure 3. An example of posterior quantiles q from software with error. An effective summary for detecting the
error should emphasize quantiles near 0 or 1, such as h(q) = (271(q))2.

calculate the following statistic:

Nrep
X3 =3 (27Ma)"
i=1
which should follow a x? distribution with N,ep degrees of freedom when the software
works correctly. We can then quantify the posterior quantiles’ deviation from uniformity
by calculating the associated p value, pg, for each X 92.

Any extreme py value indicates an error in the software. If the number of parameters is
large, however, we expect some of the py values to be small even when the software does
work properly. We therefore recommend two complementary approaches for analyzing the
simulation output.

As an exploratory tool, we transform the py values into zy statistics (zg = <I>’1(p9))
and plot the absolute values of the zy statistics in “batches” that are related (examples
appear in Figures 4-9). For example, a batch might consist of the individual-level means in
a hierarchical model. Plotting zy rather than py makes extreme values more evident.

As a confirmatory analysis, we perform a Bonferroni correction on a representative
subset of the py values. This subset of py values is defined as follows. For each “batch”
of related parameters, define a new scalar parameter equal to the mean of all parameters
in the batch. The py values for these new parameters can be calculated from the simulated
values of © (with no calculation required for batches containing only one parameter) and
so no alteration of the model-fitting software is required. The Bonferroni correction simply
multiplies each py value in the subset by the total number of batches. From these Bonferroni-
adjusted pg-values, testing can be carried out at any desired significance level. Using the
means of the batched parameters can result in a much smaller number of py values used
in the multiple comparisons procedure, and therefore a less conservative procedure. Such
a strategy is especially appropriate for groups of parameters sampled using the same code
segment (e.g., in a loop), because any error in that segment would generally affect all
parameters in the batch as well as their mean. This multiple comparisons procedure borrows
from ideas in meta-analysis (e.g., Rosenthal and Rubin 1986): Each batch of parameters
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can represent multiple outcomes from a single study; we are first combining within-batch
results and then combining batch-level summaries into a single conclusion.

2.4 OTHER APPROACHES

An intuitive approach to testing software involves repeatedly generating data from the
assumed model, using the software to calculate, say, 95% intervals, and comparing the
observed interval coverage with the nominal coverage. For Bayesian models, such an ap-
proach is the special case of our method where h(q) = I{0.025<¢<0.975}- Using h(q) = ¢
or h(g) = (¢! (q))2 effectively assesses the coverage of all possible intervals at once.

Geweke (2004) presented an alternative simulation strategy for testing Bayesian model-
fitting software. This approach also involves comparing the results from two separate pro-
grams, in this case two programs that generate draws from the joint distribution p(©, ). One
of the programs (the marginal-conditional simulator) is equivalent to our data-generating
software, creating independent samples from p(©, y) by first sampling © from p(©) and
then sampling y from p(y|©); this piece of software should be straightforward to write and
is presumed to be error-free. The second program (the successive-conditional simulator)
is created by appending to the algorithm that samples from p(©|y) an additional step that
samples y from p(y|O); the limiting distribution of this new algorithm is also p(©, y). The
data y are sampled from p(y|©) in both algorithms, but the two algorithms are different be-
cause they sample © differently. Thus, two samples from p(©, y) are generated; z statistics
are then calculated to test that the means of (scalar) components and functions of (©, y) are
the same from both programs.

Geweke’s approach has the advantage that only one replication needs to be performed,
because the two programs generate from p(©, y) rather than repeatedly generating from
p(Oly) for different values of y. A disadvantage is that it requires altering the software
to be tested: If the software in question is truly a “black box,” altering it to resample the
data at each iteration may not be possible. WinBUGS, for example, cannot be altered to
resample the data y at each iteration, and so the successive-conditional simulator cannot be
created. Even when this alteration is possible, it may still be desirable to test the version of
the software that will actually be used, rather than an altered version. In addition, Geweke’s
method requires that the functions of (0, y) compared from the two programs have finite
variance, a condition that is not met for certain proper but vague prior distributions, such
as the Cauchy or inverse-gamma(a, a) if @ < 2. Because our method uses sample quantiles
rather than moments, it does not require that the prior distribution have a finite variance and
so can more easily be used to check software for models with vague prior distributions. Of
course, generating © from nearly improper prior distributions could lead to computational
problems with either method.

3. EXAMPLES

We illustrate the posterior quantile-based software validation techniques with one simple
and one complex example. For each example, we first present simulation results from
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correctly written software and then illustrate how various errors propagate to diagnostic
measures.

3.1 A SIMPLE ONE-WAY HIERARCHICAL MODEL
3.1.1 Model

We illustrate first with a simple hierarchical normal model. The model applies to grouped
or clustered data, with means varying across groups and constant variance:

yij|aj,0'2 ~ N(Olj,0'2) izlv"'anja ]ZlvvJ

ajlpt ~ NGt =10
We assume a simple conjugate prior distribution:

o? ~ TInv—x?(5,20)
B~ N(5a52)
2~ Inv—x%(2,10).

Because the prior distribution is conjugate, it is straightforward to derive the full conditional
distribution for each parameter, that is, its distribution given the data and all other parameters,
and simulate the posterior distribution using Gibbs sampling (Geman and Geman 1984;
Gelfand and Smith 1990).

3.1.2 Validation Simulation

We perform a simulation of 20 replications to validate the MCMC software developed
to fit the simple model presented in Section 3.1.1. The sample sizes for the generated data
are J = 6, n = (33,21, 22,22,24, 11). Within each replication, we generate a sample of
L = 5,000 draws from the posterior distribution of the model parameters. We monitor all
parameters listed in Section 3.1.1, as well as (arbitrarily) the coefficients of variation: p/7
and a;/0,j =1,...,J.In addition, we monitor @ = ijl a; and @/o. We perform the
Bonferroni correction on the pg values for (&, @/o, i1, 72, 0, u/7) by multiplying each of
these py values by 6. In other words, we group the model parameters into 6 batches: one
containing a1, . . . , cvy; one containing vy /o, . . . , oy /o; and the remaining four containing
one of p1, 72, 02, /7.

3.1.3 Validation Results: Correctly Written Software

The absolute zp statistics from this simulation are plotted in Figure 4. Each row in the
plotrepresents a different batch of parameters. All zy statistics are less than 2, thus providing
no indication of incorrectly written software. Moreover, the smallest of the unadjusted py
values for (@, @/o, i, 72,02, u/7) is 0.2, making its Bonferroni-adjusted p value larger
than 1.
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Normal Example: Correctly Written Software

n/t 1 .
o 1 |
2 1 .
H 1 .
(X/G 6 |°o o o o eo0 o
o 6 oo |o . | o olo
0.0 0.5 1.0 1.5

Absolute z transformation of py values

Figure 4. Scalar validation zg statistics: Simple model, correctly written software. Each row represents a scalar
parameter or batch of parameters; the circles in each row represent the zg statistics associated with that parameter
orbatch of parameters. Solid circles represent the zg statistics associated with the mean of that batch of parameters.
The numbers on the y axis indicate the number of parameters in the batch.

3.1.4 Validation Results: Incorrectly Sampling «

We have just seen how the validation results should look when software is written
correctly. We now show analogous results for software with errors, and illustrate how the
diagnostics advocated here can be used to locate errors when they exist.

The full conditional distribution of «; in the Gibbs sampler is normal with mean

N
) o2

nj
o2

1
L+

and variance 1

We change the model-fitting software to incorrectly use N = Z}]:1 n; instead of n; when
sampling «;, that is, we sample o; with mean

N
) o2

1 N
L+

o2

and variance 1

st
We perform another simulation with 20 replications.

Figure 5 plots the absolute zy statistics from this simulation; note the scale of the x
axis. It is clear that there is an error somewhere in the software: All of the zy statistics are
extreme. The parameters with the smallest zy statistics are 72 and the coefficient of variation
/T, whereas the parameters c, o2, i, and a/o all have even more extreme zp statistics.
In addition, the smallest Bonferroni-adjusted py value is essentially zero, clearly indicating
a problem. In such a situation we recommend first looking for errors in the sections of the
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Normal Example: Error Sampling o
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Figure 5.  Scalar validation zg statistics: Simple model, incorrectly sampling o. Each row represents a scalar
parameter or batch of parameters; the circles in each row represent the zg statistics associated with that parameter

orbatch of parameters. Solid circles represent the zy statistics associated with the mean of that batch of parameters.
The numbers on the y axis indicate the number of parameters in the batch.

program that sample o and o2, because these parameters and functions of them have such
extreme zy statistics.
3.1.5 Validation Results: Incorrectly Sampling 1

For another example, we consider an error in the specification of the full conditional
distribution of 4 in the Gibbs sampler, which is normal with mean

J
Zj:l @

5
T2 + 52
J 1
7te
and variance
1
J -
=zt

We change the model-fitting program so that 5 rather than 52 is used in these conditional
distributions, that is, we sample p with mean

J
Zj:l @

T2

5
+7
i?_|_

(S

and variance 1

e
and again perform a simulation of 20 replications. The results from this simulation are not
as extreme as those in the previous section; however, they still clearly indicate an error in
the software and, moreover, are informative about the source of the error.
As can be seen from Figure 6, the absolute zy statistics for p and p/7 are extreme,
suggesting an error in the part of the software that samples ;. The smallest Bonferroni-
adjusted py value (that associated with p) equals 0.002.
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Normal Example: Error Sampling u

Absolute z transformation of pg values

Figure 6. Scalar validation zg statistics: Simple model, incorrectly sampling p. Each row represents a scalar
parameter or batch of parameters; the circles in each row represent the zg statistics associated with that parameter
orbatch of parameters. Solid circles represent the zg statistics associated with the mean of that batch of parameters.
The numbers on the y axis indicate the number of parameters in the batch.

3.2 A HIERARCHICAL REPEATED-MEASURES REGRESSION MODEL

We now present an example of software validation for a much more complicated model.

3.2.1 Model

This model was developed to impute missing data in a clinical trial. The data are repeated
blood measurements, and a Bayesian hierarchical regression model is used to describe them;
see Cook (2004) for more details. The model forces a decreasing trend in the outcome
measurements over time for each subject; the complete-data model is:

where ?;; is the time of the ith measurement for the jth patient. The prior distribution of
(5, B, v;) is trivariate normal with means that depend on covariates; we parameterize this
distribution in factored form:

vilo? &, X; ~ N(po+mX;+nX;,o%)
Bil, 0%, 6, X5~ N(0g, +0p, X; + 05, X7 + 05,7, wh)
13l By, 0%, € X~ N0y + 0, X + 0, X5+ 6,575 + 0By w3),

where X ; represents the baseline measurement for the jth patient; n = (0, 71, 72, log(w))’;
55 = (550 5 (551 5 532 5 533 5 log(wg))’; ‘SM = (6HU 5 5;41 s 5#2 5 6#3 y 6#4’ 1og(wu))’; and é =
(n,d3,0,). The vector n has an informative multivariate normal prior distribution with
fixed parameters. The correlation matrix of this distribution, 7, is not diagonal. The remain-
ing scalar components of & have independent normal prior distributions with fixed input
parameters. In addition to the model parameters, we also monitor imputed values of missing
data: For each generated dataset n,;s data points were masked out and then imputed.
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Clinical Trial Example: Correctly Written Software
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Figure 7. Scalar validation zg statistics: Complex model, correctly written software. Each row represents a
batch of parameters; the circles in each row represent the zg statistics associated with that batch of parameters.
Solid circles represent the zg statistics associated with the mean of that batch of parameters. The numbers on the
y axis indicate the number of parameters in the batch.

3.2.2 Validation Simulation

We will present results for three validation simulations; each simulation consists of
20 replications and requires approximately 2.5 hours of computing time. Each replica-
tion generates a sample of L = 5,000 draws from the posterior distribution. For each
patient, ¢;; takes the integer values from O to n; — 1. The sample sizes are J = 9,
n = (12,13,9,17,11,11,13,8,15), and n,;s = 2. We monitor all model parameters
listed in Section 3.2.1, as well as imputations of the two missing data points and cross prod-
ucts of the vector 7. We perform the Bonferroni correction on the py values for the means
of the following nine vector parameters: (&, 3,7, 02,1, 1m X 1,83, 8, Yis)> Where y, i
refers to the imputed values of missing data and 1) x m refers to the cross products of 7.

3.2.3 Validation Results: Correctly Written Software

We first present results from testing the correctly coded WinBUGS software. The ab-
solute zy statistics from this simulation are plotted in Figure 7. None of the zy statistics is
extreme, thus providing no indication of incorrectly written software. The smallest of the
Bonferroni-adjusted p values is larger than 1.

3.2.4 Validation Results: Error in Data Model Specification

The first error we create in the WinBUGS model-fitting software is incorrectly coding
the likelihood as

Yij ~ N(pj — exp(B))ti; — exp(y;)ts;, 03), (3.2)
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Clinical Trial Example: Error in Data Model
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Figure 8. Scalar validation zg statistics: Complex model, error in likelihood specification. Each row represents
a batch of parameters; the circles in each row represent the zg statistics associated with that batch of parameters.
Solid circles represent the zg statistics associated with the mean of that batch of parameters. The numbers on the
y axis indicate the number of parameters in the batch.

3

thereby using ¢ instead of ¢2

’ ; as the covariate associated with ;. We again perform 20

replications. ’

Figure 8 plots the absolute zj statistics, showing that many are extreme. The parameters
with the largest deviations from uniformity are those related to ~. The zy statistics for
the nine values of ; are all larger than six, and several components of 77 and  x 1 (the
parameters governing the prior distribution of ) are also extreme. The smallest of the nine
Bonferroni-adjusted pg values is that associated with ~ and is equal to 7.1 x 10~2%, clearly

indicating an error related to sampling ~y.

3.2.5 Validation Results: Error in Hyperprior Specification

The second error we create treats r as a diagonal matrix in the WinBUGS model-fitting
software, that is, using a prior distribution that is independent across components of 7. The
correlation matrix used to sample 1) in the data-generating software is

1 0.57 0.18 0.56
0.57 1 0.72 0.16
0.18 0.72 1 0.14
0.56 0.16 0.14 1

Figure 9 plots the absolute zy statistics for this simulation. Again, the simulation results
suggest there is an error in the software and indicate the source of the error. The components
of n and their cross-product terms have the largest zy statistics, suggesting that there is an
error in the software related to 7). The zy statistics are somewhat less extreme for the
components of m than for their cross products, indicating that the error may be related



688 S. R. Cook, A. GELMAN, AND D. B. RUBIN

Clinical Trial Example: Error in Hyperprior Specificatior
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Figure 9.  Scalar validation zg statistics: Complex model, error in hyperprior specification. Each row represents
a batch of parameters; the circles in each row represent the zg statistics associated with that batch of parameters.
Solid circles represent the zg statistics associated with the mean of that batch of parameters. The numbers on the
y axis indicate the number of parameters in the batch.

to the correlations between these parameters. Because these parameters are dependent in
their prior distribution, the simulation results suggest first looking for errors in the prior
specification of 7). The smallest of the Bonferroni-adjusted pg values is that associated with
1 x 1 and is equal to 8.2 x 10~1°,

These errors are in the specification of the model sent to WinBUGS and are not a problem
with WinBUGS itself; the results from Section 3.2.3 show that WinBUGS works properly
for this model when the model is correctly specified.

3.3 COMPARISON WITH THE METHOD OF GEWEKE (2004)

As discussed in Section 2.4, Geweke’s method compares output from two pieces of
software that sample from the distribution p(©, y), whereas our method repeatedly compares
output from two programs that sample from p(©|y) for many values of y. One might expect
Geweke’s method to be substantially faster than ours because it requires only a single
replication; however, it also requires sampling from a larger model space which may take
longer to explore.

For the examples in Section 3.1, implementing Geweke’s method in fact requires more
computing time than our method. The simulations in Sections 3.1.3-3.1.5 each required
about one minute of computing time, using in each replication the convergence criterion
that the Gelman and Rubin (1992) statistic \/E < 1.05 for all parameters monitored.
Performing Geweke’s single-replication method, even using the less stringent criterion of
\/E < 1.2 for all parameters, required about four minutes of computing time for parallel
chains of the successive-conditional simulator to mix. As alluded to by Geweke (2004), the
slow mixing of the successive-conditional simulator in our example may be a result of sig-
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nificant autocorrelation due to our choice of sample sizes. With substantially smaller sample
sizes, the successive-conditional simulator mixes more quickly. We chose the simulation
conditions for our examples to represent realistic datasets that we had used in our research;
simulations with much smaller samples are certainly possible as well. The results from the
two methods were similar: Both methods found existing errors and did not indicate errors
in the correctly written software.

For the examples in Section 3.2, Geweke’s method cannot be used because the successive-
conditional simulation cannot be implemented in WinBUGS. This is a clear advantage of our
method in such cases, because there are models for which a correctly coded WinBUGS pro-
gram does not sample from the correct target distribution. For complex models especially,
it can be important to test that a specific WinBUGS program works properly.

More generally, we expect Geweke’s method to be more useful in some settings and
ours to work better in others. It is also possible for both methods to fail; for example, if
software intended to sample from the posterior distribution actually samples from the prior
distribution, neither our method nor Geweke’s will find the problem.

4. CONCLUSIONS

Substantial time and energy have been spent developing new statistical model-fitting
techniques. Indeed, entire books (e.g., Gilks, Richardson, and Spiegelhalter 1996; Liu 2001)
have been devoted to the application of MCMC methods (e.g., hybrid sampling, reversible
jump, slice sampling), and each new method is generally presented with theoretical results
proving its validity. For these methods to work properly in practice, the algorithms must also
be programmed correctly. Here we have presented a simulation-based method for testing
the correctness of Bayesian model-fitting software. Although potentially computationally
expensive, the methodology is straightforward and generally easy to implement once the
model-fitting software itself has been developed. Software for implementing these validation
methods is available at http://www.stat.columbia.edu/~cook.

4.1 DETECTING ERRORS

Results from the type of simulation presented here do not “prove” that a piece of software
is written correctly. Rather, as with hypothesis testing, they may simply provide no evidence
against a null hypothesis that the software works properly. The power of the method depends
on the nature of the errors.

In our examples, the simulation results provide specific clues to where in the program
the errors are located. Based on the example of Section 3.2.5, we recommend monitoring
all cross-products of parameters that are not independent in their prior distribution. Mon-
itoring cross-products can also be helpful to detect indexing errors, for example, drawing
a subvector of ©(*+1) conditional on ©(*~1) rather than ©*) in an MCMC algorithm. An
algorithm with this type of error could still yield correct marginal distributions; monitoring
cross-products can reveal errors in the joint distribution.

Because models are often changed slightly over the course of a project and used with
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multiple datasets, we often would like to confirm that software works for a variety of condi-
tions. In this case, we recommend performing simulations under a variety of conditions. To
help ensure that errors, when present, are apparent from the simulation results, we caution
against using “nice” numbers for fixed inputs or “balanced” dimensions in these simulations.
For example, consider a generic hyperprior scale parameter s. If software were incorrectly
written to use s2 instead of s, the software could still appear to work correctly if tested with
the fixed value of s set to 1 (or very close to 1), but would not work correctly for other
values of s.

4.2 COMPUTING TIME

The methods presented here assume that the posterior distributions have been calculated
exactly, that is, that the posterior sample is large enough that there is no uncertainty in the
posterior quantiles. In the examples presented we used posterior samples of size 5,000.
When computing time is an issue, our recommendation, based on limited experience, is to
perform fewer replications rather than to generate smaller posterior samples. Our examples
suggest that the proposed validation methods can find errors (at least serious ones) when
they exist even with a limited number of replications. Additionally, the pg values are exact
in the sense that they do not assume or require a large number of replications.

When hierarchical models have many individual-level parameters, the internal replica-
tion of parameters can allow for software testing with a single replication. Such analyses
could be helpful for screening purposes to detect and correct obvious errors before per-
forming a large expensive simulation. For example, after only a single replication of the
simulation in Section 3.1.4 (incorrectly sampling cx), 15 of the 16 py values calculated were
less than 0.05, clearly suggesting an error after only a few seconds of computing time. Se-
quential testing strategies may also be helpful when computing time is a concern, stopping
the simulation early if an extreme result appears. Formal methods for sequential testing
were described, for example, by Armitage, McPherson, and Rowe (1969).

Parallel (or distributed) computing environments can decrease computation time: Be-
cause each replication is performed independently of the others, multiple replications can
be carried out simultaneously. When varying the simulation conditions, choosing small data
sample sizes can speed computation; even complex models can often be fit fairly quickly
when sample sizes are small.

The number of replications performed also necessarily depends on the purpose for
which the software is being developed. For commercial or public-use software (e.g., a SAS
procedure), it may be desirable to perform hundreds of replications.

4.3 PROPER PRIOR DISTRIBUTIONS

The simulation studies presented here can only be applied to Bayesian models. More-
over, these validation simulations are technically only applicable for Bayesian models with
proper (i.e., integrable) prior distributions, because the “true” parameter vector ©(?) must
be repeatedly generated from its prior distribution. This provides strong incentive in prac-
tice to use prior distributions that are proper, so that the resulting software can be tested in
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a systematic way. Most distributions can be made arbitrarily diffuse while still remaining
proper, so there is generally little argument in favor of using improper prior distributions
rather than diffuse proper distributions. Proper prior distributions are also required when us-
ing WinBUGS software to fit Bayesian models. In addition, using a proper prior distribution
guarantees a proper posterior distribution.

Generating data from very diffuse prior distributions can sometimes lead to overflow
problems when fitting the models, or, in the case of Metropolis-type algorithms that require
fine-tuning of jumping distributions, can make it difficult to develop a single algorithm that
will work relatively efficiently for all datasets generated from the model. As mentioned
previously, if software is tested with different values of the fixed inputs to the hyperprior
distribution, it is generally reasonable to conclude it will work for other values of the fixed
inputs as well. The fixed inputs used in the simulations may then be chosen so that the prior
distribution is less diffuse, which can also speed the rate of convergence of the model-fitting
algorithm, and thereby speed the validation simulation.

4.4 RELATED METHODS

The software validation simulations presented here should not be confused with model-
checking strategies. The simulations described in Section 2 only test that a piece of software
is producing the correct posterior distribution implied by the assumed Bayesian model and
the observed data. Model checking is another important area of research and is discussed, for
example, by Rubin (1984), Gelman, Meng, and Stern (1996), Bayarri and Berger (1999),
and Sinharay and Stern (2003). The model checking methods of Box (1980) and Dey,
Gelfand, Swartz, and Vlachos (1998) are similar to our software checking method and
involve comparison of either the observed data or observed posterior distribution with the
distribution of the data or parameters implied by the model.

Software checking techniques exist for non-Bayesian methods as well. For example, in
a maximum likelihood analysis one may calculate the derivative of the likelihood function
at the maximum likelihood estimate to confirm that it is equal to zero; when maximum
likelihood estimates are computed using the EM algorithm (Dempster, Laird, and Rubin
1977), one can check that the observed-data log-likelihood increases at each iteration.
Most frequentist confidence intervals are exact only asymptotically and therefore cannot
be reliably used to test software with finite samples; however, monitoring interval coverage
could work for models that yield frequentist confidence intervals that are exact in the sense
of Neyman (1934). We encourage principled software validation whenever possible.

[Received December 2004. Revised November 2005.]
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