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Abstract

In this paper, the feasibility of structural health monitoring based on natural frequencies is in-
vestigated for a steel bowstring railway bridge in Leuven, Belgium. The data used in the study
are obtained from an ongoing long-term monitoring campaign on the railway bridge and include
acceleration measurements on the bridge deck and the arches. During the monitoring period, the
railway bridge has been retrofitted, resulting in data for two distinct states of the structure. Par-
ticular attention is paid to removing the effects of environmental conditions, such as temperature,
which affect the modal characteristics of the structure and therefore may lead to false-positive or
false-negative damage detection. A comparison is made between standard linear regression and
robust principal component analysis (PCA), two black-box modeling techniques which are adopted
to remove natural frequency variations resulting from changes in the environmental conditions. In
order to assess the success rate of these techniques, a receiver operating characteristic (ROC) curve
analysis is performed, considering the actual retrofit as well as a number of more subtle structural
changes, which are modeled using a detailed finite element model of the structure. The state tran-
sition can be observed for the actual retrofit as well as for smaller structural modifications that
result in relatively small natural frequency shifts.

Keywords: structural health monitoring, system identification, damage detection, environmental
variability, railway bridge KW51

1. Introduction

Structural health monitoring (SHM) relies on the observation that structural changes, for exam-
ple due to damage, affect the behavior of a structure, i.e. its deflection, vibrations, etc. Monitoring
the response of a structure during its lifetime has therefore been proposed as a tool to detect
damage at the earliest possible stage. According to Rytter [1], SHM is composed of the following
four identification stages:
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1. Detection – Is there any damage present in the structure?

2. Localization – What is the location of the damage?

3. Assessment – What is the type and severity of the damage?

4. Prediction – What is the remaining service life of the structure?

Damage detection (stage 1) very often makes use of dynamic response data, for example accel-
erations, to extract damage-sensitive features, for example natural frequencies. Those features
are used to detect novelties that could possibly be attributed to damage. Once damage has been
detected, the data are adopted to localize and assess the damage (stages 2 and 3). This step often
involves the use of a model, for example when model updating is applied [2]. In the last and most
challenging stage, damage progression models are adopted to predict the remaining lifetime of the
structure. This paper focuses on damage detection (stage 1).

Many damage-sensitive features proposed in the literature, including natural frequencies, are
influenced by environmental and operational conditions. Environmental conditions include for
example temperature, relative humidity, and wind speed. Operational conditions involve altering
of loading conditions, for example the traffic crossing a bridge, or control operations for the case of
a wind turbine. The changes in damage-sensitive features due to variations in environmental and
operational conditions are often of the same order of magnitude as those resulting from damage,
which may lead to false-positive or false-negative damage detection. It is the differentiation between
damage and the conditions determined by the environment and operation of the structure which
poses a big challenge for damage detection [3, 4].

The use of physical models to predict and remove the influence of environmental and operational
conditions on the dynamic response of the structure is in most cases very difficult. This is mainly
due to the complex and often non-linear relation between the environmental and operational pa-
rameters and the mechanical properties of the building materials and the support conditions [5, 6].
As such, black-box models are commonly used in damage detection as a valuable alternative for
physical models. Black-box models are purely data-driven and are obtained by means of system
identification, also referred to as machine learning. The structure of the model and its parameters
are not based on physical laws. Two types of data-driven models exist, which are referred to as
input-output models and output-only models. Inputs consist of the environmental and operational
variables that drive the so-called natural variation in the structural behavior (temperature, rela-
tive humidity, . . . ). Outputs consist of the damage-sensitive features (e.g. natural frequencies). In
this contribution, it is assumed that only data obtained in the original (undamaged) state of the
structure can be used in the training of the model. This situation is in particular relevant for civil
engineering structures which are mostly characterized by a unique design and a large variety of
possible damage scenarios.

The simplest approach to determine an input-output model that allows removing the environ-
mental and operational conditions is linear regression [3, 7]. Alternative approaches that do not
assume a linear relation between the inputs and the outputs but allow identifying a global non-linear
input-output mapping are based on neural networks [8] and support vector machines [4, 9]. Input-
output modeling requires that all relevant environmental and operational variables are measured.
This is rarely the case. As indicated by Rainieri et al. in [6], the identification of an input-output
model becomes very challenging when multiple environmental and operational variables act simul-
taneously and are potentially correlated. This is why many approaches in the literature aim at
compensating the damage-sensitive features by means of so-called output-only modeling, where
measurements of the environmental and operational variables are not required. The most popular
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approach for output-only modeling relies on linear principal component analysis (PCA) [10, 11],
where a linear relationship between the measured features is identified. When the variation of the
features does no longer match the identified relationship, this may point towards damage. As an
alternative to PCA, Rainieri et al. have recently proposed the use of second-order blind identifica-
tion (SOBI) [6]. This technique has the advantage over linear PCA that it can provide fundamental
insight in the causes of the natural variability. The relationship between damage-sensitive features
is often non-linear [4], which poses another challenge for damage detection. In this case, linear
PCA and SOBI can no longer be applied. A very promising approach that allows identifying a
non-linear output-only model is kernel PCA, that was proposed for application in SHM by Reyn-
ders et al. in [4]. Kernel PCA consists of a computationally efficient non-linear version of linear
PCA, for which the structure of the non-linear model does not need to be explicitly defined. A
recent application of kernel PCA can be found in [12].

The previously discussed and commonly adopted linear PCA technique is characterized by a
large sensitivity to outliers in the training data [24]. Robust PCA, a recently developed technique
which is widely adopted in the field of image processing, serves as an extension of linear PCA and
aims at removing outliers in the training data prior to the actual determination of the principal
components describing the variation in the data [23, 24]. The use of robust PCA was introduced
into the field of structural health monitoring by Gharibnezhad et al. in [25], where differente types
of robust PCA algorithms are compared and discussed. This paper explores one specific type of
robust PCA, i.e. robust PCA via sparse plus low-rank (S+LR) [23].

The presence of actual damage in a structure that is being monitored is rare. This complicates
the validation of damage detection approaches. A common approach to investigate the detection
capabilities of SHM methods in those cases where no actual damage is present is to generate
frequency shifts that correspond to realistic damage scenarios, based on a numerical model of
the structure [13, 12]. Many of the aforementioned black-box modeling approaches for damage
detection have also been applied to experimental data from the Z24 benchmark problem, where
long-term monitoring was performed on a highway bridge prior to progressive damage tests [4, 3,
14]. Several approaches, including kernel PCA, succeed in identifying the damage present in this
case. The damage induced in some of the progressive damage tests is rather large, however. The
detection of more subtle structural changes (in an early stage) remains a challenge. In addition, it
is desirable to develop validation cases which consider different types of structures and other types
of damage.

This paper investigates the use of natural frequencies to monitor the health of steel bowstring
railway bridge KW51 in Leuven, Belgium, shown in Fig. 1. The data used in this study are
obtained from an ongoing long-term monitoring campaign on the railway bridge, which includes
acceleration measurements on the bridge deck and the arches. The acceleration data have been
used to extract the evolution of the natural frequencies over a period of 15 months. In this period,
the connections of the diagonals to the bridge deck and the arches were strengthened after the
observation of damage. As such, the data set includes data for two different states of the structure,
i.e. before and after retrofitting.

Using the aforementioned natural frequency data, a comparison is made between standard
linear regression and robust PCA via sparse plus low-rank (S+LR). It is investigated to what
extent these techniques enable removing variations in the natural frequency data that are due to
changes in environmental conditions, and, as such detecting the actual changes in the structural
behavior that are introduced by damage or, in this case, by the retrofit. Furthermore, a calibrated
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detailed finite element model of the structure is used to simulate a number of more subtle structural
changes. This enables a more extensive comparison of damage detection methods.

The paper is organized as follows. First, Section 2 describes the vibration monitoring of rail-
way bridge KW51 and presents the identified modal characteristics obtained from the monitoring
campaign. Next, Section 3 presents the two damage detection methods and their application to
the monitoring data. In Section 4, a detailed finite element model of the railway bridge is adopted
to simulate structural modifications other than the actual retrofit. It is investigated to what extent
the two damage detection methods succeed in detecting the state transition would these structural
modifications occur. Finally, Section 5 concludes the work.

A detailed description of the data used in this paper can be found in [15]. The data are available
for download at [16].

2. Vibration monitoring of railway bridge KW51

2.1. Introduction

Railway bridge KW51, shown in Fig. 1, is located on railway line L36N between Leuven and
Brussels, Belgium, where it enables the crossing of the canal Leuven-Mechelen. The bridge, of the
type bowstring, has a length of 115 m and a width of 12.4 m.

(a) (b)

Leuven

Herent

KW51

L36NBrussels

Leuven

N

1 km

Fig. 1: (a) Railway bridge KW51 in Leuven, Belgium and (b) situation sketch.

The railway bridge consists of two ballasted tracks, referred to as track A (at the north-side)
and track B (at the south-side). A maximum speed of 160 km/h is imposed. Both tracks are
curved, with a curve radius of 1125 m for track A and 1121 m for track B. The bridge is used by
passenger trains and was opened for traffic in 2003.

2.2. Measurement setup

A monitoring system was installed on the bridge in September 2018. The following quantities
are measured (see also Fig. 2):

– Six accelerations on the bridge deck in the lateral and vertical direction.

– Six accelerations on the arches in the lateral direction.

– Eight uniaxial strains on the bridge deck along the longitudinal direction.

– Four uniaxial strains on two braces connecting the arches and the bridge deck (2 times 2).

– Two biaxial strains on one rail of tracks A and B (directions +45◦ and −45◦ with respect to
the neutral axis of the rail).
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– Two uniaxial laser-based displacements at the abutments of the bridge side Leuven, along
the longitudinal direction.

– The surface temperature and the relative humidity at one point below the bridge deck.

The measurements are performed by means of a National Instruments (NI) data acquisition
system, consisting of a NI cDAQ 9178 chassis equipped with two NI 9234 ICP modules for the
acceleration measurements, four NI 9237 analog input bridge modules for the strain measurements,
and one NI 9219 analog input module for the displacement, temperature, and relative humidity
measurements. The data acquisition hardware is installed in an IP66 steel cabinet that is mounted
on one of the transverse girders below the bridge deck. In the remainder of this paper, only the
acceleration and temperature measurements are considered. The reader is referred to [15] for a
detailed description of the monitoring system.

In addition to the measurements at the bridge site, additional environmental data are collected
at the Vliet Building from the KU Leuven Building Physics Section. This building is located on the
KU Leuven campus, at a distance of about 5 km from the railway bridge. The environmental data
are provided on an hourly basis and include air temperature, relative humidity, vapor pressure,
solar radiation, rain, wind speed, and wind direction.

Finally, a second independent vibration monitoring system consisting of 80 fiber Bragg grating
(FBG) strain measurements is present on the railway bridge [17]. The monitoring covers a shorter
time period. These data have not been considered here.

Uniaxial accelerometer (y or z)

Uniaxial strain gauge

2 half bridge strain gauges on
the rails

Thermocouple sensor

Relative humidity sensorUniaxial displacement sensor

Brussels

xy

xz

y

SIDE VIEW

TOP VIEW

LEGEND

Leuven

Brussels Leuven

z

Fig. 2: Overview of the measurement setup. Sensors installed on the bridge deck are only indicated in the top view.
Sensors installed on the diagonals and the arches are only indicated in the side view.
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2.3. Structural retrofitting

In the period from 15 May to 27 September 2019, the bridge was retrofitted to resolve a
construction error that was noticed during inspection. The retrofit consisted of strengthening the
connections of the diagonals to the arches and the bridge deck. Fig. 3 shows a picture of these
connections before and after the retrofit. For every diagonal, a steel box was welded around the
original bolted connection at the intersection with the arches and the bridge deck.

(a) (b) (c)

Fig. 3: (a) Original connections between the diagonals and the arches and the bridge deck and (b) connections after
retrofitting, and (c) detail of the steel boxes welded around the original bolted connection.

The measurements adopted in this paper have been collected during a period of 7.5 months
before the retrofit (02/10/2018 – 15/05/2019), 4.5 months during the retrofit (15/05/2019 –
27/09/2019), and 3.5 months after the retrofit (27/09/2019 – 15/01/2019).

2.4. Identified modal characteristics

The modal characteristics of the structure have been experimentally determined on an hourly
basis using automated operational modal analysis (OMA) [15]. In the OMA, the acceleration mea-
surements corresponding to a period of five minutes of ambient vibration (no train passages on the
bridge) are processed using the reference-based covariance-driven stochastic subspace identification
(SSI-cov/ref) algorithm [18]. An automated interpretation of the stabilization diagram represent-
ing the results of the SSI-cov/ref algorithm is performed using the clustering approach proposed
in [19]. Finally, an additional clustering step is performed in order to group modes that occur in
multiple date sets. The adopted procedure is described in detail in [15].

In total, 14 modes are tracked over time. Note that none of the modes is identified with a
success ratio of 100%, i.e. every hour of the monitoring period. This is due to the fact that the
excitation of the modes and therefore their practical identifiability changes over time. Table 2.4
provides an overview of the identified modes, including the time-average natural frequency and the
success ratio (SR) of the identification before and after the retrofit, as well as a description of the
mode shapes. This description is based on the mode shapes obtained from a detailed multi-setup
operational modal analysis (OMA) that was performed prior to the monitoring on 16/02/2018,
see also [15]. The success ratio SR of the identification changes after the retrofitting. This is
especially the case for the lateral bending modes of the arches, which is explained by the fact that
the sensor network after retrofitting is extended by six additional accelerometers that were installed
on the arches. The acceleration measurements obtained from those sensors are more sensitive to
the lateral bending modes of the arches compared to the (earlier installed) measurements on the
bridge deck.
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Before retrofit After retrofit
No. fid [Hz] SR [%] fid [Hz] SR [%] Description

1 0.51 34.3 0.51 94.4 1st lateral mode of the arches (arches in phase)
2 1.24 25.3 1.23 91.7 2nd laterale mode of the arches (arches in phase)
3 1.89 99.0 1.88 92.4 1st lateral mode of the bridge deck
4 2.45 57.6 2.42 90.1 3rd lateral mode of the arches (arches in phase)
5 2.58 95.6 2.57 81.0 1st global vertical mode
6 2.92 99.5 2.98 99.7 2nd global vertical mode
7 3.55 19.7 3.55 88.8 4th lateral mode of the arches (arches in phase)
8 3.88 23.3 3.92 70.6 4th lateral mode of the arches (arches in phase)
9 4.11 99.2 4.08 99.5 1st global torsional mode
10 4.30 66.7 4.39 33.5 3rd global vertical mode
11 4.84 63.1 4.94 68.8 2nd lateral mode of the bridge deck (+ torsion)
12 5.33 79.5 5.44 43.3 4th global vertical mode
13 6.33 98.2 6.42 78.4 5th global vertical mode
14 6.88 60.9 7.06 28.9 3rd lateral mode of the bridge deck (+ torsion)

Table 1: Overview of the tracked modes before and after the retrofitting (fid: time-average identified natural fre-
quency, SR: success ratio of the identification). Time windows where the data acquisition was interrupted have not
been included in the calculation of the SR.

Fig. 4 displays the evolution of the identified natural frequencies over time, together with the
air temperature at the Vliet Building and the surface temperature below the bridge deck. The
influence of the temperature on the identified natural frequencies is clearly visible in the period
before the retrofitting. This is especially the case for the frost period in January 2019. During the
retrofitting, the natural frequencies change significantly as well. This is mainly due to the presence
of scaffolding at both sides of the bridge. For some modes, it was not possible to continue the mode
tracking during the retrofitting. In what follows, only the modal characteristics from the period
before the retrofit (original state) and the period after the retrofit (modified state) are considered.

It is also noticed that the fluctuations of the bridge surface temperature (Fig. 4b, black) are
significantly smaller than the fluctuations of the air temperature (Fig. 4b, blue). This is most likely
due to the large thermal inertia of the structure. Finally, note that the bridge surface temperature
is not available before 22/11/2018, due to a data acquisition problem.

Fig. 5 shows the identified natural frequencies as a function of the measured bridge surface
temperature. A distinction is made between data corresponding to the period before the retrofit
(black) and after the retrofit (gray). The following observations are made:

– Before the retrofit, a bilinear relation between the identified natural frequencies and the
bridge temperature is observed for most modes, with a knee point around 0◦C. Both for
positive and negative temperatures, the natural frequencies tend to decrease with increasing
temperature. A similar bilinear relation has been previously observed for the Z24 bridge
in [3], where it was found that this bilinearity is due to a significant increase of the stiffness
of the asphalt layer on the bridge deck during frost periods. For the KW51 railway bridge,
it was verified by means of finite element model updating that the significant increase of the
natural frequencies for temperatures below 0◦C is likely due to frost of the porphyry ballast
layer supporting the tracks.

– For modes 6, 7, 8, 10, 11, 12, 13, and 14, the retrofit results in an increase of the natural
frequency. Taking into account the fact that the retrofit results in relatively small mass and
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Fig. 4: (a) Evolution of the identified natural frequencies over time (blue: lateral modes of the arches (LA), red:
lateral modes of the bridge deck (LB), green: global vertical modes (V), and magenta: global torsional modes (T))
and (b) time history of the surface temperature below the bridge deck (black) and the air temperature at the Vliet
building (blue). The period during which the retrofit is performed is indicated with a gray shading.

stiffness changes, it can be reasonably assumed that the increase in those natural frequencies
is attributed to the increased stiffness of the connections between the diagonals, the bridge
deck, and the arches [20]. This is also verified by introducing the stiffness increments corre-
sponding to the retrofit in the detailed finite element model of the railway bridge described
in Section 4.1.

– For modes 1, 2, 3, 4, 5, and 9, the retrofit results in a decrease of the natural frequency.
Similarly, the decrease in those natural frequencies is attributed to the additional mass of
the steel boxes, which is found to play an important role for the three lowest lateral bending
modes of the arches (modes 1, 2, and 4). This is also verified by introducing the local mass
increments corresponding to the retrofit in the detailed finite element model of the railway
bridge described in Section 4.1.

– For the majority of the identified modes, two separate clusters are obtained, where one is
corresponding to the original state, before retrofitting, and the other is corresponding to the
modified state, after retrofitting. For some modes, the shift in natural frequency due to the
retrofit is larger than the observed variation of the natural frequencies due to changes in
the environment. This is for example the case for mode 4. One could argue that a removal
of environmental influences on the natural frequencies for those modes is not necessary to
enable damage/novelty detection. However, when aiming at the detection of damage in an
early stage, removing these influences is essential, as demonstrated in the following sections.
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Fig. 5: Evolution of the identified natural frequencies with the bridge temperature before the retrofit (black) and
after the retrofit (gray).

Apart from the clear variation of the natural frequencies with temperature, it is expected that
other environmental variables play a role. This is further addressed in Section 3.2. Nonetheless, it
cannot be excluded that part of the variation in the natural frequencies is attributed to uncertainty
in the system identification. This uncertainty mainly stems from the fact that some modes are
not properly excited and/or do not contribute significantly to the measured bridge acceleration
response. As mentioned previously, additional sensors have been installed on the arches during
the retrofit. This results in a clearly lower variability of the natural frequency estimates for some
modes, including for example mode 11 (Fig. 5), indicating that those modes were not significantly
contributing to the response when only measuring accelerations on the bridge deck.
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Finally, it is also important to bear in mind that the excitation of the railway bridge is generally
twofold [15]. If the period considered in the system identification directly follows a train passage,
which is often the case during the day, the measured accelerations mainly consist of a free decay,
where the majority of the modes under consideration has a clear contribution to the response. If,
on the other hand, no train passages precede the selected time period, for example during the night,
the bridge vibration is mainly caused by wind loading and vehicle passages underneath the bridge.
In this case, the practical identifiability largely depends on level and the properties (e.g. wind
direction) of the ambient excitation. Some modes may not be properly excited. If this is the case,
these modes are not identified or the modal characteristic estimates are prone to larger uncertainty.

3. Damage detection

This section compares two techniques to remove the environmental influences on the identified
natural frequencies, aiming at improved damage detection; (1) linear regression and (2) robust PCA
via sparse plus low-rank (S+LR), a robust version of classical linear PCA. For both techniques,
a brief recapitulation of the method is provided, before they are applied to the data described in
Section 2.4.

3.1. Linear regression

Linear regression consists of the identification of a linear input-output mapping. For a given
mode j, the linear regression model is described by the following equation:

mj,k = Wjuk + bj + ej,k (1)

The output of the model is mj,k ∈ R, consisting in this case of the identified natural frequency
corresponding to mode j for a time window k, shown in Fig. 4a. The input of the model is a
vector uk ∈ Rnu of nu measured environmental variables, that are typically averaged over the
corresponding time window k. In this case, only a single input is considered (nu = 1), consisting
of the steel surface temperature measured below the bridge deck, shown in Fig. 4b (black). The
scalar ej,k ∈ R is the time-dependent error term that accounts for the misfit between the model
predictions and the observed behavior of the structure.

The model training consists of estimating the coefficient matrix Wj ∈ R1×nu and the bias term
bj ∈ R. The estimation is based on a set of measured and hence known outputs mj,k and inputs
uk for nt (not necessarily consecutive) training points k = 1, 2, . . . , nt obtained from the structure
in its original (undamaged) state. The estimation is performed for every mode separately in a
least-squares sense:[

Ŵj b̂j
]

=
[
mj,1 mj,2 . . . mj,nt

] [
ū1 ū2 . . . ūnt

]†
(2)

where ūk =
[
uT
k 1

]T
and † denotes the Moore-Penrose pseudo-inverse.

Once Ŵj and b̂j are estimated, the model prediction m̂j,k, which consists of an estimate of
natural frequency j given the bridge surface temperature at time window k, can be predicted as
follows:

m̂j,k = Ŵjuk + b̂j (3)
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As previously discussed in Section 2.4, a bilinear relation between the bridge surface temper-
ature and the natural frequencies is observed, with a knee point located near 0◦C. The assumed
linear regression in Eq. (1) cannot capture such bilinear relation. In order to overcome this issue,
one could train two independent models, one for negative temperatures and one for positive tem-
peratures. This is illustrated for mode 13 in Fig. 6. The curve fitting for negative temperatures is
complicated, however, by (1) the large variation of the identified natural frequencies corresponding
to negative temperatures, potentially due to other environmental factors that play an important
role, (2) the very limited range of negative temperatures present in the data, and (3) the small
number of data points corresponding to negative temperatures. As such, it was decided to consider
only positive temperatures. In addition, the model is limited to temperatures above 2◦C (instead
of 0◦C). This margin of 2◦C is imposed to avoid the large variation in natural frequencies observed
below 2◦C, which leads to a bias in the linear regression, also illustrated in Fig. 6. The restric-
tion to temperatures above 2◦C comes with the drawback that the damage detection is inevitably
interrupted during frost periods. For the structure under consideration, however, the number of
days per year where the bridge deck temperature drops below the cutoff limit of 2◦C is typically
small (see also Fig. 5b).

Fig. 6: Illustration of the linear regression for mode 13, for temperatures below 0◦C (dash-dotted blue line), tem-
peratures above 0◦C (dotted red line), and temperatures above 2◦C (solid red line). The curve fit for negative
temperatures (solid blue line) is manually tuned to obtain a proper visual agreement with the data.

For every mode, the linear regression model is trained using data obtained before the retrofit.
The time series of natural frequency data available for this period is subdivided in periods of one
week (seven consecutive days), where data obtained for odd weeks (week 1, week 3, . . . ) are used
to train the model and data obtained for even weeks (week 2, week 4, . . . ) are used for validation.
By alternating short blocks of training and validation data, a large variation in environmental
conditions is obtained for both subsets.

After the model training, the model prediction m̂j,k in Eq. (3) can be used to calculate the
model misfit êj,k for any time window k, quantifying to what extent the identified natural frequency
meets the assumed linear input-output mapping:

êj,k = mj,k − m̂j,k = mj,k − Ŵjuk − b̂j (4)

Table 2 presents the coefficients of determination R2
j for all modes j, which are calculated as

follows:

R2
j = 1−

∑nt
k=1 êj,k∑nt

k=1

(
mj,k − 1

nt

∑nt
l=1mj,l

) (5)
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These coefficients explain to what extent the observed variation in the natural frequencies can be
attributed to variations in the bridge deck temperature. Although a clear relation between the
natural frequencies and the bridge deck temperature was observed in Fig. 5, very low values of
R2
j are obtained, indicating that a major part of the natural frequency variations is resulting from

other factors, including other environmental influences (e.g. solar radiation), the excitation level,
and identification errors.

Mode No. j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

R2
j 0.17 0.49 0.00 0.62 0.01 0.31 0.14 0.01 0.31 0.20 0.05 0.24 0.50 0.06

Table 2: Coefficient of determination R2
j for the linear regression model composed for each of the different modes j

and considering only temperatures above 2◦C.

Fig. 7 shows the evolution of the model misfit êj,k over time, for each of the 14 modes separately.
The results shown for temperatures below 2◦C (in gray) are obtained by extending the linear
regression model towards negative temperatures and are only shown for the sake of completeness.
They are not considered in the actual damage detection discussed hereafter.

Before the retrofit, the misfit êj,k is mostly contained in the [−3σj ,+3σj ] interval (also indicated
in Fig. 7), both for the training and validation data, where σj is the standard deviation of the misfit
êj,k in the training phase. After the retrofit, a clear shift in the misfit is observed for most modes,
pointing towards a change in the dynamic behavior of the structure. As previously mentioned in
Section 2.4, the retrofitting results in an increased natural frequency and consequently a positive
misfit for some modes, while leading to a decreased natural frequency and a negative misfit for
other modes. For some modes, the misfit êj,k clearly exceeds the [−3σj , 3σj ] interval after the
retrofit, resulting in a pronounced gap between the misfit for the original state and the modified
state. This is for example the case for modes 2, 4, and 6. These modes are characterized by a
large sensitivity to the structural modification and/or a small uncertainty on the identified natural
frequencies.

In practice, the influence of potential damage on each of the modes is not known in advance.
It can therefore not be predicted which modes will be most sensitive and therefore most suited to
detect actual damage in an early stage. Rather than monitoring the model misfit for each mode
individually, it is more convenient to consider the following overall normalized misfit ε̂k, which
takes into account the contribution of the different (nm) modes:

ε̂k =

√√√√ nm∑
j=1

(
êj,k
σj

)2

(6)

Under the assumption that the misfits êj,k for the different modes are uncorrelated, this nor-
malized misfit ε̂k corresponds to the Mahalanobis distance [21]. In addition, assuming that the
misfits êj,k for the original state of the structure follow a normal distribution with zero mean and
standard deviation σj , the squared normalized misfit ε̂2k follows a chi-square distribution. This
allows calculating the critical value of ε̂k that is only exceeded with a probability of 0.003, similar
to the [−3σj , 3σj ] interval for the individual misfits êj,k. This value is referred to hereafter as c0.997χ2 ,

with P(ε̂k ≤ c0.997χ2 ) = 0.997.
Fig. 8 shows the evolution of the normalized misfit ε̂k over time. Only the contribution of modes

3, 4, 5, 6, 9, 11, and 13 is accounted for in the calculation of this misfit (nm = 7), where an additional
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Fig. 7: Evolution of the linear regression model misfit êj,k for modes 1 to 14 over time. Results corresponding to a
steel surface temperature above 2◦C are indicated in black, those corresponding to a temperature below 2◦C in gray.
The horizontal black dashed line indicates the zero misfit level. The data blocks composing the training period are
hatched. The horizontal black dotted lines indicate the +3σj and −3σj misfit levels.
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linear interpolation of the identified natural frequencies is adopted to fill small gaps when some
data points are missing (see also Section 2.4). For the other modes (1, 2, 7, 8, 10, 12, and 14), the
time evolution of the identified natural frequencies before and/or after the retrofit is characterized
by clear gaps corresponding to time periods where the modes have not been successfully identified
(Fig. 7). These modes have been excluded.

During the training and validation phase, the normalized misfit is contained within the [0,
c0.997χ2 ] interval for the majority of the data points. After the retrofit, a clear shift of the misfit is
observed, which again indicates that the structure has changed. In order to further improve the
detection capacity, the misfits êj,k are averaged over a period of 24 hours before calculation of the
normalized misfit ε̂k in Eq. (6). The standard deviation σj occurring in Eq. (6) is re-computed
from the 24 hour averaged misfits êj,k in the training phase. The normalized misfit after 24 hour
averaging is shown in Fig. 9.

Fig. 8: Evolution of the normalized linear regression model misfit ε̂k over time. Results corresponding to a steel
surface temperature above 2◦C are indicated in black, those corresponding to a temperature below 2◦C in gray. The
data blocks composing the training period are hatched. The horizontal black dotted line indicates the c0.997χ2 misfit

level (c0.997χ2 = 4.67).

Fig. 9: Evolution of the normalized 24 hour averaged linear regression model misfit ε̂k over time. Results correspond-
ing to a steel surface temperature above 2◦C are indicated in black, those corresponding to a temperature below 2◦C
in gray. The data blocks composing the training period are hatched. The horizontal black dotted line indicates the
c0.997χ2 misfit level (c0.997χ2 = 4.67).

Due to the significant reduction in noise level achieved by the additional averaging, the shift in
the misfit introduced by the retrofitting is even more pronounced with respect to the case where
no averaging is applied (Fig. 8). Note, however, that the averaging introduces a delay of 24 hours
in the damage detection. If a fast detection is required, it is advised to monitor both the original
hourly-based misfit (Fig. 8) and the 24 hours averaged misfit (Fig. 9).

In the considered case, the model misfit ε̂k enables a clear distinction between the original and
the modified state of the structure. Due to the relatively large influence of the structural retrofit
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on the considered natural frequencies, the choice of a suitable threshold to distinguish between
both states is rather straightforward. Indeed, any threshold value larger than 8.6 would result in a
perfect distinction between the original and the modified state, even without additional averaging
of the data (Figs. 8 and 9). When aiming at the identification of actual damage in an early stage,
however, the selection of a proper threshold value that limits the number of false-positives and
false-negatives is crucial. This is further addressed in Section 4.4.

To conclude this subsection, the main advantages and disadvantages of a linear regression
model are summarized. A linear regression model has a limited complexity. This comes with
the advantage that it is very straightforward to use and easy to implement. On the other hand,
it comes with the (often restricting) assumptions that (1) the output is linearly related to the
inputs, and (2) all inputs that drive the variation of the output are measured. Although the bridge
surface temperature has a clear influence on the natural frequencies of railway bridge KW51, other
environmental variables seem to have a significant influence as well. This issue is further addressed
in Section 3.2.

3.2. Robust PCA

A principal component analysis (PCA) model describes the variation in the data in terms of its
so-called principal components, without requiring knowledge on the inputs that drive this variation.
The resulting model is generally described by:

mk = Ψxk + b + ek (7)

where the vector mk =
[
m1,k . . . mnm,k

]T
contains the output for a given time window k, which

in this case is the set of nm identified natural frequencies. The matrix Ψ ∈ Rnm×nc contains nc
principal components that describe the variation in the data, xk ∈ Rnc×1 contains the contribution
of each principal component, also called score, for a given time window k, b ∈ Rnm×1 is the bias

vector, and ek =
[
e1,k . . . enm,k

]T
is the time-dependent error term that accounts for the misfit

between the model predictions and the observed behavior of the structure.
The principal component matrix Ψ and the bias term b are determined from a set of measured

and hence known outputs mk for nt (not necessarily consecutive) training points k = 1, 2, . . . , nt
obtained from the structure is in its original (generally undamaged) state. The bias vector b is
estimated as follows:

b̂ =
1

nt

nt∑
k=1

mk (8)

In classical linear PCA, the principal component matrix Ψ is typically derived from an eigenvalue
decomposition of the sample covariance matrix of the centered training data (m̄k = mk− b̂). This
process is known to be sensitive to outliers in the training data, leading to a misalignment of the
principal directions [25]. Robust PCA aims at removing or diminishing the effect of outliers in
the extraction of the model. Prior to the determination of the matrix Ψ, the training data are
“cleaned” in a separate preprocessing step, as explained next.

In the particular case of robust PCA via sparse plus low-rank (S+LR), presented in [23, 24],
the training data matrix M = [m̄1 m̄2 · · · m̄nt ] ∈ Rnm×nt , in this case containing the centered
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natural frequencies for nm modes on nt time steps, is decomposed into a structured low-rank matrix
L ∈ Rnm×nt and a sparse matrix S ∈ Rnm×nt containing outliers and corrupt data:

M = L + S (9)

It is assumed that the principal components Ψ of the resulting matrix L are robust to the outliers
and corrupt data in S. In general, the goal is to determine L and S as the solution of the following
optimization problem:

min
L,S

rank(L) + ||S||0 subject to L + S = M (10)

Since optimization problem (10) is non-convex, matrices L and S are in practice typically deter-
mined using the following convex relaxation of (10):

min
L,S

||L||∗ + λ||S||1 subject to L + S = M (11)

where || · ||∗ denotes the nuclear norm, i.e. the sum of singular values, serving as a proxy for the
matrix rank [24]. The scalar λ is a regularization parameter that determines the weight assigned to
the rank of the matrix L and the sparsity of the outlier matrix S. The convex optimization prob-
lem (11) is solved using the iterative augmented Lagrange multiplier (ALM) algorithm described
in [24], where the Matlab code for this algorithm is also provided.

Upon deriving the low-rank matrix L, its principal components Ψ are calculated by means of
an eigenvalue decomposition of the sample covariance matrix of the centered and cleaned training
data:

1

nt
LLT =

[
U1 U2

] [Σ1 0
0 Σ2

] [
UT

1

UT
2

]
(12)

where Σ1 ∈ Rnc×nc contains the nc largest eigenvalues on its diagonal, with U1 containing as
columns the corresponding eigenvectors, which correspond in this case to the so-called principal
directions of the data. Under the assumption that only the first nc out of the nm principal com-
ponents contribute significantly to the data (nc ≤ nm), the eigenvector matrix U1 serves as an
estimate of the principal component matrix Ψ, i.e. Ψ̂ = U1. The selection of the number of
retained principal components nc is essential in the development of a model aiming at damage
detection and is further addressed below.

Once b̂ and Ψ̂ are obtained from the training data, the model prediction error êk for a given
time window k can be estimated as follows:

êk =
(
Inm − Ψ̂Ψ̂

†)(
mk − b̂

)
= U2U

T
2

(
mk − b̂

)
(13)

Note that the model prediction error êk is calculated from the original data mk without outlier
removal by means of robust PCA. The principal directions, contained in the matrix Ψ̂, however,
are obtained from the cleaned data, as explain previously. Although the data contained in mk may
contain outliers, the preprocessing step by means of solving the optimization problem in Eq. (11) is
not repeated in the actual detection stage, since the outlier removal may reduce detection capacity.
Indeed, when the response of the structure changes due to damage, the resulting data points may
be classified as outliers when applying robust PCA, which should therefore be avoided.
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Prior to the discussion of the results of the robust PCA method, the relation between the
variation in the different natural frequencies is studied. As an example, Fig. 10 shows the rela-
tion between the identified natural frequencies for modes 6 and 13, before the retrofitting. As in
Section 3.1, a distinction is here made between temperatures below 2◦C (gray) and temperatures
above 2◦C (black). At temperatures above 2◦C, a roughly linear trend is observed between the
natural frequencies of of both modes. This is in line with the near to linear dependence on temper-
ature that both natural frequencies showed (see Section 3.1). Although the range spanned by the
natural frequencies below 2◦C is considerably smaller, the trend here also seems roughly linear. In
line with what was considered for the linear regression model in Section 3.1, two independent PCA
models could be trained, for example using the methodology proposed in [22]. For the same reasons
as those mentioned in Section 3.1, however, the model is here limited to temperatures above 2◦C.
In addition, only modes 3, 4, 5, 6, 9, 11, and 13 are accounted for in the derivation of the robust
PCA model (nm = 7), where linear interpolation of the identified natural frequencies is used to
generate missing data points (see also Section 3.1). The remaining modes have been omitted, due
to the presence of clear gaps in the time history of the identified natural frequencies.

Fig. 10: Observed relation between the identified natural frequency of modes 6 and 13 before the retrofit. Data
points corresponding to temperatures below 2◦C are indicated in gray. Data points corresponding to temperatures
above 2◦C are indicated in black.

At this point, one could consider the estimation of a simple linear regression model in Eq. (1) to
describe the relation between the identified natural frequencies in Fig. 10 for temperatures above
2◦C, rather than developing a PCA model. In fact, such a linear regression model would be similar
to a PCA model with only one principal component (nc = 1). Although a PCA model with more
than one principal component (nc ≥ 1) still assumes a linear relation between the observed natural
frequencies, it accounts for multiple linear trends represented in the data, which are described by
the principal components. This may be important when the dependence on temperature (or other
environmental or operational factors) stems from different physical phenomena. For example,
one of the components could represent the variation of the natural frequencies with the bridge
deck temperature, while other components could for example represent the variation with the
temperature of the arches, which may affect the natural frequencies in a different way. Under the
assumption of a sufficient amount of training data, a PCA model (linear PCA or robust PCA)
with multiple components will therefore be more effective in modeling the natural variation in the
output data and therefore enable more accurate damage detection, as illustrated next.

In order to study the outlier removal by means of robust PCA, Fig. 11 presents a comparison
of the original natural frequency training data (mk) and the low-rank representation of the data
resulting from robust PCA (lk + b̂k, with lk the columns of the low-rank matrix L), when plotted
as a function of the bridge deck temperature. The regularization parameter λ occurring in Eq. (11)
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Fig. 11: Comparison of the original natural frequency training data (matrix M, black dots) and the low-rank
representation of the data resulting from robust PCA (matrix L, gray ×-markers), plotted as a function of the bridge
deck temperature. Both for matrices M and L, the offset contained in the vector b̂ is added before plotting, in order
to facilitate interpretation.

Fig. 12: Outlier matrix S plotted as a function of the bridge deck temperature.

is assigned the value 2/
√

max(nm, nt) = 2/
√
nt. This value is chosen two times larger than the

value proposed in [24] (i.e. λ = 1/
√

max(nm, nt)), since it was found that a lower value resulted
in an outlier matrix S which was insufficiently sparse. It is apparent from the comparison of the
original and the cleaned training data in Fig. 11 that some of the data points in M are classified
as outliers and have therefore been corrected by the robust PCA algorithm, see for example modes
5 and 11. This also becomes clear from the outlier matrix S, which is shown in Fig. 12.

Fig. 13 shows the identified principal components Ψ̂ obtained from robust PCA (in black). For
the sake of comparison, the principal components of the original data matrix M are also shown (in
gray), corresponding to the case of regular linear PCA. It is observed that the principal components
obtained from robust PCA and linear PCA are nearly identical, allowing to conclude that outliers
in this case do not play an important role. Since the principal components obtained from both
methods are very similar, so is their detection capacity. In the remainder of this work, only the
results of robust PCA are included.
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Fig. 13: Comparison of the principal components Ψ̂ obtained from robust PCA (solid black line) and linear PCA
(dash-dotted gray line).

In order to investigate the contribution of the identified principal components to the data and
select the optimal number of principal components nc, the misfit during the training phase and
the validation phase (before the retrofit) is studied. Fig. 14 presents the overall training misfit ε̂t
and the validation misfit ε̂v (both in %), defined in Eq. (14), for all possible values of nc, i.e. from
1 to 7. As a reference, the training misfit for the previously considered case of linear regression is
also indicated (ε̂t = 53.8%). In the evaluation of Eq. (14), it is assumed that the data points are
rearranged such that the first nt points correspond to training and the next nv points correspond
to validation.

ε̂t =

√ ∑nt
k=1 ||êk||22∑nt

k=1 ||mk − b̂||22
, ε̂v =

√√√√ ∑nt+nv
k=nt+1 ||êk||22∑nt+nv

k=nt+1 ||mk − b̂||22
(14)

Fig. 14: Evolution of the overall training misfit ε̂t (blue hollow squares) and the overall validation misfit ε̂v (red solid
circles) with the number of principal components nc.

For the case of a single principal component (nc = 1), the training misfit (ε̂t = 58.0%) is
similar to the misfit obtained for the case of linear regression (ε̂t = 53.8%). Further increasing the
number of principal components leads to a clear reduction of the misfit, both in the training and
the validation phase, showing the importance of the higher principal components in the description
of variations present in the data. Indeed, while the first two components clearly have the largest
contribution to the observed variation in the data, components 3 to 6 still represent about 5% of
the observed variation each. It should be noticed that adding those higher principal components
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does not lead to an overfit. This can be concluded from the fact that the validation misfit decreases
along with the training misfit when increasing the number of principal components nc. For nc = 7,
the misfit (by definition) equals zero. This is due to the fact that the principal components in
this case constitute an orthogonal basis which enables describing any trend in the data. As such,
selecting 7 principal components will not enable detecting any anomalies in the structural behavior
and the number of principal components nc should always be smaller than the number of outputs
nm to enable damage detection (nc < nm).

It is reminded that the actual number of components represented in the data, referred to as n?c ,
equals the number of independent inputs driving the variation in the output, i.e. in the identified
natural frequencies. This number is typically identified from a drop in the training misfit spectrum
(Fig. 14) between nc = n?c and nc = n?c + 1, where the misfit for nc > n?c approximates zero. The
first n?c principal components are then assumed to represent the variation in data driven by the
independent inputs, while higher principal components represent noise in the data. The optimal
choice of nc equals n?c . In the presented case, however, the training misfit spectrum in Fig. 14 is
not characterized by such a clear drop. This may be due to the fact that the actual number of
driving inputs n?c is equal to or larger than the number of outputs accounted for in the analysis,
i.e. n?c ≥ nm = 7. Since the first six principal components contribute significantly to the variation
in the data, they are all retained in the construction of the PCA model for damage detection
(nc = 6).

From the previous analysis, it can be assumed that at least six independent environmental
factors simultaneously affect the natural frequency estimates. One of them most likely relates to
the bridge deck temperature considered in the linear regression. Other factors could for example
relate to air humidity, the ballast temperature and the temperature of the bearings. The latter
two are most probably different from the steel temperature below the bridge deck, due to thermal
inertia of the structure and solar radiation. Some of the influencing factors are measured while
others are not. The explicit study of the factors influencing the dynamic bridge response is outside
the scope of this paper.

Fig. 15 shows the evolution of the model misfit êk for each of the 7 retained modes and nc = 6.
Similar to the case of linear regression, the model trained for temperatures above 2◦C is extended
to negative temperatures (in gray), for the sake of completeness. The results obtained for temper-
atures below 2◦C are disregarded in the actual damage detection.

In line with the results obtained for the linear regression model in Section 3.1, the misfit êj,k
before the retrofit is mostly contained in the [−3σj ,+3σj ] interval, both for the training and
validation phase, where σj is the standard deviation of the misfit êj,k during the training phase.
Please note that the the standard deviation σj of the training misfit for the robust PCA model
for all modes except for mode 4 is significantly smaller than the corresponding value obtained for
the linear regression model, see also Table 3. This indicates that the selected robust PCA model
better captures the trends in the natural frequency data. After the retrofit, a very large shift in the
misfit of the robust PCA model is observed, exceeding for each of the seven modes the [−3σj , 3σj ]
interval for all data points.

Fig. 16 shows the time history of the overall normalized misfit ε̂k of the robust PCA model,
calculated in accordance to Eq. (6). Similar to the case of linear regression, this overall misfit
accounts for the contribution of all modes and is therefore the preferred indicator in the process of
damage detection. A distinction is made between the hourly basis misfit and the misfit obtained
after averaging over 24 hours. Due to the normalization (w.r.t. the misfit standard deviation σj),
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Fig. 15: Evolution of the robust PCA model misfit êj,k for modes 3, 4, 5, 6, 9, 11, and 13 over time. Results
corresponding to a steel surface temperature above 2◦C are indicated in black, those corresponding to a temperature
below 2◦C in gray. The horizontal black dashed line indicates the zero misfit level. The data blocks composing the
training period are hatched. The horizontal black dotted lines indicate the +3σj and −3σj misfit levels.

Mode No. j 3 4 5 6 9 11 13

Linear regression 3.0×10−3 5.7×10−4 4.4×10−3 1.8×10−3 1.4×10−3 2.3×10−2 5.1×10−3

Robust PCA 9.2×10−5 1.6×10−3 1.6×10−7 2.9×10−4 2.7×10−4 3.1×10−6 9.9×10−5

Table 3: Comparison of the standard deviation σj of the misfit êj,k (in Hz) during the training phase between linear
regression and robust PCA (nc = 6).

the results can be directly compared to those obtained for the linear regression model in Figs. 8
and 9. The shift in the robust PCA model misfit is nearly twice as large as the shift in the linear
regression model misfit. This conclusion holds for both the hourly-based misfit and the 24 hour
averaged misfit. As such, it can be concluded that the robust PCA model outperforms the linear
regression model in the identification of the present structural modification.

In comparison to the linear regression model, the robust PCA model has a slightly larger
complexity. Nonetheless, it is still straightforward to implement and easy to interpret the results.
The main advantage of a PCA model over a linear regression model is that it does not require
knowledge on the inputs that drive the variation in the natural frequencies. Since it is practically
infeasible to identify and measure all inputs, the robust PCA model better captures the trends in
the natural frequency data, although still assuming a linear relation between the different natural
frequencies.
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(a)

(b)

Fig. 16: Evolution of the normalized robust PCA model misfit ε̂k over time, (a) on an hourly basis and (b) aver-
aged over 24 hours. Results corresponding to a steel surface temperature above 2◦C are indicated in black, those
corresponding to a temperature below 2◦C in gray. The data blocks composing the training period are hatched. The
horizontal black dotted line indicates the c0.997χ2 misfit level (c0.997χ2 = 4.67).

In a final step, the performance of a robust PCA model trained using data for both positive and
negative temperatures is evaluated. Fig. 17 shows the time history of the overall normalized misfit
ε̂k obtained in this case for nc = 6. In the outlier removal, the regularization parameter λ is further
increased to 6/

√
max(nm, nt) = 6/

√
nt (instead of 2/

√
nt in the previously considered case). This

reduces the outlier detection capacity of robust PCA, since it puts more focus on the sparsity of the
outlier matrix S. However, when the value of λ is not increased, the data points corresponding to
negative temperatures are wrongly classified as outliers and corrected. In contrast to the previously
considered case where only data corresponding to temperatures above 2◦C are used in the training
phase, the misfit does not show a clear increase during frost periods. Meanwhile, it is also observed
that the misfits during the training and validation phases (before the retrofit) have a very similar
amplitude, indicating that the PCA model succeeds in modeling the overall variation in the natural
frequencies, including both positive and negative temperatures. Nevertheless, extending the model
towards temperatures below 2◦C reduces its capacity to detect novelty. Indeed, the shift in the
model misfit observed after the retrofit is smaller than in the original case where the model is
limited to temperatures above 2◦C (see also Table 4). The observed shift, however, is still slightly
larger than the shift observed for the linear regression model in Fig. 8a. Similar conclusions can
be drawn from the results obtained after 24 hour averaging, which are here omitted. As previously
mentioned, the number of days per year where the temperature drops below 2◦C for the considered
structure is low. Limiting the model to temperatures above 2◦C in this case only comes with an
interruption of the detection during a few (potentially consecutive) days, meanwhile resulting in a
higher potential to detect damage. If continued monitoring is needed in periods of frost, one might
however choose to extend the model to both positive and negative temperatures.
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Fig. 17: Evolution of the normalized robust PCA model misfit ε̂k over time on an hourly basis, for the case where
all data (corresponding to both positive and negative temperatures) are adopted in the training. The data blocks
composing the training period are hatched. The horizontal black dotted line indicates the c0.997χ2 misfit level (c0.997χ2 =
4.67).

hourly basis 24 hour basis

Linear regression, T > 2◦C 26.21 67.43
Robust PCA, T > 2◦C 56.14 128.23
Robust PCA, no T limitations 40.72 76.28

Table 4: Comparison of the mean misfit level ε̂k observed after the retrofit (modified state) between different model
types (linear regression and robust PCA) and temperature (T ) application ranges.

4. Verification for simulated structural changes

In the previous section, it was observed that both linear regression and robust PCA succeed in
identifying the changes in dynamic behavior that are attributed to the retrofit of railway bridge
KW51. In this section, a number of more subtle structural changes is modeled using a detailed finite
element model of the structure. This enables a more extensive comparison of damage detection
methods.

4.1. Finite element model of railway bridge KW51

A detailed finite element (FE) model of the railway bridge has been developed using the open
source MATLAB toolbox Stabil, developed at the Structural Mechanics Section of KU Leuven [26,
27]. The model is based on blueprints of the structure. The main and transverse girders of
the bridge deck, the diagonals, the arches, and the braces connecting the arches are modeled
using Timoshenko beam elements. The orthotropic bridge deck is modeled using four-noded shell
elements in combination with Timoshenko beam elements to model the u-shaped stiffeners. The
ballast is also modeled using four-noded shell elements. A Young’s modulus of 200 GPa and
550 MPa are assigned to the construction steel and the ballast layer, respectively. The offset
between different elements is accounted for by means of so-called constraint equations. The bridge
is supported by four pot bearings. The restrictions imposed by the pot bearings are indicated in
Figs 18a and 18b. The longitudinal stiffness of the pot bearings at side Leuven is accounted for in
the model by means of a linear spring with stiffness k. The resulting FE model has a total of 6079
nodes and 4857 elements. Fig. 18c provides a three-dimensional view of the FE model.
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4.2. Model calibration

The FE model is calibrated using a set of experimental modal characteristics obtained by
means of a detailed output-only operational modal analysis (OMA), carried out before the retrofit
on 16/02/2018, see also [15, Appendix 3]. In the OMA, the acceleration response of the arches
and the bridge deck is processed using the reference-based covariance-driven stochastic subspace
identification (SSI-cov/ref) algorithm [18]. The calibration parameters considered in the model
updating consist of the thickness h of the ballast layer, the longitudinal stiffness k of the pot bear-
ings (Fig. 18b), the out-of-plane bending stiffness EIyy of the connections between the diagonals,
the bridge deck, and the arches (indicated in blue in Fig. 18c), and the axial stiffness EA of these
connections. In the original model (i.e. before calibration), the connections between the diagonals
and the bridge deck and the arches are assigned the same section properties as the central part of
the diagonals, which corresponds to a tubular section with large bending stiffness (Fig. 19). At
the connections of the diagonals with the bridge deck and the arches, however, the cross section is
reduced to a single plate with a much lower out-of-plane bending stiffness. As shown in Fig. 19,
the out-of-plane bending stiffness EIyy at the connection between the tubular profile and the plate
equals 0.5 × 106 Nm2, which is about 150 times lower than the bending stiffness of the tubular
profile. Notice, however, that the calibration parameter EIyy accounts for the entire connection
between the tubular profile of the diagonal and the main girder, which also includes sections with
a larger bending stiffness. The out-of-plane bending stiffness of the plate cross section indicated in
Fig. 19 therefore consists a lower boundary for the model calibration parameter EIyy. The same
applies to the axial stiffness of the connections EA.

The model calibration is performed by means of an extensive grid search, where the relative
difference between the measured and predicted natural frequencies is minimized and the correlation
between the measured and predicted mode shapes, measured in terms of the MAC-values [28], is
maximized. The calibration is performed in two steps. In the first step, a coarse grid is adopted
for each of the four parameters. The search points for the ballast thickness h, the out-of-plane
bending stiffness of the diagonal connections EIyy and the axial stiffness of the diagonal connec-
tions EA are spaced linearly. Meanwhile, the search points for the bearing stiffness k are spaced
logarithmically. From this first analysis, it became clear that the fit with the experimental data was
improved as the stiffness parameter k was increased. A very high stiffness value, corresponding to
hinged supports, results in the overall best match between the measured and the predicted modal
characteristics. This suggests that friction in the bearings is preventing horizontal displacements
during low-amplitude ambient vibrations. In a second updating step, the supports at side Leuven

Brussels Leuven

(a)

Brussels Leuven
k

k

(b) (c)

Fig. 18: Top view indicating the boundary conditions (a) according to the blueprints and (b) as modeled, and (c) 3D
view of the FE model.
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45 mm EIyy = 0.5× 106 Nm2 (out-of-plane)

EIzz = 22.3× 106 Nm2 (in-plane)
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z EA = 41.8× 108 N

EIyy = 76.8× 106 Nm2 (out-of-plane)

EIzz = 75.2× 106 Nm2 (in-plane)

Fig. 19: Section properties of the tubular profile constituting the diagonals (bottom) and the plate section at the
connection between the diagonals and the bridge deck (top).

are fixed (k = ∞) and a fine grid is adopted for the three remaining parameters, considering in
total 1287 parameter combinations. The ballast thickness h is varied from 0.6 to 0.72 m in steps
of 0.01 m (8.33% of the range). The out-of-plane bending stiffness of the diagonal connections
EIyy is varied from 3.46× 106 to 6.53× 106 Nm2 in steps of 0.38× 106 Nm2 (12.5% of the range).
Finally, the axial stiffness of the diagonal connections EA is varied from 29.2× 108 to 37.6× 108 N
in steps of 0.8 × 108 N (10% of the range). The search range of the parameters is based on the
results of the first coarse grid search. The best match between the measured and the predicted
modal characteristics is obtained for the parameter values listed in Table 5.

Initial model Calibrated model

Ballast thickness h 0.60 m 0.66 m
Bearing stiffness k 0 N/m ∞
Bending stiffness EIyy 76.8× 106 Nm2 4.6× 106 Nm2

Axial stiffness EA 41.8× 108 N 32.6× 108 N

Table 5: Value of the calibration parameters before and after model calibration (before retrofitting).

Table 6 compares the identified modal characteristics to those obtained from both the initial
and the calibrated model. It is clear that the model calibration results in a significant improvement
of the agreement between the measurements and the model predictions. This can be seen from (1)
the increased number of modes that can be matched (9 modes for the initial model and 14 (all)
modes for the calibrated model), (2) the significant overall reduction in the prediction errors on the
natural frequencies, and (3) the much closer overall agreement between the identified and calculated
mode shapes, as is evidenced by the very high MAC values close to 1 [28]. In general, all modes
are very well predicted by the calibrated model, except for mode 11, which is the second lateral
bending mode of the bridge deck. For this mode, the natural frequency is accurately predicted but
a rather large discrepancy of the mode shape remains.
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OMA Initial model Calibrated model

No. fid [Hz] No. ffem [Hz] ε [%] MAC No. ffem [Hz] ε [%] MAC

1 0.51 1 0.70 36.98 0.99 1 0.53 2.94 1.00
2 1.24 2 1.41 13.87 0.98 2 1.26 1.57 1.00
3 1.90 3 1.61 -15.44 0.95 3 1.83 -3.91 0.97
4 2.45 5 2.51 2.47 0.98 4 2.38 -2.93 0.97
5 2.60 - - - - 5 2.69 3.51 0.97
6 2.92 6 3.00 2.90 0.95 6 2.84 -2.48 0.99
7 3.54 - - - - 7 3.51 -0.75 0.89
8 3.90 - - - - 15 3.77 -3.36 0.90
9 4.11 - - - - 20 4.14 0.61 0.90
10 4.28 10 4.42 3.33 0.71 25 4.29 0.38 0.84
11 4.85 11 4.92 1.53 0.63 27 4.74 -2.35 0.56
12 5.34 - - - - 30 5.29 -0.86 0.87
13 6.33 18 6.73 6.32 0.89 39 6.41 1.30 0.89
14 6.80 20 6.84 0.62 0.72 41 6.78 -0.30 0.78

Table 6: Comparison of the identified modal characteristics (before retrofitting) to those obtained from the initial
and calibrated FE model (fid: identified natural frequency, ffem: calculated natural frequency, ε: frequency error
(= (ffem − fid)/fid), and MAC: Modal Assurance Criterion [28]).

4.3. Retrofit modeling

In a next step of the model validation, it is investigated to what extent the FE model is able
to capture the natural frequency shifts induced by the actual retrofit, which consisted of welding
steel boxes around the original bolted connection at every intersection of the diagonals with the
arches and the bridge deck (see Section 2.3 and Fig. 3c).

For the sake of simplicity, it was decided to account for the stiffening effect introduced by
the retrofitting by means of two properly selected model parameters, i.e. the out-of-plane bending
stiffness EIyy and the axial stiffness EA of the connections between the diagonals, the bridge deck,
and the arches, rather than modeling the modification of these connections in full detail. The
stiffness parameters EIyy and EA corresponding to the situation after retrofitting are determined
by means of an additional model calibration step. In addition to the adjustment of the stiffness
of the connections in the model, the mass of the steel boxes is accounted for by means of a local
point mass of 333 kg at the location of each steel box.

Rather than tuning the calibration parameters to match the identified natural frequencies after
the retrofit, the sum of least square differences between the observed and predicted shifts in natural
frequencies (in %) between the original and retrofitted state is now minimized. It was decided to
consider the shifts in natural frequencies between the original and retrofitted state as opposed
to actual values, as it was believed that these would be less affected by modeling errors. The
frequency shifts are determined from the temperature-compensated misfit shown in Fig. 7, and are
calculated for every mode separately as the difference between the average misfit after the retrofit
and the average misfit during the training phase before the retrofit. The resulting frequency shifts
are reported in Table 8. In the model-based prediction of the frequency shifts, the previously
discussed calibrated FE model of the railway bridge, corresponding to the situation before the
retrofit (Section 4.2), is used as a reference.

Table 7 compares the values of the stiffness parameters of the FE models representing respec-
tively the structure before retrofitting (model 1) and after retrofitting (model 2). As expected,
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the installation of the boxes on the diagonals results in a significant increase of both the bending
stiffness EIyy (increase of 42%), and the axial stiffness EA (increase of 21%).

Calibrated model 1 Calibrated model 2
Before retrofitting After retrofitting

Bending stiffness EIyy 4.6× 106 Nm2 6.5× 106 Nm2 (+42%)
Axial stiffness EA 32.6× 108 N 39.3× 108 N (+21%)

Table 7: Value of the calibration parameters corresponding to the FE models representing respectively the structure
before retrofitting (model 1) and after retrofitting (model 2).

Fig. 20 compares the identified natural frequency shifts to those obtained from the calibrated
FE model (model 2 versus model 1). Except for modes 1 and 14, a very clear correlation between
the identified and predicted natural frequency shifts is observed. This demonstrates that the model
is able to accurately describe the influence of the retrofit.

Fig. 20: Comparison of the identified (blue squares) and calculated (red circles) natural frequency shifts attributed
to the retrofitting. A positive frequency shift corresponds to an increase of the natural frequency and vice versa.

4.4. Simulation of subtle structural modifications and validation of damage detection

It was previously observed that the actual retrofit resulted in relatively large shifts of the natural
frequencies. Since these frequency shifts exceed the observed level of variation due to changes in
environmental conditions for several modes (Fig. 5), the misfit obtained for both linear regression
and robust PCA clearly indicates the transition from the original state of the railway bridge to its
modified state after retrofitting.

In this section, it is investigated to what extent both methods succeed in detecting less pro-
nounced structural modifications. Six different modification cases are considered. Each case corre-
sponds to a situation where – in contrast to the actual retrofit, where all connections are modified –
only one or two of the connections between the diagonals and the bridge deck (indicated in Fig. 21)
are retrofitted by welding a steel box around the original bolted connection (Fig. 3c). As known
from Section 4.3, the FE model is able to reproduce the frequency shifts when all connections are
modified. As such, it is reasonable to assume that the model can also be used to predict the natural
frequency shifts when only a limited number of connections (here 1 or 2) is modified. Although
these modifications do not represent damage as such, they are more subtle when compared to the
actual retrofit and may better reflect local changes corresponding to realistic damage.

Starting from the calibrated model for the original state, the characteristics of the modified
connections are adjusted in accordance to what was obtained from the second model calibration
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in Section 4.3: a local point mass of 333 kg is added at the location of the steel box, meanwhile
increasing the bending stiffness EIyy from 4.6× 106 Nm2 to 6.5× 106 Nm2 and the axial stiffness
EA from 32.6× 108 N to 39.3× 108 N. In the following analysis, the actual retrofit is considered
as a reference case and has therefore also been included. In the selection of the six modification
cases in Fig. 21, a distinction is made between a modification at the bottom or the top connection
of the diagonal. In addition, the distance of the modified diagonal with respect the center of the
bridge is varied.
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Brussels
North arch

Actual retrofit

Leuven

Leuven
South arch
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Modification case 1

Leuven
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Brussels
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Fig. 21: Indication of the modified connections between the diagonals, the bridge deck, and the arches (red dots) for
the actual retrofit (top) and the six simulated modification cases (bottom).

Table 8 presents the frequency shifts attributed to the actual retrofit and the six modification
cases for each of the fourteen previously considered modes. For the actual retrofit, the identified
frequency shifts are provided (Section 4.3), whereas for the simulated cases the natural frequency
shifts are predicted using the FE model of the structure as explained before. As expected, the
frequency shifts corresponding to the simulated cases are significantly smaller than those attributed
to the actual retrofit. Furthermore, it should be noticed that the assigned frequency shifts are all
smaller than the observed variation of the natural frequencies in the period before the retrofit (see
Fig. 5). In the following, it is investigated to what extent the two damage detection methods
presented in Section 3 enable detecting the changes in structural state attributed to each of the
six considered cases.

Following the approach presented by Magalhães et al. in [13], the modeled frequency shifts
corresponding to the six simulated scenarios are introduced in the actual validation data (before
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Mode No. 1 2 3 4 5 6 7

Actual retrofit -4.28 -13.70 -8.60 -28.16 -7.37 62.27 3.62
Modification case 1 0.11 0.18 -0.01 0.15 0.08 -0.07 -0.03
Modification case 2 0.17 0.16 -0.20 0.08 0.18 -0.06 0.00
Modification case 3 0.22 0.02 -0.39 0.10 -0.33 2.11 1.48
Modification case 4 0.00 -0.27 0.01 -1.26 0.10 -0.10 -0.92
Modification case 5 -0.28 -0.10 0.04 -1.58 -0.26 2.03 -0.17
Modification case 6 -0.56 -0.20 0.09 -3.17 -0.52 4.07 -0.35

Mode No. 8 9 10 11 12 13 14

Actual retrofit 34.12 -30.48 87.36 102.11 114.51 100.35 184.87
Modification case 1 -0.21 0.00 0.23 -0.57 1.82 3.72 -0.46
Modification case 2 -0.09 -0.16 1.65 -0.92 1.71 0.99 1.38
Modification case 3 1.99 -0.84 -0.07 4.25 1.72 0.31 -17.83
Modification case 4 -1.61 0.01 0.41 -0.88 2.70 3.01 -1.00
Modification case 5 4.20 -0.71 0.08 3.88 1.86 0.73 -17.60
Modification case 6 8.89 -1.47 0.17 7.82 3.77 1.45 90.59

Table 8: Frequency shifts in [mHz] identified (actual retrofit) and modeled (modification cases 1 – 6). The number
of the modes (Mode No.) that are included in the damage detection are underlined.

the retrofit). The validation period of 12 non-consecutive weeks (see for example Fig. 7) is split
in two blocks of 6 weeks each. For the first blocks of 6 weeks, the original data are used without
modification. For the second block of 6 weeks, the frequency shifts listed in Table 8 are added to
the original data, as such imposing a frequency shift. The resulting natural frequency data are then
passed to both the linear regression model and the robust PCA model, discussed in Sections 3.1
and 3.2, respectively. Only data corresponding to temperatures above 2◦C are considered.

In the remainder of this section, the results are presented by means of so-called Receiving
Operator Characteristic (ROC) curve analyses. ROC curves provide a tool to express a model’s
performance based on the trade-off between Type I errors (false positives) and Type II errors (false
negatives) [29]. In this particular case, when comparing the misfit of a given prediction model
(linear regression or robust PCA) to a certain threshold (TH), the outcomes can be grouped into
the following four categories:

1. True negative (TN) – The structure is in its original state (cfr. undamaged) and the misfit
falls below the threshold.

2. False positive (FP) – The structure is in its original state and the misfit exceeds the threshold
(Type 1 error).

3. True positive (TP) – The structure is in its modified state (cfr. damaged) and the misfit
exceeds the threshold.

4. False negative (FN) – The structure is in its modified state and the misfit falls below the
threshold (Type 2 error).

The ROC curve is constructed by plotting the false positive rate (FPR) on the horizontal axis
against the true positive rate (TPR) on the vertical axis, for a varying threshold. As such, every
point on the curve corresponds to a certain threshold value that defines the safety region. The true
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positive rate (also called sensitivity) and the false positive rate (1-specificity) are defined as:

TPR =
TP

TP + FN
, FPR =

FP

FP + TN
(15)

The optimal threshold results in the maximum number of correctly classified data points. Although
many criteria exist, the Youden index (YI) is adopted here as a measure for the overall optimality
of (1) the applied prediction model and (2) the adopted threshold [30]. The Youden index is defined
as difference between the true positive rate and the false positive rate:

YI = TPR− FPR (16)

Conceptually, the Youden index corresponds to the vertical distance between the 45 degree line and
the point on the ROC curve for a given threshold TH. A large Youden index (close to 1) indicates
a better classification and vice versa.

Fig. 22 presents the ROC curves for the reference case, considering the actual retrofit, and
for the six simulated modification cases. The results are summarized in Table 9. As previously
discussed in Section 3, both linear regression and robust PCA enable a perfect detection of the
actual retrofit (Fig. 22a). As can be observed from Figs. 8 and 16, there is an entire range of
threshold values for which a perfect classification is achieved (8.6 to 22.2 for linear regression and
18.9 to 43.6 for robust PCA, both defined on an hourly basis). A maximum Youden index equal
to 1 is obtained both for the original data on an hourly basis and those obtained after 24 hour
averaging. When adopting a threshold TH = 4.67, no false negatives occur (TPR = 1), but some
false positives are obtained. In this case, the use of a larger threshold is preferred.

Optimal threshold (max. YI) Threshold = 4.67

max. YI TPR [-] FPR [-] TPR [-] FPR [-]

LR RPCA LR RPCA LR RPCA LR RPCA LR RPCA

Actual retrofit 1h 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 0.03 0.10
24 h 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 0.03 0.13

Modification case 1 1h 0.05 0.09 0.67 0.46 0.61 0.38 0.03 0.11 0.03 0.08
24 h 0.22 0.39 0.98 0.66 0.76 0.27 0.07 0.17 0.06 0.12

Modification case 2 1h 0.04 0.07 0.70 0.45 0.66 0.38 0.03 0.11 0.03 0.08
24 h 0.14 0.34 0.90 0.85 0.76 0.52 0.05 0.17 0.06 0.12

Modification case 3 1h 0.06 0.08 0.61 0.46 0.55 0.38 0.03 0.11 0.03 0.08
24 h 0.17 0.36 0.66 0.76 0.48 0.39 0.07 0.17 0.06 0.12

Modification case 4 1h 0.11 0.30 0.66 0.59 0.55 0.30 0.03 0.26 0.03 0.08
24 h 0.47 0.72 0.95 0.90 0.48 0.18 0.12 0.73 0.06 0.12

Modification case 5 1h 0.15 0.35 0.68 0.70 0.53 0.35 0.04 0.31 0.03 0.08
24 h 0.54 0.77 0.76 0.83 0.21 0.06 0.12 0.85 0.06 0.12

Modification case 6 1h 0.40 0.69 0.78 0.84 0.38 0.15 0.10 0.70 0.03 0.08
24 h 0.90 1.00 0.90 1.00 0.00 0.00 0.95 1.00 0.06 0.12

Table 9: Summary of the ROC curve analysis for the actual retrofit and the six simulated modification cases,
considering linear regression (LR) and robust PCA (RPCA) and distinguishing between the results for 1 hour
intervals (1 h) and those obtained after 24 hour averaging (24 h). For those cases where a correct decision is made
for all observed samples, i.e. Youden index YI = 1.00, TPR = 1.00, and/or FPR = 0.00, the results are underlined.
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(a)

(b) (c) (d)

(e) (f) (g)

Fig. 22: ROC curves for the actual retrofit and the six simulated modification cases. The black curves correspond to
linear regression, the gray curves to robust PCA. The solid lines correspond to the results for 1 hour intervals, the
dashed correspond to the results obtained after 24 hour averaging. The circular markers indicate the point on the
ROC curve corresponding to the maximum Youden index. The square markers indicate the point on the ROC curve
for a threshold c0.997χ2 = 4.67.

For the first three simulated cases, which concern the modification of one of the connections
between a diagonal and the bridge deck, the linear regression does not enable a clear detection of
the state transition. Indeed, both for the data on an hourly basis and those obtained after 24 hour
averaging, the ROC curve lies around the 45 degree line, indicating a poor detection capability for
every possible threshold value. Robust PCA, on the other hand, enables a better detection of the
state transition, especially after 24 hour averaging. For example, for damage case 1, the threshold
value corresponding to the maximum Youden index for the case of 24 hour averaging (TH = 2.01)
results in 27% false positives and 34% false negatives. The success ratio and therefore the Youden
index can be further improved by increasing the period of averaging. For the three considered
cases (1 – 3), the imposed frequency shifts are small. As a result, adopting a threshold TH = 4.67
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keeps the number of false positives low, meanwhile not enabling the detection of possible (small)
structural modifications.

For cases 4, 5, and 6 (Figs. 22e, 22f, and 22g, respectively), the detection capability of both
linear regression and robust PCA is much higher than for the first three cases. For each of the
considered cases, the Youden index for robust PCA is significantly higher than for linear regression.
Meanwhile, the benefit of the adopted 24 hour averaging is further demonstrated, leading in case 6
for the robust PCA model to a perfect distinction between the original and the modified state of
the structure (YI = 1), similar to the case of the actual retrofit (Fig. 22a). In this case, where
relatively large frequency shifts occur, choosing the threshold TH = 4.67 to keep the number of false
positives low does not impede the damage detection. Finally, notice that the threshold resulting in
the maximum number of correctly classified data points, i.e. the maximum Youden index, depends
on the damage case considered and therefore cannot be determined in advance. If one wants to
avoid a large number of false-positive detections and still achieve a high detection capability, it is
advised to adopt a rather high threshold based on engineering judgment, for example TH = 4.67,
meanwhile using a sufficiently long window for averaging the model misfit, as to remove remaining
random variations.

5. Conclusions

In this work, two black-box modeling techniques are adopted to remove the effect of environ-
mental variations on the natural frequencies obtained from a long-term monitoring campaign on
a railway bridge in Leuven, Belgium. The removal of environmental variations is essential to en-
able damage detection in an early stage, where only small changes in the natural frequencies of the
structure are expected. The first technique is linear regression, commonly adopted for temperature
compensation in structural health monitoring applications. This technique is very straightforward
to use and implement, but comes with the (often restricting) assumption that all environmental
variables which drive the natural frequency variations are measured. The second technique, which
overcomes this assumption, is robust PCA. This technique is relatively new to the field of struc-
tural health monitoring and serves as an extension of the commonly adopted linear PCA technique.
Whereas the estimation of the principal components for classical linear PCA is sensitive to outliers
in the training data, the robust PCA technique includes a separate outlier removal step prior the
the actual principal component extraction.

The bridge monitoring data used in this study are particularly interesting since they involve an
actual modification of the structure, by means of a retrofitting, that gave rise to a visible shift in
the observed natural frequencies. The two modeling techniques are compared by means of a ROC
curve analysis, hereby considering the actual retrofit and six structural modifications, which have
been additionally modeled using a calibrated finite element model of the railway bridge. In general,
it can be concluded that robust PCA outperforms linear regression for each of the considered cases.
Furthermore, it is shown how averaging the model misfits over a time window containing multiple
samples enables a further improvement of the damage detection capacity, even for small structural
modifications that result in relatively small natural frequency shifts.

Finally, it should be noticed that the results obtained for robust PCA for the presented case are
very similar to those obtained from classical linear PCA. Nevertheless, the robust PCA technique
is preferred over the linear PCA technique, since it is enables diminishing the effect of potential
outliers, which can lead to a misalignment of the principal directions of the model and therefore a
lower damage detection capacity.
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