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Abstract

Background: Gait retraining interventions using real-time biofeedback have been proposed to alter the loading

across the knee joint in patients with knee osteoarthritis. Despite the demonstrated benefits of these conservative

treatments, their clinical adoption is currently obstructed by the high complexity, spatial demands, and cost of optical

motion capture systems. In this study we propose and evaluate a wearable visual feedback system for gait retraining

of the foot progression angle (FPA).

Methods: The primary components of the system are inertial measurement units, which track the human movement

without spatial limitations, and an augmented reality headset used to project the visual feedback in the visual field.

The adapted gait protocol contained five different target angles ranging from 15 degrees toe-out to 5 degrees toe-in.

Eleven healthy participants walked on an instrumented treadmill, and the protocol was performed using both an

established laboratory visual feedback driven by optical motion capture, and the proposed wearable system.

Results and conclusions: The wearable system tracked FPA with an accuracy of 2.4 degrees RMS and ICC=0.94

across all target angles and subjects, when compared to an optical motion capture reference. In addition, the

effectiveness of the biofeedback, reflected by the number of steps with FPA value ±2 degrees from the target, was

found to be around 50% in both wearable and laboratory approaches. These findings demonstrate that retraining of

the FPA using wearable inertial sensing and visual feedback is feasible with effectiveness matching closely an

established laboratory method. The proposed wearable setup may reduce the complexity of gait retraining

applications and facilitate their transfer to routine clinical practice.

Keywords: Foot progression angle, Inertial sensors, Real-time biofeedback, Augmented reality headset, Gait

retraining, Knee osteoarthritis

Background

Knee osteoarthritis (KOA) is a leading cause of disabil-

ity in the elderly population [1]. To date, there is no cure

available for the disease and treatment options are of

pharmacological, surgical or biomechanical nature [2–4].

Pharmacological treatments alleviate only the symptoms

(pain, discomfort and swelling), while surgical treatments

usually involve total knee replacement and are only
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considered in severe stages of the disease [5]. Biomechan-

ical interventions are conservative non-pharmacological

treatments, which aim at decreasing or distributing the

loading across the knee joint. This mechanical joint load-

ing has been related to cartilage degeneration, pain, and

disease progression [6].

A common biomechanical treatment is gait retraining.

Through these treatments patients learn and gradually

adopt a modified gait pattern that results in decreased

loading across the knee joint. [7, 8]. The training is

typically achieved by tracking the body biomechanics

and using this information to drive a real-time feed-

back modality, such as a vibration, an audio sound or a
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visualization pattern [9]. An advantage of gait retraining

compared to other biomechanical treatments, such as use

of wedge insoles, knee braces or canes, is that it does not

require any additional devices to alter gait mechanics.

Knee joint loading can be quantified through the medial

and lateral tibiofemoral contact forces [10]. Due to prac-

tical difficulties in measuring the internal knee con-

tact forces in a non-invasive manner, the net knee joint

moment has been considered a convenient surrogate

measure [11]. However, instructing patients to decrease

a complex kinetic parameter, such as the knee joint

moment, in real-time, has been shown to be less effec-

tive than explicitly instructing the correct movement that

achieves the decrease in the loading [12]. These findings

are in line with previous studies which showed that higher

reduction in the knee adduction moment can be achieved

by altering related kinematic parameters, such as the foot

progression angle (FPA) [13–20].

Despite the demonstrated benefits of gait retraining,

it is currently not used in clinical practice [21]. One of

the primary reasons impeding clinical adoption is the

expensive, complex, time-consuming, and space-bound

instrumentation that is required to accurately assess the

biomechanical parameters. Conventionally, a gait labo-

ratory is utilized, in which multiple cameras track the

three-dimensional positions of skin-mounted passive or

active markers. Next, the segment positions and orienta-

tions are assessed through computational techniques such

as direct or inverse kinematics [22, 23].

An ambulatory alternative to the lab-bounded mea-

surement systems is composed of inertial measurement

units (IMUs) that can derive orientation of a sensor in

space [24]. Specifically, fusion of the accelerometer, gyro-

scope, and magnetometer signals and incorporation of a

biomechanical model and external contact updates enable

consistent drift-free motion capture [25, 26]. In addition,

IMU-based systems are typically low cost, low power,

highly portable, minimally obstructive, easily wearable,

acceptable by older adults and therefore comprise an ideal

alternative to facilitate the clinical translation of move-

ment analysis systems. Despite their potential, to date,

the use of IMUs in gait retraining applications for KOA

has only received limited attention [27, 28]. Exploiting

the advantages of IMUs, featuring high performance and

applicability, may remove the complexity of the current

laboratory approaches, decrease the costs, andmake treat-

ments available to a larger number of patients.

Besides motion tracking, the second component

required in gait retraining is the biofeedback. In a

recent systematic review, studies using laboratory-based

biofeedback to target knee joint loading either directly or

indirectly were analyzed [29]. Most studies used visual

feedback modes [7, 12, 20, 30–36] or multi-modal visual-

tactile [37, 38], and less often solely tactile [19, 39–41]

or auditory feedback [42]. Another review focusing on

wearable sensing and feedback techniques reported that

until recently, most studies utilizing wearable feedback

incorporated primarily tactile modalities [9]. These

devices are typically unobtrusive, but they act as on/off

switches that can only convey binary information to the

user. In addition, tactile feedback was reported to require

longer training times for patients to converge to a target

pattern, compared to visual feedback. Wheeler et al. [37]

Wearable visual feedback was until recently challenging

due to practical limitations. The conceptual and technical

feasibility of wearable visual feedback for knee joint angle

using two IMUs and a small screen on a smart-glass was

demonstrated by Steuner et al. [43]. Recent advances in

augmented reality (AR) headsets, such as the Microsoft

HoloLens [44], allow the projection of virtual objects

on the user’s field of view, via head-worn screens. As a

result, the wearable biofeedback setups can be enriched

with quantitative information, which can not only convey

whether the user is achieving the desired target range, but

also quantify the difference from the target.

The overarching objective of this study was to develop

and evaluate a wearable biofeedback system for gait

retraining purposes, as an alternative to currently exist-

ing lab-bound setups. In order to achieve this, the first

objective was to develop a wearable real-time visual

feedback driven by FPAs calculated using input from a

commercially available inertial motion capture system;

utilizing accelerometers, gyroscopes, and magnetome-

ters. We hypothesized that the proposed wearable system

would provide accurate assessments in timing and magni-

tudes of the FPA when compared to a conventional optical

motion capture laboratory setup. The second objective

was to evaluate the feedback effectiveness of the wear-

able system reflected by the number of steps with FPA

within a defined target range. We hypothesized that par-

ticipants would perform equally well in achieving the

desired FPAs using the wearable system, when compared

to the established laboratory setup. It is envisioned that

the proposed wearable setup may reduce the complexity

of gait retraining and facilitate their transfer into routine

clinical practice.

Methods

Subjects

Eleven (11) healthy volunteers (4 males, 7 females, age:

28.26 ± 4.55 years; height: 1.78 ±0.10 m; weight: 77.91

±15.01 kg; body mass index (BMI): 24.50 ±2.52 kg/m2)

participated in the data collection performed at the Vir-

tual Reality Laboratory of the VUmcAmsterdam. Subjects

provided written informed consent prior to their volun-

tary participation in the study and after receiving detailed

information about the study. Ethical approval was pro-

vided by the Scientific and Ethical Review Board (Dutch:
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Vaste Commissie Wetenschap en Ethiek - VCWE) of the

Faculty of Behavior &Movement Sciences, VU University

Amsterdam.

Instrumentation

Human movement analysis was performed in a Gait

Real-time Analysis Interactive Lab (GRAIL, MOTEK BV,

Amsterdam, NL) depicted in Fig. 1. The GRAIL system

is composed of a dual-belt instrumented treadmill with

two full 6D force plates beneath each belt capturing at

1000 Hz. In addition, the system features a ten-camera

system tracking 22 passive reflective markers at 100 Hz

(Vicon, Oxford Metrics Group, Oxford, UK). Markers

were placed on the following body locations according

to the lower body configuration of Human Body Model

2: anterior and posterior superior iliac spine, medial and

lateral femoral epicondyle, medial and lateral malleolus,

secondmetatarsal, fifth metatarsal, calcaneus, lateral mid-

shank, and lateral mid-thigh. To enable the laboratory

feedback, a semi-cylindrical screen located anterior to the

treadmill was utilized that projected an immersive virtual

reality environment. Integration and control of the GRAIL

components is enabled by the D-Flow software pack-

age [45], and real-time biomechanical modeling was per-

formed through the Human Body Model (HBM) software

package [31, 46].

Concurrently with the GRAIL measurements, Xsens

MVN Awinda inertial motion capture system (Xsens

Technologies BV, Enschede, NL) [47] was used with the

lower body configuration. Seven Xsens MTw IMUs with

dimensions 47 x 30 x 13 mm and orientation dynamic

accuracy 0.75 deg RMS for roll/pitch and 1.5 deg for

heading components were used. The full scales of the

measurement units are ±160m/s2 for the accelerome-

ter, ±2000deg/s for the gyroscope, and ±1.9Gauss for

the magnetometer [48]. Five IMUs were mounted on

pelvis, thighs, and shanks using the accompanying Vel-

cro straps and two IMUs were placed on feet by firmly

tying them with the laces on each participant’s own shoes.

The software version of Xsens MVN Analyze 2018.0 was

used to reconstruct the lower body kinematics at 60 Hz

[26]. The software features consistent behavior, even at

the presence of magnetic disturbances, making it suit-

able for use on a treadmill and any other environment

regardless of its magnetic field homogeneity. Segment ori-

entations were obtained through the software by applying

the IMU-to-segment alignment, found using an a-priori-

known upright pose (N-pose) performed by the subject

during the calibration [49]. The second part of the calibra-

tion of Xsens MVN consisted of comfortable walking in a

straight line for approximately 5 meters. The output of the

Xsens MVN Analyze is three-dimensional positions and

orientations of the modeled body segments, expressed

in an external coordinate frame defined during the

calibration [26].

To enable the wearable biofeedback, Microsoft

HoloLens was used (Microsoft Corp., Redmond, WA,

USA) [44]. This wearable augmented reality headset

device is capable of projecting holograms (three-

dimensional visualizations) in the environment of use.

The biofeedback was developed as a Universal Win-

dows Platform (UWP) application built in Unity 3D

Game Engine version 5.6.2 (Unity Technologies SF,

San Francisco, CA, USA), and receives kinematic input

(packet size = 760 bytes) from Xsens MVN Analyze, in

real-time, via User Datagram Protocol (UDP) at 30 Hz.

Networking of the devices was configured via an access

point (TP-Link TL-WR802N, 300MBit/s, 2.4GHz), which

was connected to the computer running Xsens MVN

Analyze via Ethernet and to the Microsoft HoloLens

via Wi-Fi. The components comprising the wearable

biofeedback system are illustrated in Fig. 2.

Fig. 1 Virtual reality laboratory equipped with a GRAIL system. The subject receives a target foot progression angle (FPA) through an arrow, which

changes color, from red to green, depending on the performed angle



Karatsidis et al. Journal of NeuroEngineering and Rehabilitation  (2018) 15:78 Page 4 of 12

Fig. 2Wearable biofeedback setup. Xsens MVN Analyze receives the MTw sensor data via the Xsens Awinda Station, reconstructs the lower body

kinematics, and streams via UDP. Microsoft HoloLens receives the kinematic input via Wi-Fi, calculates the foot progression angle, and updates the

holographic feedback visualization

The biofeedback was visualized similarly on both labo-

ratory and wearable screen, in accordance with a previ-

ous gait retraining study involving patients of KOA [12].

Figure 2 illustrates the wearable biofeedback setup, in

which the feedback object is a blue cone with 2D orienta-

tion updated based on the FPA per step. The target object

is an arrow placed behind the feedback cone, the color of

which is updated depending on the agreement between

the estimated and target FPA. More specifically, the color

changes were based on the absolute difference between

target and performed FPA: green when |FPA-target| ≤ 2◦,

yellow when 2◦ < |FPA-target| ≤ 5◦, and red when

|FPA-target| > 5◦. These are arbitrary chosen values, with

the green range matching targets used in previous studies

[12, 36, 41].

In the Microsoft HoloLens visualizations, billboarding

and tag along features were added to the holograms to

update their position, such that they would always face the

user and only translate when they were entirely outside the

user’s field of view. These techniques ensure availability

of the content at all times while minimizing the unpleas-

ant effects of visualizations that are tighly coupled to the

motion of the headset (head-locked content) [50].

For practical reasons, the Microsoft HoloLens applica-

tion featured speech command capabilities to enable the

initialization of the training protocol. Thus, right after

the initialization of the treadmill belt, the researcher per-

forming the experiment approached the subject who was

already walking on the treadmill to provide the triggering

key-phrase “go to mode zero” close to the microphone of

the Microsoft HoloLens.

Experimental procedures

Subsequently, placement of the reflective markers and

IMUs was performed, followed by calibration of Xsens

MVN system. As a last preparation step, participants

performed a T-pose and walked a few steps on the tread-

mill to anatomically calibrate the optical motion capture

system.

The first series of experiments comprised treadmill

walking at a preselected constant speed of 1.2 m/s for 13.5

minutes. An acclimatization period with no target was

provided for one minute. Next, the following five target

angles were projected in a random order, for two minutes

each: 15, 10, 5 degrees toe-out, 0 degrees straight toes,

and 5 degrees toe-in. Visual feedback on the performed

FPA was provided on each performed step on the labora-

tory screen. Before any new target, a 30-second active rest

period was provided, during which subjects kept walking

without receiving any target.
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During the second series of experiments, participants

wore the Microsoft HoloLens for a brief period to

familiarize with the device. The complete protocol was

repeated for another 13.5 minutes, by projecting the

targets and IMU-driven feedback only on the wearable

screen of the Microsoft HoloLens. An additional calibra-

tion step was introduced, where participants were asked

to walk with their toes pointing straight for one minute

to detect and reduce any heading offsets introduced by

the inertial motion capture system. The average FPA esti-

mated by the wearable system during this period was

subtracted from the FPA values estimated in the rest of the

trial. An example of the feedback protocol with the tar-

geted and performed FPA values, and the various modes

across the full duration of the protocol is illustrated in

Fig. 3.

Computational procedures

The inertial motion capture system outputs global posi-

tions and orientations of the tracked body segments. The

toe and heel positions are used to calculate the FPA of

the ith step, when the foot is placed approximately hor-

izontally on the treadmill belt. Assuming heel strike at

initial foot contact, entire contact of a foot is identi-

fied at the timepoint when the magnitude of heel and

toe velocities is close to zero, empirically found as the

magnitude of the first derivative of toe position (pt) and

heel position (ph),
∣

∣ṗt
∣

∣ < 0.2 m/s and
∣

∣ṗh
∣

∣ < 0.2 m/s,

respectively.

We define the foot vector for the ith step (rf ,i) as the

line from heel (ph,i) to toe (pt,i) during phase of entire foot

contact:

rf ,i = pt,i − ph,i (1)

Similarly, the heading vector of the ith step (rw,i) is

defined as the displacement vector between the position

of the heel in two successive steps:

rw,i = ph,i − ph,i−1 (2)

FPA is calculated as the difference between the foot

and the heading vectors projected on the transverse plane

(Fig. 4), defined by anterior (x) and lateral (y) axes:

θFP,i = arctan2

(

rw,i,x

rw,i,y

)

− arctan2

(

rf ,i,x

rf ,i,y

)

(3)

In the laboratory system, FPA is calculated and averaged

within a time interval, when the vertical ground reaction

force recorded by the respective plate, is greater than a

threshold of 10N. Toe and heel positions correspond to

the markers placed on the second metatarsal and calca-

neus, respectively and the foot vector is calculated based

Fig. 3 Illustration of the results for right and left foot progression angles across the whole training protocol, estimated at each entire foot contact via

inertial (blue lines) or optical (red lines) motion capture input. An offset correction is calculated during the first 60 s when participants are instructed

to walk with straight toes and applied after that. A unique random target is provided for 120 s (mid-point of green dashed lines indicating the ±2◦

good step range), after 30 s of no target (rest) period
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Fig. 4 Transverse caudal view of the feet, illustrating the calculation of the foot progression angle for the right foot. The foot progression angle (θFP)

of the ith step is derived from the difference of foot vector (rf ) and heading vector (rw ). The latter two vectors are computed based on the positions

of the heel (ph) and toe (pt) as illustrated in the figure

on Eq. 1. Differently to the wearable system, the head-

ing vector is constant and defined as the anterior axes

of the lab coordinate system aligned with the belt of the

treadmill.

Data Processing and Statistical Analysis

Data analysis focused on evaluating the performance of

the wearable system in estimating FPA, in real-time versus

the laboratory system, and to quantify the effectiveness

of the two feedback modalities. Firstly, we compared the

calculated FPA using the inertial motion capture system

versus the optical motion capture system during the sec-

ond series of experiments with the wearable feedback. The

root-mean-squared differences were computed per tar-

get angle. Pearson’s r2 correlation and two-way random

single measures intraclass correlation (ICC) were used

to to quantify the agreement and consistency between

the two estimation systems. Secondly, we examined the

effectiveness of the wearable biofeedback system versus

the established laboratory solution in altering the user’s

FPA. To quantify the effectiveness, we analyzed the num-

ber and percentage of good steps, defined as the steps

with FPA within the ±2 degrees tolerance range as sug-

gested in the literature [38, 41]. An analysis of variance

(ANOVA) across all target conditions and systems, with

Tukey’s post-hoc analysis was performed to test whether

the performed FPAs differ significantly across target con-

ditions. Significance level was set to 0.05 and confidence

interval at 95%. Data analysis was performed in MATLAB

2017a.

Results

Correlation and Bland-Altman plots are shown in Fig. 5.

Correlation coefficients were found of 0.9 for r2 and of

0.94 for ICC. Accuracy analysis across all data points

showed RMS difference of 2.38 degrees and level of agree-

ment (LOA) about 4.7° between the wearable and labora-

tory estimates. Per target mode, RMS difference (average

across subjects ± standard deviation) was found to be

2.25 ± 1.10, 2.18 ± 0.90, 2.02 ± 0.90, 2.62 ± 1.22, 1.86 ±

0.73 degrees for target FPAs of −15, −10, −5, −0, and 5

degrees, respectively.

During the first minute of the wearable feedback ses-

sion, when subjects were instructed to walk with straight

Fig. 5 Correlation and Bland-Altman plots for the foot progression angle estimates based on the wearable and laboratory setup
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toes, mean FPA values equaled −1.61± 2.47◦ as recorded

by the laboratory system, and −1.96 ± 2.91◦ as recorded

by the wearable system.

Figure 6 shows the box plots per target mode and per

feedback scheme. The mean ± standard deviations of the

differences from the targets for the wearable feedback

were 0.48 ± 3.75◦, 0.07 ± 2.86◦, −0.46 ± 2.57◦, −0.78 ±

3.01◦,−0.83±3.97◦ and for the laboratory feedback 1.04±

3.44◦, 0.28 ± 3.13◦, −0.91 ± 3.03◦, −1.20 ± 3.07◦, −1.49

±3.50◦ for −15°, −10°, −5°, 0°, and 5° target FPA, respec-

tively. In both systems multivariate ANOVA test showed

significant differences between the FPAs of each target

mode regardless of system used for the feedback, while

post-hoc analysis across the five different modes showed

that the FPAs during each target mode differed signifi-

cantly to other target modes (p < 0.001).

Feedback effectiveness based on the percentage of good

steps with FPAwithin the± 2◦ range is illustrated in Fig. 7.

Percentage of good steps in the laboratory feedback was

51 ± 15% across 12033 steps over all subjects and tar-

gets. Per target percentage of good steps was found to

be 42.7 ± 13.2%, 52.7 ± 12.2%, 58.6 ± 15.5%, 54.5 ±

18.7%, 46.3 ± 15.7% for FPAs of −15, −10, −5, 0, and

5 degrees, respectively. In the case of FPA feedback pro-

vided and calculated in the wearable setup, an overall per-

centage of good steps 48.3 ± 12.8% across 12075 steps was

found. For the aforementioned ascending order of targets,

effectiveness per mode was observed to be of 39.4 ± 9.2%,

54.4 ± 14.9%, 54.3 ± 11.0%, 51.4 ± 15.1%, 42.1 ± 13.9%.

When the FPAs of the wearable feedback were calculated

from the optical motion capture system, the percentage of

good steps was found overall 51.3 ± 13.4%, with individ-

ual per mode effectiveness of 45.3 ± 7.4%, 56.5 ± 17.0%,

56.1 ± 10.3%, 53.3 ± 19.7%, 45.1 ± 12.7%.

Discussion

In this study we proposed a method to perform gait

retraining of the FPA using real-time biofeedback based

entirely on wearable sensing and feedback modules. To

our knowledge, this is the first study investigating a

fully wearable visual feedback system for the purpose

of retraining the FPA. Our findings demonstrated that

FPA estimates derived from the inertial motion tracking

input matched closely the ones from optical motion cap-

ture, with an overall RMS difference of 2.38 degrees. In

addition, when incorporating a wearable augmented real-

ity headset, the biofeedback effectiveness, based on steps

within a ± 2◦ target range, matched closely the laboratory

approach.

Our accuracy analysis depends on an optical motion

capture system reference. However, previous studies

have indicated that orientations of the transverse plane

may also suffer from inter-trial, inter-session, and

inter-observer differences. In particular, for the foot

heading angle, median within-assessor reliability across

four studies [51–54] was reported to provide multiple

correlation coefficient of 0.55 [55]. In addition, the

same systematic review discussed five other studies that

Fig. 6 Box plot of all steps per target mode in the wearable and laboratory feedback. Green lines are the target limits of each mode
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Fig. 7 Bar plot illustrating the mean and standard deviation of the percentage of good steps (± 2 degrees from the target), across 11 subjects, for

wearable (orange) and laboratory (blue) feedback setups

reported inter-assessor standard deviation of the foot

progression that ranged from 2 to 5 degrees [56–60].

These literature findings suggest that error magnitudes

of around 2 degrees, as found in our study, are typically

found in conventional optical motion capture systems, as a

result of marker placement, computational method, mea-

surement system accuracy and resolution, or observer’s

experience and skills. Therefore, given that these mea-

surement errors are considered clinically acceptable, our

method is sufficiently accurate in tracking FPA for the

specific application.

In our study we used a sensor set of seven IMUs

required by Xsens MVN software to track both posi-

tions and orientations of the feet and other lower body

segments. A question arises whether fewer IMUs would

suffice for this task. Related studies have proposed a

set of one sensor per foot combined with a magneto-

inertial sensor fusion algorithm to derive the FPA [27, 61].

Even though those studies noted no effect of magnetic dis-

turbances in the estimates, it has been previously shown

that inertial-magnetic motion tracking is affected by the

homogeneity of the magnetic field [62]. In addition, the

use on a treadmill, which typically contain several elec-

tromagnetic components beneath the belt, would cre-

ate a non-homogeneous magnetic field. As a result, an

approach heavily relying on magnetometers would suffer

from orientation drift over time. The present study used

the latest version of Xsens MVN software, which provides

a consistent pose of the body pose regardless of magnetic

disturbances in the environment of use [26].

Calculation of the foot vector angle using both inertial

and optical motion capture solutions may suffer from off-

sets of approximately 1–3 degrees, due to measurement

and modeling error in both approaches. In inertial motion

capture, offsets in the foot vector may be introduced as a

result of a mismatch between the modeled and practiced

N-pose used to calibrate the system. Similarly, optical

motion capture may be susceptible to sub-centimeter mis-

placement of the markers on the second metatarsal and

calcaneus. For instance, misplacements of markers on the

foot may result in erratic estimation of the foot vector. In

the accuracy analysis we subtracted these offsets, based

on the median FPA during the first one minute of the trial.

Moreover, gait event detection methods differ between

both systems andmay introduce differences. The wearable

system relies on detection of near-zero velocity to detect

contact with the ground which may be sensitive to the

walking speed and style. In contrast, the laboratory sys-

tem is based on force plate detection, whichmay be erratic

in real-time in case the subject steps on the contra-lateral

force plate. In the offline analysis we have corrected for

these cases, by calculating the gait events based onmarker

velocity. Another source of difference in the laboratory

system is that for convenience, the heading vector was set

constant, aligned with the anterior axis of the global coor-

dinate system matching the movement direction of the
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belt. In other words, contrary to the wearable system, dif-

ferences in walking direction are not taken into account in

the FPA calculation of the laboratory system.

A major advantage of the proposed wearable system

compared to laboratory-based setups is its significantly

lower cost. Fully functional virtual reality laboratories typ-

ically cost between tens to hundreds thousand dollars,

depending on the type of optical motion capture systems,

instrumented treadmills, and immersive environment sys-

tems. The setup proposed in this study is composed of an

augmented reality headset and inertial sensors. Current

price of the development version of Microsoft HoloLens

is around 3000 dollars, while the cost of goods for iner-

tial sensor components (accelerometer, gyroscope, and

magnetometer) has nowadays dropped to a few tens of

dollars per module. Additional costs may include the cost

for networking devices, computers and software. Costs

for software vary considerably and are therefore diffi-

cult to quantify, since they usually depend on develop-

ment efforts, number of users and other market-driven

factors [63].

Besides costs, the proposed method based on a set of

IMUs and an AR headset reduces the complexity and

increases the flexibility of gait retraining methods signif-

icantly compared to conventional laboratory techniques.

Alternative approaches with lower cost and complexity

have been previously proposed, even without the neces-

sity for electronic equipment. For instance, mirror-based

biofeedback for FPA retraining of patients with knee

osteoarthritis has been investigated by Hunt et al. [33].

That study reported significantly lower performance of

the mirror feedback compared to real-time visual biofeed-

back, with mean differences of approximately 2 degrees.

However, despite the significantly lower performance of

the mirror and given the high costs of laboratory-based

biofeedback setups, the former was favored as an accept-

able solution for clinical practice. Our work provides a

method that matches closely the performance of labora-

tory feedback systems in terms of both tracking accuracy

and feedback effectiveness, while reducing the costs and

increasing the portability and potential of performing gait

retraining in any environment. In addition, recent studies

reported that subject-specific gait modifications decrease

knee joint loading significantly more, compared to gener-

alized targets [64]. Therefore, performance and portability

of motion tracking and biofeedback are both important

factors in retaining the decrease of joint loading, effec-

tively in each individual patient.

The feedback effectiveness of both wearable and labo-

ratory systems is affected by the arbitrary chosen value

of ± 2◦. This has been a point of discussion also by Chen

et al. [41] when applying a vibrotactile feedback setup

driven by marker-based motion capture. Further research

is required to identify optimal thresholds for the green,

yellow and red zones of the visualization.Moreover, in this

study we have used visualization of the target and feed-

back values as arrows and cones able to rotate. Alternative

visualizations such as in [31] should be examined to find

the ideal visualization method for gait retraining of the

FPA with visual biofeedback.

Inertial sensing and augmented reality technologies

have both advanced vastly in the last years. Their unique

combination enables not only applications of rehabili-

tation, such as gait retraining, but could potentially be

expanded to other fields, such as live entertainment and

gaming using input from a user’s own body motion to

drive graphics in a mixed reality environment. Devices

such as the Microsoft HoloLens utilize a number of sen-

sors to derive its own position and orientation in space.

All heavy computations needed for self-localization and

visualization of the holograms in space are executed stan-

dalone in real-time. In addition, these kinematic estimates

can be fused with inertial motion capture to correct any

position drift introduced by the latter, for instance due to

errors in themeasured segment lengths. The downsides of

the first commercially available and latest to date version

of the headset are that it is rather heavy (approx. 0.5 kg),

bulky, and impractical for use in daily life. Moreover, the

field of view is currently narrow. Upcoming developments

in augmented reality headsets are expected to improve the

functionality for potentially unobtrusive daily life use in

the future.

We evaluated the method on a treadmill, however, the

wearable setup enables the application of gait retrain-

ing in overground walking that differs in terms of gait

mechanics and metabolic energy cost [65]. As discussed

previously the use of more sensors may reduce the drift

over time, however, the system may not be comfortable

for uses of long duration during daily living. Further

research towards magnetically immune motion tracking

systems that require fewer sensors is necessary, to achieve

reliable orientation estimates regardless the environmen-

tal conditions or movement performed. Leveraging the

increased practicality of fewer sensors and consistent per-

formance over time could enable daily life applications,

requiring continuous monitoring of important kinematic

parameters.

In our study, awareness of the distance from the FPA

target was considered an important advantage of visual

feedback with respect to alternative modalities, such as

tactile and auditory. Wheeler et al. compared both visual

and tactile feedback, reporting that despite both being

equally effective, visual feedback required less time from

subjects to converge to the targeted gait pattern. However,

whether quantitative information can actually boost the

feedback effectiveness remains unknown. Another advan-

tage of visual feedback compared to other modes are the

gamification prospects, which could motivate subjects to
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perform the training in a game-like fashion. Neverthe-

less, further comparison studies between various feedback

modalities should be performed to assess the most effec-

tive and most engaging type of biofeedback.

In our study we examined the wearable sensing and

feedback in a group of young healthy adults, similarly to

previous studies evaluating experimental technology for

gait retraining [7, 28, 31, 32, 35, 37–39, 41, 42, 66]. How-

ever, the eventual application is targeted to patients of

KOA who are generally older and less familiar with tech-

nology. Further studies to evaluate the applicability of the

system in patients with KOA is required. Potential issues

that may be met with the current setup is the inability

of patients to perform the N-pose due to increased static

knee varus/valgus type malalignment with an unknown

effect to the FPA estimate.Manual input of the joint angles

performed during the static calibration trial may be an

appropriate solution for this. Nevertheless, the portabil-

ity of the system could facilitate applications initially in

clinical environments with the help of a medical special-

ist, and subsequently for home use. In particular, such

setup allows for increased number of training sessions,

which may result in enhanced training retention over

time. Moreover, combining such home retraining system

with telemedicine techniques could enable objective data

for remote monitoring of the gait pattern of patients and

identifying changes over time.

Conclusion

This study investigated the feasibility, accuracy, and effec-

tiveness of combining a commercially available inertial

motion capture system and an augmented reality head-

set to perform gait retraining to alter the FPA. The

findings proved sufficient accuracy of the FPA estimates

with the ones obtained from optical motion capture. At

the same time, average feedback effectiveness based on

number of steps within a ± 2◦ range from the target

was found around 50% for both setups. The proposed

setup is completely wearable and enables gait retraining

applications in clinical settings without the need for a

complex gait motion analysis laboratory. For daily mon-

itoring of FPA, further developments towards reduced

sensor setups with immunity tomagnetic disturbances are

recommended.
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