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ABSTRACT:

Traffic monitoring plays an important role in transportation management. In addition, airborne acquisition enables a flexible and real-

time mapping for special traffic situations e.g. mass events and disasters. Also the automatic extraction of vehicles from aerial imagery

is a common application. However, many approaches focus on the target object only. As an extension to previously developed car

detection techniques, a validation scheme is presented. The focus is on exploiting the background of the vehicle candidates as well

as their color properties in the HSV color space. Therefore, texture of the vehicle background is described by color co-occurrence

histograms. From all resulting histograms a likelihood function is calculated giving a quantity value to indicate whether the vehicle

candidate is correctly classified. Only a few robust parameters have to be determined. Finally, the strategy is tested with a dataset of

dense urban areas from the inner city of Munich, Germany. First results show that certain regions which are often responsible for false

positive detections, such as vegetation or road markings, can be excluded successfully.

1 INTRODUCTION

Within the last years smart routing of vehicles has become a

highly acclaimed topic (Schofield, 2009). The objective is not

only to increase efficiency and sustainability but also to achieve

a maximum of personal comfort. The current development was

made possible due to further developments in traffic acquisition

techniques. A part of routing is the determination of a vehicle’s

position as well as the knowledge of whether a road is clear or

not. This question can have even more impact when we talk about

routing of rescue crews or emergency vehicles.

A common method to obtain the position of a vehicle is utilizing a

global navigation satellite system (GNSS). Often it is combined

with a system that collects data of all traffic participants regis-

tered in a certain program. Exemplary programs are operated by

Google and its Android OS or the dutch navigation device man-

ufacturer TomTom. However, this technique works only for cars

which are in use. Once the driver has left the car and the engine

is turned of no further signal is transmitted and the position of the

car is uncertain. A statement whether a road is trafficable cannot

be made without new cars frequently passing this section.

Of course, information of stationary video cameras can be used

to address that problem (Zhou et al., 2007). However, station-

ary video cameras provide local information, usually from bigger

roads or traffic system relevant spots only. In contrast, remote

sensing enables gathering data within a wide area (Hinz et al.,

2006). One choice could be satellite images (Leitloff et al., 2010)

but they are not flexible enough due to fixed revisiting times. A

better choice for real-time applications is the use of aerial images.

∗Corresponding author.

Several methods have been developed where moving cars are rec-

ognized by airborne optical sensors (Cao et al., 2012, Cheng et

al., 2012, Kirchhof and Stilla, 2006). However, in the case of

the above described problem they are not helpful. Instead, ap-

proaches which focus on standing or parking vehicles are supe-

rior in that case. Research works within that field can be grouped

according to their utilized features.

Many techniques of image recognition are based on gradients.

These can be subdivided into 3d car models based on signifi-

cant edges (Hinz, 2004), the surrounding contour (Kozempel and

Reulke, 2009) or histograms of oriented gradients in combination

with other high-level features (Kembhavi et al., 2011). A further

class includes approaches utilizing algorithms which are region-

based and try to see a car as an object or a blob (Holt et al., 2009,

Lenhart et al., 2008).

Most methods have one thing in common. The main focus is on

the car itself, and the background of the vehicles is only seldom

exploited. Inspired by publications that show how important such

information can be (Heitz and Koller, 2008, Divvala et al., 2009),

the target of our research is to better incorporate the background

in detection strategies for standing or parking vehicles.

In this paper a method is presented to validate vehicle detections

based on their background and color information. The aim is to

classify the foreground in a patch as one of the categories (car,

street, vegetation). Patches are obtained either by a sliding win-

dow technique or by some other pre-classifications. Such patches

of vehicle candidates and their surroundings are transformed to

the HSV color space. The hypothetical background is separated

from the foreground by applying a coarse car mask to the patches.

Its size is based on an average car size. The orientation of the
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Figure 1: Workflow of the determination of areas where vehicles

likely occur. The scheme is for one patch of the image only, all

other patches are examined using a sliding window approach.

mask is derived from the known driving directions of relevant

road segments which can be obtained from road databases. Then,

color co-occurrence histograms of the remaining background are

calculated for each color channel. In a final step, the mean values

of the histograms are used to estimate whether requirements of

a typical car are met or not. The evaluation is done with a beta

function that is determined by a maximum likelihood algorithm

and training samples.

2 METHOD

An overview of the proposed method for vehicle candidate vali-

dation is shown in Fig 1.

2.1 Separation of foreground and background

At first foreground and background of each car candidate are ex-

amined separately. However, the technique is identical for fore-

ground and background areas. At the beginning all candidates are

represented by images of 45× 45 pixels in the RGB color space.

In order to apply a mask the orientation of the vehicles has to be

known. Since the presented approach is planned to act as valida-

tion method, the orientation can be obtained from the preceding

detection algorithm. Alternatively, road databases (e.g. Open-

StreetMap) can be used to determine the potential driving direc-

tion of the cars. Additionally, it is assumed that a car is in the

center of the examined image patch.

The principle of the fore- and background mask is depicted in

Fig. 2. The size of the foreground mask is determined by the av-

erage size of a car. It is derived from the dimensions of 30 training

cars. However, pixels close to the contour of the cars have been

ignored. The reason is that often artifacts occur at these positions

due to shadow. The major objective of the presented method is

to get statistical information about color, gray value, lightness of

the car and thus artifacts could adulterate the statistics.

Figure 2: Foreground (potential car candidate) and background

(potential street) can be set as a fixed area since the orientation of

the cars is assumed to be known. The foreground is in the center

of the patch while the background is restricted to the areas to the

left and right of the car.

Figure 3: H channel as circle and S-V plane with sample color

red H = 0.

The background area is represented by the remaining rectangular

areas to the left and the right side of the cars. The area in front

and behind a car is not used in the further process because often

cars are parked in a row and other cars which disturb the process

can be found at these positions.

2.2 Transformation to the HSV Color Space

After the separation a transformation into the HSV color space is

performed. From that moment on the color information and the

intensity can be accessed independently.

A special property of the HSV color space is the necessity of

only one channel to define the color value. The H (hue) channel

is not expressed as a straight line but a circle. Additionally, S

(saturation) and V (value) channels are part of the HSV color

space. How these channels are incorporated can be seen in Fig. 3.

The values of the S and the V channel are ranging between zero

and a certain maximum value. While the Saturation expresses

how much color belongs to a pixel (0 = no color, max = full

color), the Value expresses the brightness of the pixel.

The transformation from RGB to HSV color space can be found

in (Gonzales and Woods, 1996). After determination of the MAX

and MIN values using Eq. 1 the dominant color has to be deter-

mined using Eq. 2.

MAX := max (R, G, B) MIN := min (R, G, B) (1)

H :=
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d = 1 d = 2 d = 3

Figure 4: Example of a circular symmetric structure of neighbor-

hood. This technique is used here.

The saturation S is expressed as the rescaled difference of MAX

and MIN (Eq. 3), while V results directly from MAX (Eq. 4).

S :=

{

0, |MAX = 0 ⇔ R = G = B = 0
MAX-MIN

MAX
else

(3)

V := MAX (4)

2.3 Calculation of the color co-occurrence histograms

Subsequently, color co-occurrence histograms (CCH) are calcu-

lated. Co-occurrence histograms are based on the relation of

neighboring pixels and give a statement about the properties of

the texture. Two ways of calculating CCHs are presented by (Liu

et al., 2012). The procedure where only one direct pixel neigh-

bor is considered has the disadvantage that rotation of the image

can lead to errors. If there is a slightly rotated image the new

CCH will partly differ from its former version. This problem can

be avoided by using the distances between color values for the

calculation instead of the orientations. There are two known al-

ternative ways in the literature (Liu et al., 2012).

Both variants have in common that two pixels with coordinates

(x1, y1) and (x2, y2) in a certain distance d are compared. The

first variant uses an accumulation of neighboring pixels which are

in a square around the origin pixel. The edge length of the square

is 2d + 1. The second variant, utilized for this approach, com-

pares all pixels on a circle having the same Euclidean distance.

A graphical explanation can be seen in Fig. 4. The benefit is that

equal CCHs are generated also for rotated images. However, as

coordinates in an image have integer values, we use a discretized

distance:

d = round
(

√

((x1 − x2)2 + (y1 − y2)2)
)

(5)

where (x1, y1), (x2, y2) represent coordinate pairs of two pixels

which should be compared.

In the case of original CCHs, only pairs of pixels with equal in-

tensity I are used. Thus, the calculation of the frequencies h in a

CCH can be mathematical written as (Eq. 6).

h(I) =
∑

x

∑

y

{

1 | I(x1, y1) = I(x2, y2) ∩ d = 1

0 else
(6)

The distance d = 1 has been chosen because experiments have

not shown significant differences between d = [1, 3, 5, 10]. On

the other hand with d = 1 the fewest comparisons need to be done

and the calculation time can be reduced. The calculation of the

CCHs is done separately for each HSV channel for foreground

and for background. It results in six histograms per candidate.

category quantity

cars 557

street 1995

vegetation 12834

Table 1: Number of training candidates for the evaluation of the

mean value distribution.

2.4 Likelihood decision

A closer empirical examination of the histograms shows that of-

ten an accumulation around a certain value occurs. Hence, the

implication is that the mean of the histogram is able to provide

the core information. To this end, the mean of a CCH is calcu-

lated as shown in Eq. 7.

m =
1

∑

I
h(I)

∑

I

h(I) · I (7)

where h(I) is the I-th value in the CCH.

A training set consisting of samples from all used classes is nec-

essary for the following process. The reference data is essential

for a correct classification of the candidates and the possession of

an appropriate large dataset of reference data is recommended, in

order to be able to make a significant statement. Furthermore, the

orientation of the candidates is known and thus the mask could

be optimally rotated. The utilized training samples resulted from

a large set of forest areas and free highways (see Tab. 1).

Calculating the mean values of these training candidates leads

to characteristic histograms for all three categories. Finally, we

obtain three CCHs from every candidate and out of it three means

(mH, mS, mV). Subsequently, every value is compared with the

values of the corresponding histogram of the three classes which

we calculated from the training data. For example, the process is

as follows. mH is compared to the values of the hue-histogram

of cars, roads and vegetation. We take the three corresponding

(i. e. mH → [hcar(mH), hstr(mH), hveg(mH)]) values hcat(m)
and compare them with each other. The nine quantities (qH,car,

qH,str, . . . , qV,veg) stating to which distribution the mean value of a

candidate belongs to are calculated using Eq. 8.

qchan,cat(mchan) =
hchan,cat(mchan)

∑

cat
hchan,cat(mchan)

(8)

In the next step we multiply the quantities of the same category

to get a combined value (Eq. 9).

kcat =
∏

chan

qchan,cat(mchan) (9)

This gives us three values, named kcar, kstr and kveg, describing

the frequencies for the examined area of being car, road or vege-

tation. The new values kcat are then assumed to be directly corre-

lated to the likelihood of being such a candidate.

Based on these six (2 × 3) kcat values of the foreground and the

background, a decision can be made whether a candidate is a car

or not. We can compare these values to each other and find sce-

narios which mostly show cars on streets, pure streets or others.

The following three rules describe conditions when the candidate

is supposed to belong to the no car class:
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• Road in foreground:

kstr(foreground) > kveg(foreground) ∧
kstr(foreground) > kcar(foreground)

• Vegetation in background:

kveg(background) > kstr(background) ∧
kveg(background) > kcar(background)

• A too small difference between foreground and background:
∑

chan
|mchan(foreground) −

mchan(background)| ≤ threshold

The threshold can be specified dependent on different light con-

ditions and sensor properties. In our experiments, the threshold

ranged from 10 to 15. When the difference was too low, fore-

ground and background were the same category.

As an extension to this method, beta functions are calculated from

the histograms of the training data using the maximum likelihood

method. The candidates are than compared to these beta func-

tions. The benefit is to obtain a continuous distribution. The

experimental results in Chapter 4 is based on the distribution of

the beta function.

3 CAMERA SYSTEM

The used aerial test data are acquired by the 3K+ camera system,

which is composed of three off-the-shelf professional SLR digital

cameras (Canon EOS 1Ds Mark III with Zeiss lenses). The nom-

inal focal length for the 3K+ system is 50 mm. These cameras are

mounted on a platform which is specifically constructed for this

purpose. A picture of the cameras and the platform is shown in

Fig. 5. Furthermore, a calibration was done to enable the georef-

erencing process. The system is designed to deliver images with

a maximum recording frequency of 3 Hz. The Mark III camera

delivers 21.0 MPix. Depending on the flight altitude a spatial

resolution up to 13 centimeters (at 1000m altitude and nadir) is

provided. For further information about the 3K+ camera system

please refer to (Kurz et al., 2012).

Figure 5: The 3K+ camera system. A low-cost camera system

with a higher recording frequency compared to professional pho-

tographic camera systems.

4 EXPERIMENTAL RESULTS

The evaluation of the test candidates from Tab. 1 resulted in cha-

racteristic histograms for vehicle, road and vegetation. It is easy

to see in Fig. 6 that many cars have a dominant blue color (Means

at ≈ 60). The color of roads shows a wider spread of the distri-

bution (Fig. 7). Most of the mean values have been in the range

of 60 to 90. In contrast, vegetation mainly shows color values

in the range of 25 to 55 (Fig. 8). Additionally, also clear differ-

ences in the two other channels Value and Saturation are present.

Figure 6: Histograms of the CCH mean values from 557 cars in

the HSV color space. From top to bottom: H, S, V.

Class Level of color space a b

Car

H 7.74 4.45

S 1.39 9.72

V 2.96 0.95

Road

H 4.26 2.15

S 2.31 39.6

V 8.47 5.13

Vegetation

H 8.59 12.43

S 4.82 11.02

V 3.37 9.68

Table 2: a and b of beta distribution for histograms of car, road

and vegetation.

Moreover, for each of the nine histograms a beta function is cal-

culated with the Maximum-Likelihood-method. The usage of the

beta function approach is preferred over the histograms because

some frequencies in the reference histograms are zero and no re-

sult could be calculated at those positions.

The calculated beta functions are presented in Tab. 2. Many his-

tograms show more than one maximum and have to be taken with

caution therefore. Nevertheless, it is shown that these values also

allow reasonable decisions. The following exemplary result is

based on the continuous distribution of the beta function.

Finally, the car validation strategy is tested with images from the

previously described camera system. A typical car fits in a square

area of 45 × 45 due to an image resolution of 13 cm. Conse-

quently, the area of the foreground mask is 27 × 11 pixels in the

center of the patch. The final result, illustrated in Fig. 9 (b), shows

the image from Fig. 9 (a) classified as car, as road or as vegetation

which is coded in red, in blue or in green color, respectively. The

colors are mixed in areas where the decision was not clear. For

instance, the yellow areas are a mixture of vegetation and road

(green and blue). Target objects are vertically oriented cars.
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Figure 7: Histograms of the CCH mean values from 1995 road

patches in the HSV color space. From top to bottom: H, S, V.

Figure 8: Histograms of the CCH mean values from 12834 vege-

tation patches in the HSV color space. From top to bottom: H, S,

V.

(a) (b)

Figure 9: When the algorithm is applied to Fig. 9 (a) we receive

a result as it is shown in Fig. 9 (b). The likelihoods kcand have

been mapped to the RGB color space with red, green, blue for

kcar, kVegetation, kRoad, respectively. Other colors are a mixture of

these base colors and state that the decision was not clear. Aimed

objects were cars oriented in vertical direction.
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5 DISCUSSION

Generally, the objective was to find a correlation between certain

color features of car, road, vegetation and features only based on

intensity of the gray values. It could be observed that bright green

regions are often classified as cars but dark green areas are often

classified as vegetation. Moreover, The CCHs of buildings have

not been calculated which could be a reason why they are often

associated with other categories (Fig. 9). However, the presented

method is only thought as a coarse segmentation but it is not suit-

able for precise detection of cars.

Strengths and weaknesses of the presented strategy are shown in

Fig. 9. Large areas of vegetation and roads are almost correctly

classified. However, shadows are very often associated as areas

of vegetation. A possible reason is the lack of training data from

those areas. Also bike paths are sometimes classified as cars (see

crossing in the upper part of the image) due to the rectangular

contour and the width which is similar to the width of a car. The

same problem occurs in the center of the image where a sidewalk

does have a different length, but its width to one of the cars is

very similar. Additionally, colors on the left and the right side of

this sidewalk are different which could be an indicator for a car.

6 CONCLUSIONS AND FUTURE WORK

The suggested method is an approach to better investigate color

in regard to car detection from aerial imagery which is a rela-

tively seldom illuminated subfield. However, the algorithm is in

an early stage and many extensions are possible. The primary

reason to start with this approach was to separately observe color

values in-depth instead of just passing all car features combined

to a machine learning algorithm.

Furthermore, many problems are still present and further ques-

tions arose during these investigations. For instance, how sensi-

tive are color values under changing illumination like on cloudy

or sunny days? Or, how stable are color values as feature when

different seasons have to be expected and snow is everywhere

around in winter time or trees are without green leafs?

In this sense the method showed its suitability, especially big

roads and large vegetation areas could be classified correctly. How-

ever, detailed examination of candidates is only possible if an al-

ready pre-classified group of candidates is provided. Then it can

be used to extract false positives.
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