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Abstract 

Sperm counts have been linked to several fertility outcomes making it an 

essential parameter of semen analysis. It has become increasingly 

recognised that Computer Assisted Semen Analysis provides improved 

precision over manual methods but systems are seldom robustly validated for 

use. The objective of this work was to gather the evidence to validate or reject 

the Sperm Class Analyser as a tool for routine sperm counting in a busy 

laboratory setting. The criteria examined were comparison with the Improved 

Neubauer and Leja 20µm chambers, within and between field precision, 

linearity from a stock diluted in both semen and media, accuracy against 

internal and external quality material, an assessment of uneven flow effects 

and a ROC analysis to predict fertility in comparison with the Neubauer 

method. The technology is not a stand alone “black box” but rather a tool for 

well trained staff that allow rapid, high number sperm counting providing 

errors are identified and corrected. The system will produce rapid, accurate, 

linear, precise results with less analytical variance than manual methods that 

correlate well against the Improved Neubauer chamber. The system provides 

superior predictive potential for diagnosing fertility problems. 
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Introduction 

Semen analysis is generally regarded as mandatory in the assessment of 

male infertility (Jungwirth et al., 2012, Mortimer & Mortimer, 1999, N.I.C.E, 

2012, Rowe & Comhaire, 2000). In the United Kingdom (UK) the National 

Institute for Clinical Excellence (NICE) recommends semen analysis for all 

male partners of couples who have been unsuccessful with natural conception 

for greater than 12 months (N.I.C.E, 2012). The two major quantifiable 

elements of a semen ejaculate are the total number of spermatozoa present 

and the total volume of fluid. While sperm concentration itself is not a direct 

measure of testicular function, as final semen volume includes secretions 

from the seminal vesicles and prostate (Eliasson, 1975), the total ejaculate 

spermatozoa number is shown to be related to various fertility endpoints  

(Bonde et al., 1998, Cooper et al., 2010, Krause, 1996, Larsen et al., 2000, 

Merviel et al., 2010, Slama et al., 2002, Sripada et al., 2010, Vanweert et al., 

2004, Zinaman et al., 2000). Additionally once this dilution effect and 

abstinence is accounted for, the total number of sperm in the ejaculate does 

correlate with testicular volume (Behre et al., 1997, Handelsman et al., 1984, 

W.H.O, 1987) and is indicative of the sperm production capability of the testes 

(MacLeod & Wang, 1979). The sperm count thus is a critical parameter in the 

semen analysis profile.  
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Sperm counts from 4500 men from 14 countries who’s partner achieved a 

pregnancy within 12 months exhibit a large range of counts; 9x106 at the 2.5th 

percentile, 73x106 at the 50th percentile, 259x106 at the 97.5th percentile 

(Cooper et al., 2010). The World Health Organisation (WHO) use the 5th 

percentile from this data as a one sided reference range for sperm counting 

(W.H.O., 2010a); thus men whose sperm counts are equal to or higher than 

15x106 (95%CI 12-16) fall within the 95% reference range for fertile men. The 

WHO acknowledges that the reference range can only be used as a guide as 

semen characteristics are not exclusive determinants of a couple’s fertility; 

men below the range will still exhibit fertility and men above the range are not 

guaranteed fertility (W.H.O., 2010a). In addition to counting sperm in semen, 

counting separated samples prior to insemination in assisted fertility 

treatments (AFT) can offer predictive information. The post-wash total motile 

sperm count (TMC) as a predictor of intrauterine insemination (IUI) success 

can demonstrate high specificity for non-pregnancy (Vanweert et al., 2004). 

The predictive value of counting sperm for In Vitro Fertilisation (IVF) or Intra 

Cytoplasmic Sperm Injection (ICSI) are less clear (Kini et al., 2010). Few 

studies discuss the implications of analytical variance on sperm count 

predictors. 

 

To count spermatozoa the WHO recommends (W.H.O., 2010b) that a 

minimum of 200 sperm should be counted in replicate and if the replicates are 

not close new dilutions should be made and the process repeated. One of the 

reasons for the minimum of 200 sperm can be observed with simple standard 

error calculations on Poisson distributions, the WHO utilise the simplified 
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formula (N ± (2 × √N) (W.H.O., 2010c)). For example If a laboratory was 

utilising a standard dilution of 1/20 on all samples and counted only 20 sperm 

on a given sample, the 95% confidence interval of the result is between 11 

and 30x106. Because the result covers such a large range it offers reduced 

clinical information. Unfortunately techniques of semen analysis have 

previously been shown to be poorly implemented at many routine laboratories 

(Keel, 2004, Keel et al., 2002, Matson, 1995, Pacey, 2006b, Riddell et al., 

2005). Additionally it has been suggested that those performing the analysis 

fail to understand the implications of smaller sample sizes on confidence 

intervals (Pacey, 2006a). The proportion of UK semen analysis laboratories 

that are actually counting a minimum of 200 sperm twice is unknown. 

Because semen analysis is time consuming (W.H.O., 2010b) and because of 

ever present cost pressures on technician time, laboratories often admit to 

adopting methods that allow smaller numbers to be analysed (KS Lindsay, 

personal communication, May 2012). Certainly the UK National External 

Quality Assessment Service (UKNEQAS) laboratory variance results would 

suggest that the WHO sperm number recommendations are not universally 

followed (Pacey, 2006a). 

 

To count spermatazoa the WHO recommends counting diluted fixed sperm 

using a 100µm deep haemocytometer chamber and gives particular reference 

to the improved Neubauer chamber (W.H.O, 2010). The additional 

recommendations (W.H.O., 2010d)  for accurate counting with the improved 

neubauer are lengthy, and are designed to minimise error associated with the 

method. Like the difficulties associated with sample numbers, with what 
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stringency UK laboratories follow the recommendations are unknown. The 

WHO recognises that disposable chambers for sperm counting are also 

available (Brazil et al., 2004, Mahmoud et al., 1997, Seaman et al., 1996), but 

warn that they may generate significantly different results from the improved 

neubauer haemocytometer (W.H.O, 2010). The WHO recommends that 

chambers other than the haemocytometer can be used as long as they are 

extensively validated with the following threefold approach: (1) Checking the 

new chambers dimension measurements (2) comparing results against the 

improved neubauer and (3) obtaining satisfactory performance with external 

quality control. The majority of these chambers are shallower than 

haemocytometers and fill by capillary action. Uneven sperm distribution has 

been noted with disposable chambers (Douglas-Hamilton et al., 2005a, 

Douglas-Hamilton et al., 2005b) and although correction factors for this effect 

are available (Douglas-Hamilton et al., 2005b), they are not universally 

accepted as adequate (Björndahl & Barratt, 2005). In contrast to uneven 

sperm distribution, greater precision has been shown in some 20µm deep 

chambers when compared with the WHO recommended deeper improved 

Neubauer chamber (Mahmoud et al., 1997). 

An obvious solution to the uncertainly of low sperm number counting and 

constraints on technician time is the use of Computer Assisted Semen 

Analysis (CASA). CASA concentration and motility data has been shown to 

relate to various fertility measures (Barratt et al., 1993, Check et al., 1990, 

Donnelly et al., 1998, Garrett et al., 2003, Irvine et al., 1994, Krause, 1995, 

Larsen et al., 2000, Liu et al., 1991, Shibahara et al., 2004). CASA almost 

exclusively uses the shallower counting chambers and any validated CASA 
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method will have to validate the chambers used in addition to the CASA 

method. Although barriers to routine diagnostic application such as 

overestimation due to the recognition of other particulate matter as sperm has 

been well documented (ESHRE, 1998), other systems and chambers have 

been shown to accurately count sperm (Agarwal & Sharma, 2007, Garrett et 

al., 2003, Tomlinson et al., 2010, Zinaman et al., 1996). The WHO recognise 

that CASA offers improved precision over manual methods and can now be 

applied to routine analyses such as sperm counts, provided both adequate 

quality control procedures and high measurement standards are followed  

(W.H.O., 2010e). CASA is particularly suited to high number analysis and can 

count far greater numbers than manual methods allow. In addition it 

theoretically removes bias inherent within the laboratory encountered from 

multiple operators using manual methods. As the clinical value of semen 

analysis with manual methods has been questioned  (Alvarez et al., 2003)  

process validated methods that can count higher numbers of sperm with 

precision may be shown in time to be preferable over manual methods. 
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Materials and Methods 

Population and Chamber Comparisons 

352 patients attending the Authors Laboratory for semen analysis had their 

sperm count estimated by both the WHO Improved Neubauer method 

(Tomlinson, 2012, W.H.O., 2010b) and SCA CASA (SCA V 4.0, MICROPTIC 

S.L. Viladomat, 321 - 6º 4ª  08029 Barcelona, Spain). All patient samples with 

sperm were directly compared with the CASA system. Samples were left 

standing to liquefy (maximum of one hour), and then thoroughly mixed on a 

vortex mixer to ensure a homogeneous sample. For Neubauer counts a 1:19 

dilution of sample into 1% formal saline was made using 100µl of semen with 

a positive displacement pipette. The dilution was mixed well on a vortex mixer 

and transferred with a glass capillary into an Improved Neubauer 

haemocytometer. For Leja and CASA counts, samples were well mixed on a 

vortex mixer and transferred with a glass capillary into a chamber. All 

chambers were allowed to settle, and then sperm cells were counted by 

phase contrast light microscopy. CASA counts were preformed both 

uncorrected and corrected. Uncorrected counts are achieved by simply taking 

the CASA count given by the system irrespective of counting errors. 

Corrected CASA counts were obtained by continuously repeating a one 

second video of a random single field of view from the leja 20µm slide. All the 

sperm visible on that single field are counted manually; dividing this result by 

a factor of 6 converts the result to 106/ml. All CASA counts were performed at 

100x magnification. Azoospermic samples and post vasectomy samples 

without sperm and samples with high Nucleated Cells Other then Sperm 

(NCOS) counts / debris were used for blank and recovery experiments. 
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Accuracy 

Leja 20µm chambers (20µm Leja slides, Leja; Gynotec Malden, Nieuw 

Vennep, The Netherlands) were prepared with two levels of accubead quality 

control material (Hamilton Thorne Biosciences, 100 Cummings Center, Suite 

465C, Beverly, MA 01915). 20 chambers were completely filled with a well 

mixed aliquot of accubead quality control material (10 chambers for each 

concentration) and left to stand for 5 minutes. Each chamber was analysed 

using three then five fields of analysis at 100x magnification.  

 

External Quality Control 

UK NEQAS samples used for this project are pooled semen fixed in 10% 

formalin prepared by the UK NEQAS Reproductive Science Scheme 

(Reproductive Medicine, Andrology Laboratories, Saint Mary’s Hospital, 

Manchester, United Kingdom, M13 9WL). 16 UK NEQAS samples reflecting 

one year of returns were analysed by SCA CASA and compared to the results 

of five trained staff.  

 

 

Precision 

Single field and means of three and five fields of analysis was estimated by 

analysing a minimum of 10 chambers each 10 times to generate CV% for two 

levels of accubead quality control material, immotile sperm in semen, motile 

sperm in semen and motile sperm in media. Precision was also calculated for 

varying numbers of sperm (estimated as the mean number of sperm per 

motile sperm field). Precision profiles were generated for motile sperm and 

the effects of increasing field number were also examined. 
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Linearity 

Linearity was estimated on both sperm in semen and swim sperm in media. A 

single pool of semen was made as stock solution from the samples of 10 men 

with high (>80x106/ml) sperm counts. The pooled sample was serial diluted 

with pooled cell / debris free seminal plasma. Pooled swim sperm from 10 

men was centrifuged the supernatant decanted and the pellet re-suspended in 

1ml of flushing media (Origio 1084 1076 Origio a/s Knardrupvej 2 DK-2760 

Måløv Denmark). The concentrated sample was then serial diluted with 

flushing media. Neat and diluted samples were analysed by the SCA CASA 

system using means from 5 fields on analysis.  

 

Chamber Bias, Dimensions and Segre-Silberberg effects 

Nine specific areas were identified and counted on 10 Leja 20µm chambers 

for two levels of accubead quality control material. Area 1 was counted first 

and repeated at the end to test for dehydration effects that occurred during 

the experiment. Slides had 10 single field analysis made on each area to 

examine if single field precision was different between area. A further test of 

the SS effect was performed with 16 semen samples of immotile sperm 

measured for the same 9 areas as described.  

 

Recovery Experiments 

10 separate SCA CASA count estimations were made on concentrated 

pooled semen spiked into cell free pooled seminal plasma and sperm free 

seminal plasma with a high concentration of NCOS / debris. Percentage 

recovery was calculated for each estimation.  
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Clinical Decision Tables 

Agreement between both the Improved Neubauer and the Leja 20µm manual 

method with uncorrected and corrected SCA CASA counts for three clinically 

important ranges (1-5 x 106, 6-15 x 106, and > 15 x 106) were made. The 

number of comparisons, correlation within the given range, p value and the 

percentage agreement of results within the range were calculated for each 

separate clinically significant range. 

 

ROC Analysis 

1011 intrauterine insemination (IUI) preparation results from 530 patients 

between February 2008 until May 2012 were collated and analysed. All men 

who achieved a pregnancy with their partner after IUI from that or subsequent 

samples (191 semen samples from 102 men)  were compared to all men who 

did not achieve a pregnancy with IUI (823 semen samples from 436 men). 

Separate comparisons were made using SCA CASA data from May 2012 until 

December 2012 (16 successful couples, 74 unsuccessful). 

 

Statistics 

Correlations were performed by Spearman’s and regression lines calculated 

using Deming’s regression for all analysis between manual counting 

chambers and SCA CASA. Linear regression was used for linearity 

experiments. Bland-Altman plots were constructed to test for bias. Significant 

differences between counts from 9 different areas of the Leja 20µm chamber 

were tested for by ANOVA with Dunns as a post hoc test. Significant 

differences between proximal, central and distal areas of the chamber were 
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tested by unpaired t test. The data was analysed using Prism version 4.0 

(GraphPad Version 4.01,San Diego, CA, USA, www.graphpad.com) on a 

Samsung personal computer (Samsung NC10 Samsung Electronics, 

Samsung.com). Receiver Operator Characteristic graphs and data were 

produced using IBM SPSS (http://www.01.ibm.com/software/uk) 
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Results 

Chamber Comparisons 

The sperm count results of trained staff from the Andrology Laboratory at 

Hammersmith Hospital (combined results of four operators using both 

Improved Neubauer and Leja 20µm manual counting methods) showed a 

strong correlation with SCA CASA (r2 = 0.95) without correcting for counting 

errors (see Figure 1). A strong correlation with SCA CASA was also evident 

when the two manual counting methods were separated, Neubauer (r2 = 0.94) 

and Leja (r2 = 0.92). However overestimation of low (<15x106) sperm counts 

was noted and resulted in poor correlations at those concentrations: counts 

≤5x106 Neubauer (r2=0.66) and Leja (r2=0.56), counts 5-15x106 Neubauer 

(r2=0.64) and Leja (r2=0.74).  
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Figure 1. Correlation of Manual Counting Methods with SCA CASA. Spermatozoa counts for 
352 patient’s samples were measured by Neubauer or Leja 20µm chambers and by the SCA 
CASA system.  
 

 
Overestimation was demonstrated on Bland-Altman plots as a moderate 

positive bias at low counts compared to the Improved Neubauer chamber and 

a large positive proportional bias compared to the Leja 20µm chamber. The 

positive bias was increased at counts <30x106 and reduced at counts ≥30x106 

(see Fig 2). To correct for this bias Further tests on samples with sperm 

counts < 30x106 demonstrated that capturing a one second video from SCA 

CASA and manually counting all the sperm on the computer screen correlated 

highly (r2 = 0.99) with the manual Leja 20µm method. Using this method of 

performing counts from the CASA screen for results < 30x106 combined with 
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uncorrected CASA counts for results ≥ 30x106 resulted in excellent overall 

correlation against the Improved Neubauer method (r2 = 0.98). There was no 

bias observed using the one-second videos from the SCA CASA screen (see 

Figure 2). 
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Figure 2. Bland-Altman of SCA CASA bias. (A) Difference (SCA count – Improved Neubauer 
Count) vs average count. CASA results are not corrected for observed counting errors. (B) 
Difference (SCA count – Leja Count) vs. average count. CASA results are not corrected for 
observed counting errors. (C) Difference (SCA screen count – Leja Manual Count) vs. 
average count. CASA results are corrected for observed counting errors. 
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Precision 

Single field precision was excellent with mean CV% < 1% on latex beads and 

a mean CV% of 2.4% on immotile sperm. Unsurprisingly analysis of motile 

sperm resulted in higher single field CV% (mean of 3.6% for semen, mean of 

4.5% for swim sperm). Both motile and immotile sperm in semen and swim 

sperm displayed a heteroscedastic precision profile with optimal precision at 

approximately 200 to 600 sperm per field. Multiple field precision was 

predictably higher than single field precision, though optimal multiple field 

precision was also approximately 200 to 600 sperm per field (see Figure 3).  

Precision decreased markedly below 100 sperm per field. Precision improves 

for each increase in field number included in the final analysis, though each 

increase yields a smaller improvement (see Table I).  
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Figure 3. Motile Sperm Precision Profile. Three or five random fields were analysed for each 
Leja 20µm chamber by SCA CASA. Mean CV% are graphed against the mean number of 
sperm per field for the chamber.  
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Table I Effects of Field Number on Precision 

 
Category 

Field Number 
1 3 5 

Accubeads High 14.0 (13.4-14.5) 6.8 (5.9-7.7) 4.0 (3.5-4.5) 

Accubeads Low 17.9 (15.8-20.0) 6.9 (3.3-10.4) 6.3 (2.9-9.7) 

Immotile Sperm 18.4 (14.0-23.0) 7.6 (6.1-9.2) 5.7 (4.4-7.0) 

Motile Sperm in Semen 17.2 (7.9-26.5) 7.2 (0.3-14.2) 3.0 (0.5-5.6) 

Mptile Sperm in Media 15.7 (8.5-22.9) 8.2 (0.5-16.0) 6.3 (1.1-11.4) 

 
Table I Effects of Field Number on Precision. 10 separate fields were analysed per chamber 
by SCA CASA to generate a multiple field CV%. The CV% was calculated for repeat 
measures of one, three and five fields.  

 

 
Linearity 
 

Pooled semen from 10 men with high (>80x106/ml) sperm counts serially 

diluted with pooled cell free seminal plasma and analysed by the SCA CASA 

system demonstrated excellent linearity (r2=0.99). Pooled swim sperm 

centrifuged to pellet and re-suspended in flushing media then serial diluted 

with flushing media also demonstrated excellent linearity (r2=0.95).  

 

External Quality Control 
 
SCA CASA achieved the second highest correlation (r2 =0.97) against one 

year of UKNEQAS samples when compared to five trained staff (r2 =0.98, 

0.93, 0.92, 0.92 and 0.72) from a laboratory that has never been a poor 

performer. While result bias compared to NEQAS consensus values for the 

Improved Neubauer was observed in two of the trained staff on Bland-Altman 

plots, no bias was detected on SCA CASA results. 

 

 

 



 17 

Uneven Flow Effects 

In a series of experiments testing the Segre-Silberberg (SS) effect the same 9 

areas were counted on 10 Leja  20µm chambers for both levels of accubead 

quality control material. Distal areas had significantly (p<0.001) higher latex 

bead counts than the central and proximal areas. This effect became 

insignificant once three fields of analysis including one proximal, central and 

distal field were included for each count. Further tests of the SS effect was 

performed on immotile sperm in semen measured for the same 9 slide areas 

demonstrated two significantly different counts using ANOVA, which again 

became insignificant once three fields of analysis were used to calculate a 

mean count. 

 

Recovery Experiments 

SCA CASA count estimations from sperm spiked into cell free pooled seminal 

plasma and cell free seminal plasma with a high concentration of NCOS and 

debris demonstrated a large increase in sperm counts in samples with a high 

concentration of NCOS and debris (mean recovery cell free seminal plasma 

98%, mean recovery NCOS and debris 176%). 

 

The observed positive bias with uncorrected CASA misidentification of NCOS 

and debris as sperm, has the potential to result in clinically significant 

misclassification. Using the SCA CASA with no correction results in 

overestimations of count at concentrations below 15x106. Approximately 80% 

of Neubauer and 33% of Leja 20µm count results between 1 and 5x106 were 

reclassified by the CASA system as being significantly higher. The SCA 

CASA system cannot be used without the addition of a corrective step at low 
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concentrations. Uncorrected SCA CASA exhibited much improved 

performance at concentrations above 15x106. In contrast to the uncorrected 

SCA CASA counts, the corrected SCA CASA counts at concentrations below 

15x106 displayed far greater agreement with the manual Leja 20µm method. 

Using the manual CASA corrected count to calculate sperm concentrations ≤ 

30x106 and the automatic (uncorrected) CASA count for sperm concentrations 

> 30x106 results in high correlations (r2 = 0.98, p = <0.0001) with the manual 

counting methods. 

 

A comparison between using traditional neubauer counts and CASA counts 

demonstrated that count data generated by CASA offered superior prediction 

using ROC analysis. Traditional Neubauer counts for sperm count gave an 

area under the curve of 0.50 (95% CI 0.44-0.56), whole ejaculate counts 0.52 

(95% CI 0.46-0.58) and inseminate counts 0.56 (95% CI 0.50-0.62) (see 

figure 4). In comparison CASA sperm counts gave an area under the curve of 

0.69 (95% CI 0.57-0.81), whole ejaculate counts 0.68 (95% CI 0.56-0.81) and 

inseminate counts 0.68 (95% CI 0.54-0.83) (see figure 5).  
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Figure 4. ROC analysis of sperm count, ejaculate count and inseminate count parameters by 
cycle. 86 inseminates from men who achieved a pregnancy with their partner with IUI from 
that cycle are compared with 735 samples from men who failed to conceive with that cycle. All 
count data was generated from Neubauer.  
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Figure 5. ROC analysis of sperm count, ejaculate count and inseminate count parameters by 
cycle. 16 inseminates from men who achieved a pregnancy with their partner with IUI from 
that cycle are compared with 174 samples from men who failed to conceive with that cycle. All 
count data was generated from SCA CASA. 
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Discussion 

This study provided the process validation required to adopt the SCA CASA 

system as the main method used to count sperm in a busy diagnostic 

andrology laboratory. The SCA CASA system has to the author’s knowledge 

not previously been validated for use to count human sperm. SCA CASA was 

compared against the Improved Neubauer chamber and performed well with 

the exception of low counts. A further method of counting low sperm numbers 

directly from the CASA screen was developed which performed well. The 

technology was generally well received by laboratory staff though some initial 

mistrust was evident. After process validation was completed, SCA CASA has 

provided the laboratory with a rapid precise sperm counting method that 

counts far greater numbers than traditional manual methods allow. 

 

There are pros and cons of using Leja style 20µm chambers with CASA 

compared to manual haemocytometers when the WHO recommendations 

(W.H.O, 2010, W.H.O., 2010b, W.H.O., 2010d) are considered. The SCA 

CASA system is not advanced enough to count only whole sperm, thus all 

cells of similar size to sperm, including sperm without tails are counted. 

However several haemocytometer specific errors are also avoided. The 

rigorous sperm head and tail position rules for counting sperm in relation to 

haemocytometer chamber grid lines are unnecessary. The problems 

associated with coverslips such as correct thickness, poor fit, and whether or 

not use clamps are removed. Likewise dilution errors and positive 

displacement pipette errors are completely eliminated. Other sources of 

analytical error occuring from vortexting, filling chambers, and time frames for 

analysis are also at least in theory reduced. CASA certainly makes data 
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collection more accessible than manual counting methods, with the 

forthcoming necessity of uncertainty measurements for all UK diagnostic 

tests, this feature of CASA may be of particular interest to regulated 

diagnostic laboratories. 

 

Manual semen analysis is a time consuming process that needs to performed 

to a high standard with trained individuals in laboratories with robust quality 

assurance in order to produce clinically relevant results (Björndahl et al., 

2004, Pacey, 2006a, Tomlinson et al., 1999, Tomlinson et al., 2010). 

However, the current cost pressures on laboratories are counterproductive to 

environments that produce such quality and unfortunately this is unlikely to 

change. Validated CASA systems have the potential to remove some sources 

of analytical error and dramatically increase the number of sperm analysed 

and thus should improve precision. CASA is more rapid than traditional 

semen analysis and as all technicians will be using the same automated 

system operator bias should be less of a problem. The training is less intense 

than manual methods and with automation individuals are likely less inclined 

or able to drift from the method. With time, increases in precision should yield 

more clinically relevant results and may remove some of the concerns about 

the clinical use of semen analysis. 

 

Previous work has demonstrated advanced CASA systems can accurately 

count sperm (Garrett et al., 2003, Zinaman et al., 1996). This current work 

agrees with that evidence: SCA CASA was very accurate with latex bead 

concentrations and correlated against one year of UKNEQAS at least as well 

as trained andrologists without observable bias. While one year of NEQAS 
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data is only 16 samples and further data is required, from the initial 

assessment adopting SCA CASA would appear to improve NEQAS returns 

for our laboratory. 

 

Uncorrected SCA CASA results correlated highly with both Improved 

Neubauer and Leja 20µm chambers, however low concentrations (<30x106) 

correlations were poor due to overestimation of sperm. Overestimations at 

this range have clinical implications and thus uncorrected SCA CASA counts 

cannot be used to replace current counting methods for low sperm counts. 

However, capturing a one second video and manually counting sperm from 

the SCA CASA screen eliminates this error and results in excellent correlation 

at low concentration. 

 

Poor correlations at low sperm concentrations were observed to be caused by 

erroneous counting of random small NCOS, cell debris and tailless sperm 

heads. This overestimation with CASA due to misclassification of particulate 

debris has been previously recognised (ESHRE, 1998, Tomlinson et al., 

2010) and appears to be a common CASA problem. The positive bias was 

increased at results <30x106 and reduced at ≥30x106. The error still occurs at 

higher concentrations but because of a proportional effect it appears reduced 

in relation to the count. There was no bias observed using the one second 

videos from the SCA CASA screen. Using this combined approach of 

reporting uncorrected counts ≥30x106 and counting from the SCA CASA 

screen for results <30x106, bias appeared to be minimal at the critical cut off 

values for clinical reporting. 
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Precision of SCA CASA was generally excellent with optimal precision at 

approximately 200-600 sperm per field. This was true for both single and 

multiple field precision tests. Large increases in imprecision were observed at 

descending concentrations below 100 sperm per field, though it was 

demonstrated that mean results from three fields of analysis give acceptable 

precision for all categories tested. While increasing the field number beyond 

three fields does decrease imprecision the gain is not large and because of 

the corresponding time increase may not be warranted for routine diagnostic 

work. 

 

In addition to the count overestimation errors, several other specific types of 

error were observed from the SCA CASA system when used with the Leja 

20µm chambers. Infrequent counting errors occurred when SCA CASA 

analysed phantom motile sperm; this was always graded as WHO class b 

motility and invariably occurs as multiple phantom tracks. This error appears 

to be the result of poor focus / contrast or dirty lenses / chamber. An 

additional infrequent error related to poor focus / contrast was the counting of 

immotile sperm twice. Both of these gross errors are easily identified and 

removed by re-achieving Kholler illumination / Phase contrast and cleaning 

and optimising the microscope. Additionally sperm were occasionally not 

detected, however this was infrequent and while the CASA operator does 

have the option of adding the sperm back in manually, at 100x magnification 

each sperm added only increases the count by 0.2x106 for that particular field. 

Unless many sperm have been missed the error may be considered too small 

to warrant the time to correct. While the overestimation due to miscounting 
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has the potential to be a large and clinically relevant error, trained technicians 

should have little difficulty recognising when the error has occurred and either 

correcting the result or counting that particular sample with a different method. 

Another source of error previously described for 20µm chambers which 

relates to uneven flow of semen into the chamber and is known as the Segre-

Silberberg (SS) effect (Douglas-Hamilton et al., 2005a, Douglas-Hamilton et 

al., 2005b). This current work found that by including one 100x magnification 

field from each area (distal, central and proximal) in the overall count the SS 

effect was not statistically significant. However the authors believe significant 

errors from the SS effect are still a possibility using this technology and should 

not be discounted. The other errors occur infrequently and are easily identified 

and corrected. Staff using SCA CASA will have to be specifically trained to 

recognise significant errors and to correct them. 

 

The use of the method of performing manual Leja 20µm chamber counts from 

the CASA screen for results <30x106 removed the majority of the 

overestimation bias as counts >15x106 were less affected. However even 

occasional counts >30x106 were significantly affected due to other cells and 

debris. It cannot be understated that significant error due to misidentification is 

possible at all concentrations using this technology. A recovery experiment 

designed to highlight this misidentification error demonstrated a maximum 

count increase of 76%. However the issue is somewhat alleviated by the well 

described negative bias between 20µm chambers using motile sperm and the 

100µm Improved Neubauer chamber for fixed sperm. Proportional 

overestimation by SCA CASA on Leja 20µm counts appears to produce a 

result closer to that achieved with Improved Neubauer than the Leja 20µm. 
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While some overestimation does occur on all samples, the overestimation 

appears to be proportional to the count and results in a final count that 

correlates well against the Improved Nauebauer.  

 

On the basis of this validation data, the author’s laboratory adopted the SCA 

CASA system in May 2012 as the main system for counting sperm. It has 

performed well and is used for the vast majority of samples. However high 

viscosity samples and samples with small NCOS or debris occasionally still 

require manual counting. Following up pregnancy success with ROC analysis 

has demonstrated that the predictive potential with the new counting system 

has exceeded the manual methods. However it should be noted that this is 

not a like for like comparison because the CASA technique had been adopted 

as the main counting method. Further data is required but early results are 

indeed promising. 

 

SCA CASA count technology is not a stand alone “black box” but rather a tool 

for trained andrology technicians that allow rapid, high number sperm 

counting. Errors will occur and individuals using the system will need specific 

training on how to identify and correct these errors. Providing errors are 

corrected SCA CASA will produce rapid, accurate, linear, precise results with 

less analytical variance than manual methods that correlate well against the 

Improved Neubauer chamber. The SCA CASA counts in comparison with 

manual counts on IUI data with ROC analysis suggests that the increased 

analytical precision of CASA may herald better predictive outcomes in time. 

What is required is more data from process validated CASA systems 

correlating CASA results with reproductive outcomes.  
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